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Abstract

This paper describes part of an investigation
into the use of Normal Form Theory to predict
and characterise Limit Cycle Oscillations
(LCO) in non-linear aeroelastic systems.
Starting with the coupled aeroelastic integro-
differential equations of a system with non-
linearities, it is shown how to reduce the order
of the system and then compute the normal
forms using a class of the period-averaging
method.  The stability of the LCO can then be
characterised by considering the behaviour
around the linear flutter condition. Such an
approach does away with the need for
numerical simulation of the system. The
methodology is demonstrated upon a simple
two-degrees-of-freedom aeroelastic wing model
with cubic stiffness. A good agreement is
obtained between analytical and simulation
results.

1 Introduction

It is usual for the aeroelastic behaviour and
flutter clearance to be made assuming linear
aerodynamics and linear aircraft structure.
However, the influence of non-linearities on
modern aircraft is becoming increasingly
important [1] and the requirement for more
accurate predictive tools grows stronger. These
non-linearities can be due to structural (free-
play, backlash, cubic stiffness), aerodynamic
(moving shocks and transonic effects) or control
(time delays, control laws) phenomena.

Vibration behaviour such as Limit Cycle
Oscillations (LCO) can only occur in non-linear
systems [2,3].   Consequently, it is not possible
to predict LCO using a purely linear analysis.
Moreover, linear analysis is becoming less
feasible. LCO has become an important research

topic over the last few years, although such
problems have been noted since the 1970s.
One area where there is an urgent need for a
predictive capability is in envelope expansion
during flight flutter tests. It is of particular
interest to determine:

•  whether an aircraft will experience Limit
Cycle Oscillations and/or Flutter

•  whereabouts in the flight envelope LCO
phenomena will occur

•  the precise nature of the LCO.

Although not desirable, LCO is essentially
a fatigue problem, whereas flutter is usually
catastrophic and must be avoided at all costs.
An accurate LCO/flutter prediction capability
would reduce significantly the amount of flights
required in any flight clearance test programme
with current costs being estimated at around
$70k per test flight.

There has been much work in recent years
[2-4] devoted towards the characterisation of
non-linear aeroelastic behaviour, including
LCO. This work has primarily consisted of
simulating the response of the aeroelastic
system through numerical integration, although
there are a few known instances of experimental
verification [5].  Some effort has employed
techniques such as the Harmonic Balance
method to address the problem. However, due to
the assumptions made in modelling the non-
linearity, the method does not produce accurate
estimates of the LCO behaviour.

Much effort has been devoted [6,7] to
improving unsteady CFD modelling allied to the
coupling of the aerodynamic and structural
grids. Significant headway has been made
towards solving the problem, particularly in the
Transonic region. However, there are still major
problems inherent due to the enormous
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computational resources required for even the
simplest cases. A number of mathematical
techniques exist in the non-linear dynamics
community that enables the stability boundaries
of a defined non-linear system to be computed
and the possible instabilities characterised. In
this paper, Normal Form theory [8] has been
implemented in such a way that it can be used
on non-linear non-autonomous aeroelastic
systems and to include the effects of unsteady
aerodynamics.  It should be noted that only
cases where the non-linearities are continuous
are considered.

Such an approach does away with the need
for extensive computational simulations.
However, the methodology is not seen as
replacement for extensive CFD modelling, but
as a guide to determine which parts of the flight
envelope should be investigated using
sophisticated CFD methods. This work is part of
a research programme aimed at developing a
complete modelling and predictive capability
for non-linear aircraft.

The methodology of the proposed approach
is described and then demonstrated upon a
simple binary aeroelastic system with structural
non-linearities.  Comparison is made between
the analytical and numerical integration results.

2 Governing Aeroelastic Equations

Consider a two-degree-of-freedom aerofoil
oscillating in pitch and plunge as shown in
Figure 1. The heave deflection is denoted by h,
positive in the downward direction, α is the
pitch angle about the elastic axis, positive with
the nose up. The elastic axis is located at a
distance ahb from the mid-chord while the mass
centre is located at a distance xαb from the
elastic axis. Both distances are positive when
measured towards the trailing edge of the
aerofoil. The integro-differential aeroelastic
equations of motion have been derived by Fung
[9], and used here in non-dimensional form. The
equations including structural non-linearities
with incompressible fluid at speed U are written
as
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where ξ=h/b is the non-dimensional
displacement and the prime superscript denotes
differentiation with respect to the non-
dimensional time τ which is defined as τ=U.t/b.
U is a non-dimensional velocity defined as

αωbUU /= , and ω  is given by αξ ωωω /= ,

where ωξ and ωα are the uncoupled heaving and
pitching modes natural frequencies,
respectively. ζξ  and ζα are the damping ratios,
rα is the ratio of gyration about the elastic axis.
G(ξ) and M(α) are functions of the non-linear
heave and pitch stiffness terms, respectively.
CL(τ) and CM(τ) are the lift and pitching
moment coefficients, respectively. For
incompressible flow, the expressions for CL(τ)
and CM(τ)are [9]
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where the Wagner function φ(τ) is given by

( ) ( ) ( )τεψτεψτφ 12111 −−−−= ExpExp        (3)



PREDICTION OF NONLINEAR AEROELASTIC INSTABILITIES

464.3

with constants ψ1=0.165, ψ2=0.335, ε1=0.0455,
and ε2=0.3. P(τ) and Q(τ) are the externally
applied forces and moments, respectively.

Having applied the Wagner function, the
integro-differential equation (1) can be rewritten
in a general form containing only differential
operators using the following transformation
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from which the system (1) can be rewritten as
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The coefficients c0, c1, …,c9,d1,…, d9 are
given in the appendix A. f(τ) and g(τ) are
functions depending on initial conditions,
Wagner function and the external forces, and
are given by
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By introducing a variable vector

( )TxxxX 821 ,,, !=  defined as
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The coupled equations given in (5) can
now be written as a set of eight first order
ordinary differential equations ( )τ,XfX =′
such that
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where
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Equation (8) can be integrated numerically
using Runge-Kutta method once the initial
conditions ( ) ( ) ( ) ( )0,0,0,0 ξξαα ′′  are given. In
this paper, the structural nonlinearities are
represented by cubic functions G(ξ) and M(α)
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where βξ and βα are constants.

3 Averaging Method

As with normal form transformations, the
averaging method [10] uses a near identity co-
ordinate transformations to simplify a given
system of ordinary differential equations. The
classical normal form transformation applies to
autonomous systems while the averaging
method applies to non-autonomous systems.
The autonomous differential equations can also
be transformed into a non-autonomous system
using the method developed by Leung and then
analysed using the averaging method outlined
here and discussed in detail in [10].

Consider the non-autonomous differential
equations

( ) 1,,,, <<∈=′ εετε p
RXXhX       (11)
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where the function ( )ετ ,,Xh is a T-periodic
vector field. Using the non-autonomous T-
periodic transformation of the form
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then the resulting averaged equation has terms
autonomous up to O(εk) and can be expressed as
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The non-autonomous part is truncated and the
remaining system of equations is analysed. By
using an asymptotic theory, it can be shown that
the solution of the final system approximates the
solution for the original system (11).

4 Non-linear Analysis

One approach to analyse the stability of non-
linear system is to use normal form theory [8].
The non-linear system (8) can be rewritten as

),(
~ τXGXAX +=′                   (14)

where A
~

 is a constant 8×8 matrix of which all
eigenvalues have non-zero real parts. The term

XA
~

and G(X,τ) represent the linear and non-
linear parts of the system. This system is further
extended to analyse bifurcation behaviour of the
aeroelastic system using the system parameter δ
defined as

U

LU
−= 1δ                             (15)

where LU  is constant and equal to the linear
flutter speed. By substituting the expression for
U given in (15) into equation (14), the
aeroelastic system of equation (8) can be
rewritten as
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The matrix A is an 8×8 Jacobian matrix
evaluated at the equilibrium point and
bifurcation value (i.e. 0=δ ). The matrix A has
one pair of purely imaginary eigenvalue

ωλ i±=2,1 , one pair of complex eigenvalue with

negative real part, icb ±=4,3λ , and four

negative real eigenvalues 8765 ,,, λλλλ . The

second and third terms in (16) are non-linear
functions of δ, X and τ. Expressions for the
matrices A and B are given in appendix B. The
non-linear part of the system (16) represented
by F(X,τ) is given by
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and the coefficients in (18) are given in
appendix A.

To apply normal form theory using the
averaging method, the system (16) is first
transformed into its modal canonical form. A
transformation matrix Q is obtained from the
eigenspace of A, such that
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Introducing a new variable, Y, such that
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the system (16) becomes
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The dynamic response of the system (21),
which is a 9-dimensional system, can be
investigated through a two-dimensional system
obtained from the following reduction
technique.



PREDICTION OF NONLINEAR AEROELASTIC INSTABILITIES

464.5

5. Liapunov-Schmidt Reduction Technique

The approach based upon the Liapunov-Schmidt
reduction technique reduces a multi degree of
freedom dynamical system into a two
dimensional matrix system corresponding to its
critical mode. Thus, higher order normal forms
can be obtained for the reduced system.
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The system (21) can be split into two systems
such that
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where the first equation in (23) corresponds to
the critical mode and WZ FF ,  are non-linear

functions of Z and W starting from the second
order terms.  The first order terms have already
been included in the first part associated with Z
and W.  Since a solution near the origin
Y=(0,0,0,0,0,0,0,0) is sought, if an approximate
function W = H(Z) can be found near the origin
such that
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is valid, then only the first equation in (23) will
be needed for the non-linear analysis. In the
above relation, the matrix DzH(Z) is the
Jacobian matrix of H(Z). The function H(Z) can
be approximated by any order function as
defined in [11,12]. Here, a second order
function is used for which a set of 30 algebraic
equation of unknown coefficients were obtained
and solved using Mathematica.

6. Test Cases

In order to illustrate the applicability and
accuracy of the above approach, two test cases
[13] were considered with non-linear terms
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In both cases, the analytical predictions were
compared with solutions obtained by using the
Runge-Kutta numerical time integration for the
full system (16). Since the free vibration of the
aeroelastic system was sought, the external
forces were assumed to be zero, i.e.
P(τ)=Q(τ)=0. The following numerical values
are used for the aerofoil geometry and
characteristics
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The linear flutter speed of 6285090.=LU  and

frequency ωL=0.084 are obtained for 2.0=ω
using the method developed in [14].

7. Results and Discussion

Applying the above procedure, the system (21)
is approximated with a set of two reduced
differential equations for each test case:

•  Test case 1 with cubic non-linear term in
pitch
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•  Test case 2 with cubic non-linear terms in

both pitch and heave
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Having applied the averaging method for
computation of the normal forms up to third
order terms, the following normal form solution
in the polar co-ordinate system is obtained as

•  Test case 1
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•  Test case 2
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The steady state solution for the amplitude of
the limit cycles in the transformed domain can
be obtained by letting the limit cycle amplitude
velocity in equation (29) and (30) be zero.  This
leads to the expressions

•  Test case 1
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which is a general function based upon the
bifurcation parameter δ. The frequency of the
limit cycles is also determined as

•  Test case 1
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where r in (33) and (34) is substituted from (31)
and (32), respectively. ωL=0.084 is the linear
flutter frequency. The amplitude and frequency
of limit cycles are shown in the figure (2) and
(3), respectively, for the cases 1 and 2. The time
response and the shape of limit cycles at δ=0.06
are illustrated in figure (4) and (5), respectively,
for the cases 1 and 2. A near perfect match
between analytical and numerical results is
obtained for both cases.

Note that the expression for the LCO
amplitude and frequency is obtained directly
from the analysis, unlike previous work [13]
where several approximations have to be used in
order to obtain the amplitude-frequency
relationship.

8. Conclusions

A non-linear aeroelastic system in functional
differential form has been investigated for
computation of limit cycle oscillations. The
normal form computations were carried out for
a general non-autonomous system using the
averaging method. This is advantageous
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compared with other classical methods such as
centre manifold theory [13] which only consider
autonomous systems.

Since this class of averaging method is best
employed for single degree of freedom (SDOF)
systems, an approach based upon Liapunov-
Schmidt method is used to reduce any large
system into its critical SDOF blocks.

The approach is able to predict the
amplitude and frequency of LCO for systems
with continuous non-linearities. Good
agreement was found between the analytical
predictions and results from numerical
integration.

Research is continuing with the application
of the methodology to higher order systems and
systems containing non-linear aerodynamics
and discontinuous non-linearities.
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Figure 1. Aerofoil geometry for two degrees of freedom motion.

Figure 2. Amplitude and frequency of limit cycle oscillations for test case 1 with cubic nonlinearity
in pitch motion.

Figure 3. Amplitude and frequency of limit cycle oscillations for test case 2 with cubic nonlinearity
in both pitch and heave motion.
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Figure 4. Time response and shape of limit cycle oscillations for test case 1 with cubic nonlinearity
in pitch motion at δ=0.06.

Figure 5. Time response and shape of limit cycle oscillations for test case 2 with cubic nonlinearity
in both pitch and heave motion at δ=0.06.

Appendix A

The coefficients of the equation (5) and (8-9) are given as follows
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Appendix B

The matrices A and B in the equation (16) are given by
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The coefficients jiji ba ,, ,  are defined as follows

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

12024140231202213041

02024040230202203021

191948090928

181847080827

171746070726

161645060625

121444020424

141543040523

131242030222

151341050321

,,,

,,,,

,,

,,

,,

,,

,,

,,

,,

,,

djcbdjcbcjdbcjdb

djcbdjcbcjdbcjdb

dccdjadccdja

dccdjadccdja

dccdjadccdja

dccdjadccdja

dccdjadccdja

dccdjadccdja

dccdjadccdja

dccdjadccdja

==−=−=
−=−===

−−=−=
−−=−=
−−=−=
−−=−=
−−=−=
−−=−=
−−=−=
−−=−=

where the coefficients 9900 ,,,, dcdc ! are given in appendix A and the coefficients

30204020 ,,,, ddccj  are defined below.
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