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Abstract

This study deals with the development and
implementation of an active control law for the
vibration suppression of beam-like flexible
structures experiencing transient disturbances.
Collocated pairs of sensors/actuators provide
active control of the structure. A design
methodology for fuzzy logic based closed-loop
control algorithm of beam vibration is
proposed. First, the behavior of the open-loop
system is observed. Then, the number and
locations of collocated actuator/sensor pairs
are selected.

The proposed control law, which is based
on the principles of passivity, commands the
actuator to emulate the behavior of a dynamic
vibration absorber. The absorber is tuned to a
targeted frequency, whereas the damping
coefficient of the dashpot is varied in a closed
loop using a fuzzy logic based algorithm. This
approach, not only assures inherent stability
associated with passive absorbers, but also
circumvents the phenomenon of modal spillover.
The developed controller is applied to the
AFWAL/FIB ten bar truss. Simulated results
using MATLAB show that the closed-loop
system exhibits fairly quick settling times and
desirable performance, as well as robustness
characteristics.

1   Introduction

A major driver that affects the overall system
performance of LFS (Large Flexible Structures)
involves   their   sizing  for minimum mass,
subject to both static strength and dynamic
requirements. This need to increase structural
efficiency in high performing systems has

recently motivated a field of research referred to
as adaptive structures which involves the
control of structural dynamics through
interdisciplinary design of an integrated
structure and control system. Adaptive
structures may be introduced to influence the
geometry, shape, apparent stiffness, damping, or
inertia of the structural modes. Significant
payoffs attainable in aerospace systems by
introducing adaptive control surfaces, active
acoustic coatings for signature suppression,
vibration suppression and twist control, and
active structural tuning and damping. The main
motivation of using an active control system as
opposed to passive means (e.g. dynamic
vibration absorber) is weight savings.

Aerospace facilities may generally
comprise of repetitive latticed trusses, span large
areas with a few intermediate supports, are light
in weight and extremely flexible, and
consequently are characterized by a large
number of high-density low frequency structural
modes. These higher order structural systems
utilize feedback control laws that are based on
system stimulus-response models, embedded
sensors to sense their response to operational
and environmental stimuli, and actuators to
modify their response in such a way as to
maintain or optimize structural performance.

In this study, a fuzzy logic controller is
proposed and developed for the least settling
time of suppression of transient induced
vibration  in  beam-like  flexible  structures.  For
such a class of dynamic systems, Juang and
Phan [1] presented a robust passive design
controller which is based on a virtual second-
order dynamic system comprising of virtual
mass, spring and dashpot elements. In addition,
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Juang and Phan [1] showed that overall closed-
loop stability was guaranteed independently of
the system structural uncertainty and
perturbations in the temporal plant of the
system. These second-order controllers may also
be termed “dissipative”, or “collocated”, and
they consist of compatible pairs of actuators and
sensors which may be distributed throughout the
structure [2]. The main reason for using the
“passivity” approach is its inherent robustness.
Furthermore, the virtual mechanisms
incorporated into the passive design serve only
to transfer and dissipate the energy of the system
thereby maintaining the stability of the system.

The above passive design approach is also
adopted in the present study, however by
treating the virtual system in a manner different
than that suggested by Juang and Phan [1], i.e.
in compliance with results yielded by non-linear
time optimal control analysis. The proposed
control law, which is based on the principles of
passivity, commands the actuator to emulate the
behavior of a dynamic vibration absorber. The
absorber is tuned to a targeted frequency,
whereas the damping coefficient of the dashpot
is varied in a closed loop using a fuzzy logic
based algorithm. The purpose of the fuzzy logic
based, variable damping strategy, is to provide
quicker settling times yielded by non-linear
control action.  In this paper, the proposed
approach is applied only to transient
disturbances. Furthermore, the developed
strategy was also applied to a laboratory model
of a flexible beam-like cantilever the vibrations
of which were actively controlled using
piezoceramic sensors and actuators [3].

In this study, a ten bar truss (Fig. 1) was
selected for the numerical application since it is
a well known benchmark, developed by
AFWAL/FIB, for studies concerning vibration
suppression of flexible space structures with
several low natural frequencies and a high
modal density. This benchmark serves as an
ideal platform to demonstrate some of the
important features of a control system design for
a typical large space structure. Moreover, the
main aim of the numerical exercise is pointing
out the effectiveness of the fuzzy logic based
controller in shortening the settling times. To

this end, the results obtained are compared to
those reached using LQG/LTR, which serves as
a “universal” baseline for comparison.

2   Actuator/Sensor Placement

Consider a large flexible beam-like structure
illustrated in Fig. 1. The state space
representation for such a large structure, may be
written in conventional form (neglecting noise
and disturbances) as:

)t(Bu)t(Axdt/)t(dx +=                  (1)
where x(t), dx(t)/dt,  u(t),  A  and  B are the state
vector, the state-rate vector, the control vector, a
n x  n state matrix and a n x m control matrix,
respectively. The corresponding measurement
equation may be written as:

                        y(t) = Cx(t)                            (2)
where y(t) is the output vector and C is a l x n
measurement matrix.

Hughes and Skelton [4] addressed the
important issue of sensor and actuator
positioning, for large flexible structures, by
proposing criteria for modal controllability
(actuator placement) and modal observability
(sensor placement).  Another approach, based
on passive control strategies for the vibration
suppression of large beam-like truss structures
[5], using dynamic vibration absorbers (DVA),
lead to the following observations:

 •  One DVA, tuned to a specific targeted mode,
is sufficient for the vibration suppression of
that particular mode.

 •  A DVA tuned to a certain frequency does not
affect the characteristics of the modes above
that frequency. Hence, after identifying the
targeted modes, the highest mode is first
tuned and then the structure is modified. In
the next step, the second highest mode is
tuned and so on [5].

 •  The energy absorbing property of the tuned
DVA is most effective when placed on the
maxima of the respective mode shape.
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The damping value of each of the DVAs
may be obtained using fuzzy logic control based
on the insight presented in Cohen, Weller and
Ben-Asher [6]. The above mentioned guidelines
will make the task of selection and tuning of the
actuator/sensor relatively simpler. Furthermore,
Juang and Phan [1], presented sufficient
conditions on actuator and sensor that
guaranteed overall closed-loop stability for
robust controller designs for second-order
dynamic systems.

3   Passivity Based Control

Consider a virtual dynamic vibration absorber,
attached at a distance "m" from one of the ends
of a large flexible beam-like structure with
arbitrary boundary conditions. For the sake of
convenience, we denote the natural frequency of

an undamped vibration of the absorber as " a ".
Based on the optimal tuning ratio of a 2-DOF
system, for a given open-loop frequency of
vibration ω, and a mass ratio of the absorber
mass to the structure mass µ, "a" is obtained by
equating the first two peaks of the steady state
response [7], and is given by:

2]
1

[a
µ+

ω=                             (3)

                                                                                 
Jacquot [8] extended Den Hartog's 2-DOF

theory to continuous systems. A dynamic
vibration absorber was applied at a distance "m"
from the fixed end of a cantilever Euler-
Bernoulli beam, thereby transforming Equation
(3) to:

2
2

i

]
))m((1

[a
µ⋅φ+

ω=                        (4)

where φi(m) is the value of the normalized
mode shape of the natural mode "i" at a distance
"m" from the fixed end. Following Equation (4),
the necessary plant information required to
define "a" is an estimate of the targeted
frequency ω which may be identified from the
displacement-time sensor output of the open-
loop system and φi (m).  In certain applications,
when there is possible lack of information on

mode shapes, we may introduce a constant, µ*,
which is used in the tuning process to make up

for the loss in performance. The value of µ* is
determined by a “random walk” during
simulations. This practice has been found to be
effective for beam-like structures  [9]. For such
cases, the product of the mass ratio of the

absorber, µ, and φi
2 (m) may be written as a

function of the damping factor, δ, and µ* as
follows:

            ])1(1[)]m([ 2*2
i δ+δ⋅µ=φ⋅µ          (5)

Eq. (5) represents an empirical relation,
whereby a lightly damped absorber corresponds
to a large mass ratio and vice-versa. Inserting
the above Eq.into Eq.(4) gives:

2
*2

2
]

)1(
[=a

δ+⋅µ+δ
δ⋅ω

                       (6)

Let the damping parameter, "b", be defined
as the ratio of the damping coefficient of the
absorber to the mass of the absorber, written for
a typical second-order system as:

)a(2b ⋅δ⋅=                         (7)

Inserting Eq.(6) into Eq.(7) yields:

            ]
)1(

[2b
*2

2

δ+⋅µ+δ
δ⋅ω⋅δ⋅=                 (8)

The resulting force (per unit mass) applied by
the absorber may be written as:

 ]
dt

)t,m(dy

dt

dx
[b)]t,m(y[xa=f 1

1 −⋅+−⋅        (9)

where y(m,t) and x1 are the transverse
displacements of the beam and virtual absorber,
respectively. x1 is obtained by solving the
following 2-DOF Eq. of motion of the absorber.
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where x2, is the transverse velocity of the
absorber.

The approach employed herein is based on
MRAC (Model-Reference Adaptive Control,
[10]). This method may be used in control of
systems whose models possess significant
uncertainties, and hence the application of a
model-independent control law is a distinct
advantage. First the performance errors become
the input to a tuner that adjusts the damping
factor of the virtual dynamic vibration absorber.
The value of δ inferred from the measurements
is reached by using a fuzzy control gain
weighting adaptation strategy, which will be
described in detail by Cohen [9]. In the next
step, the parameters that characterize the
absorber, a(δ) and b(δ), are obtained using Eqs.
(5) - (8).

After obtaining the values of a and b, 2-
DOF equations of motion of the absorber, given
by Eq. (10), are numerically computed to give
the displacement and the velocity of the virtual
absorber. Then, the input control force, obtained
from Eq. (9), is applied to the plant, which
consists of the first n modes of a large, flexible,
beam-like structure. Finally, the required force
is translated into the actuation command.

4   Application to a Ten Bar Truss

The ten bar truss, described in Fig. 1, was
introduced by AFWAL/FIB [11] to demonstrate
some of the important features of a control
system design, without the handling problems
associated with typical higher-order large space
structures. The mathematical model of the truss,
modified by AFWAL/FIB from a similar
structural model, is 100 inches in length and 18
inches high [11]. The adaptive fuzzy passive
control law, which was proposed and developed
in this study, is applied to the problem of the ten
bar truss. The evaluation of the developed
control system will be based upon the system

response to an initial condition. The initial
condition vector corresponds to a tip
displacement of approximately one-inch and a
mid-station displacement of nearly two inches.
The initial velocity of the truss is zero. For the
initial condition case, results are compared to
those presented by Lynch and Banda [11] based
on a LQG/LTR design.

The AFWAL/FIB ten bar truss benchmark,
illustrated in Fig. 1, is basically 2-dimensional
and motion is allowed in the x and y directions
only. Force actuators and position sensors are
collocated at points 1, 2, 3 and 4 on the truss.
The actuators act along the y-axis only whereas
the sensors measure physical displacements in
the y direction at the above four locations.
Further structural details of the AFWAL/FIB ten
bar truss benchmark are presented in [11]. The
first four modal frequencies for this uniformly
damped 8-mode model are shown in Table 1.

Mode
    1     2     3     4

Freq.(Hz) 0.500 1.653 3.613 4.702
Freq.(r/s) 3.142 10.39 22.70 29.54

Table 1: Natural Frequencies of the 10 Bar Truss

The transient disturbance involves an
initial condition that excites the first, second,
fifth and seventh modes of the structure. This
vector corresponds to a tip displacement of
approximately one-inch and a mid-station
displacement of nearly two inches. The initial
velocity of the truss is zero. The open loop
response of the truss to the above initial
disturbance is illustrated in Fig. 2.

The 8-mode model is reduced for design
purposes. Following Lynch and Banda [11]
examination of the system’s second-order
modes, the system was found to be most
controllable and observable with respect to the
first two modes. The resulting design model is
as follows:

x t Ax t Bu t Gd t
•

= + +( ) ( ) ( ) ( )              (11)

          y(t) = Cx(t) +Du(t)                        (12)
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where x(t), y(t), u(t) and d(t) denote the state
vector, the measurement vector, the control
forces and a scalar external persistent
disturbance, respectively.
With
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The sensors of the ten bar truss, described
in Figure 1, sense displacements in the y-
direction only and the actuators act along the y-
axis alone. Therefore, the control effort at points
1 and 3 may be identical to those at points 2 and
4 respectively. Based on the strategy developed
in the previous section, two virtual dynamic
vibration absorbers (DVA) were introduced at
points 2 (DVA 1) and 4 (DVA 2). For both
DVAs, the damping coefficient is varied in
accordance to the rule base described by Cohen
[9].

After calculating the force applied by DVA
1, this value was divided by 2 to obtain the force
applied at points 1 and 2. Furthermore, DVA 1
was tuned to the fundamental frequency (0.5
Hz.) and DVA 2 was tuned to the second natural
frequency (1.6529 Hz.). In addition, the
damping coefficients of the two virtual
absorbers were varied using the adaptive fuzzy
approach based on the rule-Base of the fuzzy
logic controller. On the other hand, the
membership functions of inputs (displacement
and rate at points 2 & 4) and outputs (damping
of DVA 1 & DVA 2) required some further
fine-tuning. If the velocities at positions 1, 2, 3
and 4 (required for calculating the force applied
by the virtual absorbers) are obtained by
calculating the change of displacement with
time, then the signal may consist of a lot of high
frequency harmonics. These harmonics of the
signal can affect the closed-loop performance.
The transfer function of the estimator may be
written as:

               G s
s

sd

( )
( )

=
+τ 1

                             (13)

In Eq.(13), when τd  is selected as zero, the
estimator performs as a real velocity but
produces a lot of noise. However, when τd  is
increased, the estimation error of the estimator
is increased but the noise is reduced. The
estimation error is proportional to the parameter
τd  and when t approaches infinite, the
estimation error of velocity approaches zero.
Generally speaking, τd  is selected as a small
value to allow the estimated velocity to
approach the real velocity in a short time. In this
effort, after several tuning attempts, the
appropriate value for τd  was found to be 0.4 sec.

Lynch and Banda [11] developed a
LQG/LTR controller based on the 2-Mode
design model. The responses at the upper and
lower locations are nearly identical as a result of
the excitement of only the longitudinal modes.
The lateral modes were not excited. For the
LQG/LTR controller, the initial vibrations are
damped to within 0.1 percent of the initial
amplitude in approximately 12 seconds. In
comparison, for the adaptive fuzzy controller,
the initial vibrations are damped to within 0.1
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percent of the initial amplitude in less than 6
seconds (see Fig. 3). This remarkable
improvement in the settling times is obtained
without exceeding the specified control power
limits. The robustness characteristics of the
developed controller are examined for the 3
perturbed plants described in Cohen [9]. For all
3 cases, the adaptive fuzzy controller yielded
satisfactory results [9].

5   Conclusions and Recommendations

The present effort describes the development
and application of a fuzzy based controller that
emulates the functioning of an adaptive dynamic
vibration absorber tuned to the targeted
frequencies. The central idea, which drives the
developed control law, implies that for large
values of system error, the damping effect of the
error derivative control is blocked as full control
authority is used to quickly drive the system to
zero. On the other hand, as the system error
tends to zero a progressively greater damping
effect is introduced.

The controller is applied to a beam-like
ten-bar truss that is subjected to a transient
disturbance in the form of an initial condition.
Four collocated pairs of sensors/actuators were
used to suppress the transient vibrations.
MATLAB simulations of the closed-loop
transient response, for the nominal and other
perturbed plants, demonstrate quick settling
times, a high rate of vibrational energy
dissipation and no control spillover to the higher
modes. The results obtained using the fuzzy
based controller compares favorably to designs
based on LQG/LTR.

The controller presented may further be
developed for the vibration suppression of more
complex structures such as 3-D beam-like and
plate-like latticed structures, having different
boundary conditions and which include coupling
between the bending and twisting modes. Future
work may include a stability analysis of the
closed-loop system and examination of the

closed-loop robustness to variations in the
location of the sensors relative to the actuators
(non-collocated sensors/actuators). Further
comparisons with other controllers may include
non-linear designs.
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Fig. 1: AFWAL/FIB Two Bay Model as presented by Lynch and Banda [11].
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Fig. 2: Open and Closed-loop response based on LQG/LTR [11].
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Fig. 3: Closed-loop response using fuzzy based strategy.


