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Abstract

In this paper an inverse design method is
presented which couples a Navier-Stokes flow
solver and a numerical optimization algorithm.
The design method generates a turbomachinery
airfoil, producing a specified surface pressure
distribution at a transonic speed. A least-square
optimization technique is used to minimize
pressure discrepancies between the target and
designed airfoils. In order to represent the non-
linear, rotational and viscous physics of
transonic flows, Navier-Stokes equations are
used to predict the flow field. Sensitivity
derivatives are obtained using finite
differencing. Effects of different design
variables on the performance of design
optimization are evaluated.

1  Introduction

Computational fluid dynamics (CFD) has
changed the aerodynamic design process. CFD
was first employed in design in a cut-and-try
manner by utilizing its flow analysis capability.
That is, a specified configuration is first
evaluated to get its aerodynamic performance
characteristics, and then the geometry is
modified to produce an improved performance.
While this methodology may be effective if the
designs fall within a known experimental
database, it becomes cumbersome and difficult
when the design progresses outside the domain
of the known database. This type of design
methods for turbomachinery system was
discussed in Reference 1. Clearly, more
automated design optimization technologies are
desirable for the development of new
turbomachinery components. As computational

methods have advanced, CFD-based numerical
optimization became a more viable design tool
for advanced turbomachinery components.

A unique advantage of CFD is the
capability of inverse design. Inverse design
finds the airfoil geometry that produces the
pressure or velocity distributions specified by a
designer.  Earlier inverse design methods were
based on the potential equation due to its
simplicity. [2,3] The potential formulation,
however, can not properly represent the
transonic features such as embedded shock
waves and shock-boundary-layer interactions.
Several inverse design methods were
demonstrated using the Euler equations. [4,5] In
order to improve the reliability of a design,
viscous effects were often incorporated by using
the boundary-layer equations. However, the
Euler and boundary-layer coupling fails when
the flow separates. Hence even a temporary
occurrence of separation can terminate the
design process. Therefore, several recent inverse
design methods used the Navier-Stokes
equations. [6]

Inverse design based on the Euler and
Navier-Stokes equations has a difficulty in
formulating the inverse problem. Therefore, an
iterative approach is often incorporated to
improve the guess of the target airfoil starting
from a known geometry. Some inverse designs
use stochastic methods such as genetic
algorithms. [7] Stochastic methods have more
advantages in finding globally optimum
solution. However, these methods require large
number of function evaluations and  may not be
suitable for practical design applications. In the
present study, a deterministic method based on a
least-square optimization is used. In the
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following sections, the technology pieces used
are first described and then results from design
practices are presented.

2  Flow Analysis

The two-dimensional, unsteady, compressible
Navier-Stokes equations are solved using a
body-fitted, curvilinear co-ordinate system.  The
Baldwin-Lomax eddy viscosity model [8] is
used for turbulence closure, and the transition
point is fixed at fourteen percent of the chord.
A finite volume method is employed for the
spatial discretization. The flow variables are
defined at cell centers, and centered differencing
is used for the spatial derivatives. Second- and
fourth-order artificial viscosities are added to
enforce numerical stability. [9,10]  The time
integration is performed using an explicit, four-
stage Runge-Kutta scheme. Local time stepping,
variable-coefficient implicit residual smoothing,
and a multigrid method are implemented to
accelerate the convergence.  Characteristic
boundary conditions are imposed at the far-field
boundary based on a one-dimensional
eigenvalue analysis, and a no-slip, adiabatic-
wall conditions are used on the airfoil surface.

3  Numerical Optimization

The design process starts with a guess for the
target airfoil geometry, namely an initial
baseline airfoil. The flow analysis of the
baseline airfoil examines the quality of the
guess in producing the specified target pressure.
Using an initial airfoil with its pressure
distribution already close to the target pressure
would speed up the design process. The airfoil
geometry is updated by adding a smooth
perturbation. The geometry perturbation normal
to camber-line, ∆y, is defined as a linear
combination of the shape functions, fk:

∆y(x) f (x)k k
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where x is the normalized position of the
camber-line, y is the axis perpendicular to
camber-line, and K stands for the number of the
shape functions. The weighting coefficients, δk,

in the equation are the design variables to be
determined through an optimization process.
Figure 2 shows a schematic of the optimization
procedure.

In order to judge the design quality and
monitor the convergence of the design cycle, a
convergence parameter, CP, is defined. This
parameter is based on the root-mean-square of
length-weighted pressure discrepancies between
the target pressure and the pressure of the
designed airfoil:
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where Pti
 and Pbi

are the target and baseline

pressures respectively on the airfoil surface at
point i and ∆Si is the length of the surface
element. There are a total of I elements on the
airfoil.

The objective function to be minimized is
chosen as follows:
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where ∂Pi / ∂δk is the response of the flow field
due to a small perturbation and is estimated
using a finite difference:
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for a small value of δ. The same Navier-Stokes
code is used to evaluate the change in the
surface pressure due to a small geometry
perturbation defined by each shape function.

Then the magnitude of each perturbation,
δk, needed to achieve the target pressure
distribution is determined by a least-square
optimization technique. That is, the
minimization condition yields
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for j=1,K. It can be rewritten as
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for j=1,K. Equation (6) is solved for the δk’s that
define the perturbation, ∆y, required to improve
the guess. This procedure is repeated iteratively.

4  Design Variables

In general, turbomachinery airfoil design
involves different disciplines such as fluid
mechanics, heat transfer, materials, acoustics,
etc. Therefore, all significant physics should be
considered in selecting design variables and
constraints.  However, increasing the number of
design constraints and/or variables will increase
the design cost.  An appropriate choice of
design variables may reduce the number of
design constraints required while increasing
design performance.

The performance of a design process is
strongly influenced by the choice of shape
functions because shape functions influence the
convergence rate of the optimization process as
well as the quality of design results.  The
present study examines the following three
different shape functions shown in Figure 3.

Wagner Functions:

The Wagner functions provide large variations
with high harmonics and may cause waviness in
resulting designs.
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Patched Polynomials:
A cubic on one side of xk is patched with
another cubic on the other side to produce a
smooth curve of second-order continuity. xk is
the location of maximum perturbation.
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where

( )A xk= −max ,0 1 2

( )B xk= −max ,0 2 1

xk = 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 0.8, 0.9 ,0.95

Hicks-Henne Functions:

The sinusoidal shape functions are
frequently used in airfoil optimization.
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xk = 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 0.8, 0.9 ,0.95

Here xk’s are the locations of maximum height
of corresponding shape functions.

5  Results

The goal of the present study is to evaluate the
performance, dependency, consistency, and cost
of the present inverse design method. Effects of
different types of shape functions on the design
performance are evaluated with the given
turbomachinery airfoil. All the design practices
are performed using a C-type grid and the size
of 257×49. The minimum grid spacing next to
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the airfoil surface is set to .001 percent of the
chord length. Figure 1 shows the fine grid used
in this study. Flow calculations are started with
the most recent solutions and terminated when
the maximum residuals are reduced five orders
of magnitude with respect to the free-stream
initial solution.

The design practices are performed for the
Rotor R 030. [11] The profiles at 170 and 190
mm. in radial axis are used as target and
baseline airfoils, respectively. The flow
condition is set to M2 = 0.8, M1 = 1.25, α  = 60°
and Re = 106. Here, M2 , M1, α and Re are the
outlet and inlet Mach numbers, inlet flow angle
and Reynolds number, respectively.

In this study, Wagner functions, Patched
polynomials and Hicks-Henne functions modify
the upper and lower surface of the airfoil. A
total of sixteen and eighteen shape functions are
used. Effects of different perturbation sizes on
the convergence of designs are evaluated.
Figures 4 to 9 show comparison of surface
pressure and airfoil geometries between initial,
target and designed airfoils. Convergence
histories are also compared for different
perturbation sizes. For the designed airfoil, only
results with the best convergence are shown.

In designs with Wagner functions and
Patched polynomials, increasing the number of
shape functions from sixteen to eighteen does
not improve the design convergence
significantly. However, increasing the number
of shape functions shows significant
improvements in design with Hicks-Henne
functions. The best convergence is achieved
with 16 Wagner functions. Better convergence
may be achieved by changing the location of the
maximums of Hicks-Henne functions and
Patched polynomials.

In most of the design practices, the
converged results are obtained within five
design cycles. The convergence of design is
influenced by perturbation size. The finite
difference evaluation of the sensitivity may
introduce two different errors: truncation error
and condition error. The truncation error is the
result of neglected terms in the Taylor series
expansion and decreases with the decreasing

perturbation size. The condition error comes
from an early termination of the iteration in a
flow solution process. In most of the design
practices,  the best convergence is achieved with
a perturbation size of .00075 and .00100.

Tables 1 and 2 show the convergence
parameter and CPU time after ten design cycles.
All designs are performed on an eight processor
IBM SP2. The design with 18 Hicks-Henne
functions takes the minimum CPU time. Some
design practices take large CPU time because it
is difficult to have converged flow solution
around the geometries obtained during the
design cycles.

6  Concluding Remarks

The present paper demonstrates an inverse
design method based on the Navier-Stokes
equations for turbomachinery design. The use of
Navier-Stokes equations improves the level of
confidence on the design result. The
performance of the design procedure is a
function of the number and type of shape
functions and the perturbation size used in the
finite difference sensitivity evaluation. The
present design method can be easily
incorporated with the parallel computer
architecture by assigning the sensitivity
evaluation for each shape function to different
processors.
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Table 1. Design with 16 shape functions:

(a) With Wagner functions

Delta Convergence CPU(hrs)
.00150 .00302569 45.21
.00125 .00275943 49.77
.00100 .00279145 70.92
.00075 .00277741 61.76
.00050 .00287570 60.64

(b) With Patched polynomials

Delta Convergence CPU(hrs)
.00150 .00377246 49.51
.00125 .00376381 55.20
.00100 .00383265 46.26
.00075 .00374078 42.37
.00050 .00378255 42.28

(c) With Hicks-Henne functions

Delta Convergence CPU(hrs)
.00150 .01724246 45.91
.00125 .01705344 38.95
.00100 .00886708 32.75
.00075 .00912446 51.16
.00050 .00886751 29.00

Table 2. Design with 18 shape functions:

(a)  With Wagner functions

Delta Convergence CPU(hrs)
.00150 .00381642 64.66
.00125 .00309379 64.21
.00100 .00334132 69.21
.00075 .00307856 70.15
.00050 .00344490 57.09

(b) With Patched polynomials

Delta Convergence CPU(hrs)
.00150 .00388536 49.50
.00125 .00358294 50.80
.00100 .00408703 42.72
.00075 .00362037 39.04
.00050 .00357356 47.50

(c) With Hicks-Henne functions

Delta Convergence CPU(hrs)
.00150 .00337121 34.88
.00125 .00349952 38.97
.00100 .00345400 38.01
.00075 .00339138 39.14
.00050 .00333313 23.33
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Figure 1. Computational grid (257x49)
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Figure 2.  Design optimization procedure

 (a) Wagner functions

(b) Patched polynomials

(c) Hicks-Henne functions

Figure 3. Shape functions used to perturb the
geometry
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(a) Evolution of blade geometry

(b) Evolution of surface pressure

(c) Convergence history

Figure 4. Design practice with 16 Wagner 
functions

(a) Evolution of blade geometry

(b) Evolution of surface pressure

(c) Convergence history

Figure 5. Design practice with 18 Wagner 
functions
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(a) Evolution of blade geometry

(b) Evolution of surface pressure

(c) Convergence history

Figure 6. Design practice with 16 Patched 
polynomials

(a)  Evolution of blade geometry

(b)  Evolution of surface pressure

(c)  Convergence history

Figure 7. Design practice with 18 Patched 
polynomials
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(a)  Evolution of blade geometry

(b)  Evolution of surface pressure

(c)  Convergence history

Figure 8. Design practice with 16 Hicks-
Henne functions

(a)  Evolution of blade geometry

(b)  Evolution of surface pressure

(c)  Convergence history

Figure 9. Design practice with 18 Hicks-
Henne functions


