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Abstract

In this paper the method is suggested for taking
account of transonic phenomena for
calculations of static aeroelasticity
characteristics. This work is implemented as
further development of the methods and
software of the multidisciplinary computer code
KC-2 which is used for the analysis of the
problems of static and dynamic aeroelasticity in
Russian aviation design bureaus. Elastic
characteristics of the structure are computed on
the base of polynomial Ritz method. Iteration
technique is used to analyze static aeroelasticity
characteristics in the transonic regime.
Pressure distribution is computed by solving
Euler equations by using Godunov’s method.
Then a numerical linearization is performed for
transonic pressure distribution and a linear
analysis of static aeroelasticity characteristics
is made. The procedure is repeated up to
convergence on trim angles and displacements
of a structure.

The results of the analysis of static
aeroelasticity characteristics in transonic flow
for supersonic transport are presented. The
comparison with the results of linear analysis is
shown.

1. Introduction

Static aeroelasticity analysis in transonic flow is
urgent for various types of modern aircraft.
Many flying machines have transonic flight as
critical regime from the stability and control
viewpoint. Therefore, it is important to take into
account transonic phenomena when stability and
control derivatives of the elastic aircraft are
calculated. One of the conditions of raising the

economy of high-speed civil aircraft is more
accurately prediction of the cruise shape, which
depends on the structural elastic displacements
in a transonic flow.

Today the practical computational studies
of aeroelasticity of airplanes are basically based
on linear methods of computation of
aerodynamic forces. Doublet-Lattice Method
(DLM) [1, 2] and different versions of panel
methods [3, 4, 5] are used more often than not.

Advanced computational methods of
aerodynamics are founded on the solution of
Euler equations and sometimes - Navier-Stokes’
equations [6, 7]. They are basically used for
aerodynamic design of airplanes, and seldom
are used for problems of aeroelasticity. The
wide application of these methods for the
solution of practical problems of aeroelasticity
is limited by the several causes:
•  complexity of aerodynamic grid generation

for an actual airplane. The successful
fulfillment of such calculations without
participation of the expert on computational
aerodynamics is rather problematic;

•  complexity of the fitting of an aerodynamic
grid with the mathematical model of a
structure;

•  necessity of power computational tools.
The urgency of these problems is increased

at using of the multidisciplinary approach to
structural design, when the calculations of the
characteristics of aeroelasticity are executed
many times for various variants of a structure
[8, 9].

The main difference of transonic
aerodynamics is a non-linear dependence of
aerodynamic forces on parameters of motion. In
this case formulation of the task about finding
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of the static aeroelasticity characteristics should
be considered anew, since concepts of
‘derivative of aerodynamic coefficients’,
‘flexibility correction factor’ etc. usually imply
linear dependencies. Note that ‘the
characteristics of a rigid airplane’ concept is
also ambiguous in a case of a nonlinear
aerodynamics.

Recently an essential progress in usage of
transonic aerodynamics was reached for
multidisciplinary design optimization (MDO) of
a structure. It is based on the different
approaches to a linearization of aerodynamic
forces [10, 11].

Here we shall consider computation of the
characteristics of static aeroelasticity in a
transonic flow by using our approach, which is
founded on a usage of a numerical linearization
of transonic pressure distribution and linear
analysis of static aeroelasticity. The mentioned
formulation is adapted to the methods and
software packages which are used in TsAGI,
namely:
•  the modern version of a polynomial Ritz

method;
•  founded on Ritz method software package

KC-2;
•  Godunov’s method of the solution of Euler

equations for transonic flow (software
package TRANS [12]).
The aerodynamic grid for transonic

analysis is generated by using the same input
data, as for linear case. The problems of the
fitting of an aerodynamic grid with the
mathematical model of a structure do not arise
in a polynomial method. Efficiency of methods
and the software allows to perform
computations for an actual structure on personal
computers for reasonable time.

The main purpose of this approach and
method we see in refinement of the stability and
control derivatives (flexibility correction
factors) and elastic deflections of an airplane in
transonic flight. The sequence of computations
and application of a suggested procedure for a
transonic flight phase of a second generation
supersonic transport airplane (SST-2) is
reviewed below.

2. General Outline of Computation

The suggested sequence of computations of the
characteristics of static aeroelasticity in a
transonic flow can be conventionally devided
into six stages:
1. Computation of polynomial matrices of

structural stiffness and inertia G, C,
aerodynamic stiffness and damping B, D by
using linear (subsonic or supersonic)
aerodynamics.

2. Linear analysis of the characteristics of
static aeroelasticity.

3. Computation of structural displacements for
two close angles of attack.

4. Computation of a transonic pressure
distribution for these two states of structural
displacements.

5. Linearization of aerodynamic forces and
computation of new (transonic) matrices B
and D.

6. Linear computation of the characteristics of
static aeroelasticity with new aerodynamic
matrices.
The items 3 - 6 can be repeated (for

example, up to convergence on a trim state).
Each stage of computation is reviewed more
detail below.

3. Computation of Polynomial Matrices.

To analyze an elastic structure in software
package KC-2 the Ritz method is used, when
the displacements of elastic surfaces (ES) are
presented as polynomial functions of the spatial
coordinates. A whole structure is modeled by a
set thin, originally flat ES, which can be
arranged in space arbitrarily. For each of ES the
mass and stiffness distribution is specified. The
different type elements can be used to model of
an actual structure - concentrated masses,
bending and torsion beams, plates, panels, etc.
The local coordinate systems for each elastic
surface are selected so that the plane x0z
coincides with ES plane. The normal
displacements W (x, z, t) of an elastic surface are
expressed in the following way:

 , )(),(=),,( 
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where  0,1,...=,    ,),( nmzxzxf kk nm
k =

For each ES the polynomial can be chosen
separately. The factors uk(t) are used as
generalized coordinates of the polynomials
method.

The motion of ES in a self-plane is
described by a set of additional generalized
coordinates.

Further elastic surfaces are integrated in
unified computational model with the help of
elastic springs, which allow to model different
conditions of ES connection among themselves.

For computation of aerodynamic forces the
DLM or panel methods are used. Steady-state
aerodynamics or unsteady one at small reduced
frequency (for more precise estimations for
derivative on angular rate) is used.

The equation of motion of an elastic
structure in an airflow is represented by the
way:

00 Qu)GB(u)DD(uC =++++ !!!      (1)

Here u - united vector of generalized
coordinates;

C, D, D0, B, G - united matrices of inertia,
aerodynamic and structural damping,
aerodynamic and structural stiffness;

Q0 - vector of generalized forces due to
initial camber and twist of lifting surfaces.

4. Computation of the Characteristics of
Static Aeroelasticity

To solve aeroelasticity problems the special
variables are necessary which represent a
motion of a structure as a whole and deflections
of control surfaces. Such variables are generated
from components of united vector of
generalized coordinates. The matrices of an
equation of motion also are transformed to a
special form, in which whole rigid body motion
variables and relative control displacements are
explicitly separated. The transformation of
equations of motion to the static aeroelasticity
problem form is performed as a set of linear
transformations. The resultant transformation is
presented as:

u~ = Xst u                               (2)

where u~ =(urig , uel)
T is a new vector of

generalized coordinates of dimension Nst;
urig - vector including rigid body motion

variables and relative control displacements;
uel - vector corresponding to relative elastic

displacements of a structure;
Xst - transformation Nst × Nu matrix;
Nu – dimension of initial united matrices.
The matrix Xst will be used for recovery of

a vector of polynomial generalized coordinates
of initial structure after the solution of equations
of static aeroelasticity.

The selection a component of vector urig is
one of important points in problems of
aeroelasticity. For example, the influence of
structural elasticity on aerodynamic coefficients
can hardly depend on the manner of definition
of the angle of attack. The angle of attack is
usually defined as an angle between undisturbed
airflow and tangent to one of elastic surfaces
near to a center of mass of an airplane (base
point). The angle of an elastic control surface
deflection is usually defined as an angle
between tangents to basic and control surface in
section, in which actuator is located.

The equation of aeroelasticity (1) is
presented in block’s form under quasi-steady
assumption when inertial and damping forces
due to elastic deformations uel are not taken into
account:
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The structural damping is not considered in
static aeroelasticity. The vector urig has
following structure for a case of longitudinal
motion:

urig=(ux,uy,α,δ)T, rigu! =(Vx,Vy,ωz, δ! )T,

rigu!! =(gnx, gny, zω! , δ!! )T.

Here α, δ are angles of attack and control
surface deflection; ωz is pitch rate; ux , uy , Vx ,Vy,
nx , ny are displacements, velocities and load
factors of the base point along Ox and Oy axes,
g - gravity acceleration.
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The blocks of matrices B11, D11 contain
aerodynamic derivatives of a rigid airplane. To
obtain the same blocks under quasi-steady count
of structural flexibility, the vector uel from the
second equation is substituted to the first:

( ) ( )
( ) )ZQBQ(uPBD

uPBGBuPBC

rig

rigrig
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−+−−
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Here P0 = ZC21; P1 = ZD21; P2 = ZB21;

( ) 1−+= 2222 GBZ . To find an accordance
between coefficients of the equation and
aerodynamic derivatives, it is necessary to
transform an equation to "normal" view, in
which there is a term riguC !!11  in the left side. It

can be made by two ways. The first way: to
transfer the term riguPB !!012  to the right part. This

term defines the influence of inertial forces on
aerodynamic coefficients of an elastic airplane;
the remaining terms in a right part of the
equation correspond to aerodynamic derivatives
without inertial forces. The obtained in such a
way characteristics are named also as
characteristics of a ‘weightless’ airplane. The
second way is a left multiplication of the

equation by a matrix ( ) 1−− 0121111 PBCC . In this

case there are no derivatives on accelerations
and the aerodynamic derivatives are obtained
with taking account of elastic displacements due
to inertial forces; they are named also as
characteristics of a ‘weighted’ airplane. Joint
consideration of these derivatives allows to
evaluate mass distribution influence on static
aeroelasticity characteristics (including other
versions of loading).

To estimate divergence and reversal
characteristics the derivatives of non-
dimensional aerodynamic coefficients are
computed in dependence on dynamic pressure at
a set of Mach number. The increase of some
derivatives (for example, lift slope coefficient

α
yc ,...) shows divergence tendency, and the

decrease of control derivatives (for example,
roll moment derivatives due to aileron
deflection a

xmδ ) shows reversal tendency. An

estimation of structural elasticity influence on
the aerodynamic coefficient is performed

through relative value ξ, which equals to ratio of
aerodynamic coefficient derivatives of elastic
and “rigid” aircraft ( αξ

yc
= αα

rigyely c/c , ...).

Relative shift is determined for the aerodynamic
center rigFelFF xxx −=∆ . The influence of the

control surface attachment stiffness (or actuator
stiffness) on the stability and control
characteristics of the aircraft is also
investigated.

To solve a maneuver problem the
weighting coefficients of control participation
and parameters of maneuver are set. The trim
angle and elastic displacements are determined
by the solution of an initial (full) equation (3).
The right part of the equation is determined
through parameters of motion. Thus the strained
state in generalized and physical coordinates is
determined.

The loads can be further computed through
elastic deformations and characteristics of
elasticity of a structure.

In a case of a fixed airplane the values of
angles of attack (or side-slip) and deflection of a
generalized elevator (aileron and rudder - for
lateral motion) are specified, then the
deformations are computed in generalized and
physical coordinates.

5. Computation of structural displacements
for two close angles of attack in specified
flight regime.

Alongside with the mentioned above
characteristics two generalized coordinate
vectors are determined for computations in a
transonic flow. They are close in the sense of
the angle of attack of the airplane and have
following form:
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Here α, δ, uel - angle of attack, deflection
of a generalized elevator and elastic deformation
vector according to a trim condition of an elastic
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structure in a given flight regime. For a fixed
structure α and δ are considered as specified.

These vectors are converted to initial
structure of generalized vector

11 u~Xu T
st= 22 u~Xu T

st=
and are stored for computation of distribution of
local angle of attack in a transonic flow. To
analyze a rigid (undeformed) structure the
vectors are used which correspond to the same
angles of attack without deformations (but not a
trim angle of a rigid airplane):
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The computations indicated in item 4, 5,
are performed in the STAER program from
KC-2 package.

6. Computation of transonic pressure
distributions for two displacement fields

The further computations are made in the
program TRANS. The same geometry of an
airplane (aerodynamic trapeziums) is used as in
the case of linear aerodynamics. However,
dividing into elementary cells differs
essentially. The computations are performed
using dimensionless coordinates referred to a
root chord of a wing bo1. The polynomial
matrices of transformation Xp, 

x
PX , z

PX  from
vector of generalized coordinates u to

displacement Wi and angles 
x
Wi

∂
∂

, 
z
Wi

∂
∂

 in

points of a grid xi, zi (i=1,...,Nkk) are further
calculated. Through these matrices the field of
displacement and angles is determined for
mentioned above vectors u1 and u2. The
displacement velocities are not considered here,
the only static case without angular rate is
supposed.

Additional angles due to lifting surface
camber and twist are added to the obtained
angles; they are determined by interpolation on
airfoils, specified in a set of sections of the
surfaces.

The initial conditions (velocities, pressure
and density) of an undisturbed flow are set in all
cells. Then Euler equations integrating starts for
1-st displacement field by using finite-
difference Godunov’s method [12]. The field of
pressure in all cells is determined. The
difference of dimensionless pressure between a
upper and lower wing surface )(

piC 1∆
(i=1,..., Nkk) is calculated for the cells, which are
adjacent to the structure. The integrating is
executed up to relaxation (for example, on total
lift coefficient cy). Then the computation is
repeated for the second displacement field and

)(
piC 2∆  is determined.

7. Linearization of aerodynamic forces and
computation of transonic matrices B and D

A linearization can be performed through two
computed pressure distributions and a derivative
of relative pressure with respect to local angle
of attack can be find:
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The derivative of a pressure is obtained by
multiplying on the area of cells:

zxS)b(CC iopipi ∆∆∆=∆ αα 2
1 ,

Here iS  is relative area of cells, and ∆x, ∆z

are relative sizes of cells.
The aerodynamic stiffness and damping

matrices B and D are further calculated as:

x
PPP

V
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Here ρ  is air density;
V=M Vs (M is Mach number, Vs is speed of

sound);
α
PC =diag( α∆ piC ) is a diagonal matrix of

pressure derivative on a local angle of attack.
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8. Static aeroelasticity analysis with new
aerodynamic matrices

In the case of linear aerodynamics the
computation in STAER program is performed
for a given set of dynamic pressure values. In
the transonic case it is meaningful to perform
computation for one value of dynamic pressure,
for which the deformations and aerodynamic
matrices are obtained.

A computation process in this case doesn’t
outwardly differ from the computation with
linear aerodynamics. Two close structural
displacement fields will also be obtained, which
however can differ from obtained with linear
aerodynamics. Therefore procedure is repeated
up to convergence which is defined through
structural displacements. The computation tests
have shown, that the process converges for 3-4
iterations.

As a result the stability and control
derivatives and elastic structural displacements
are obtained with taking account of transonic
features of flow: airfoil thickness, shock waves,
finite angles of attack and control surfaces
deflection.

9. Supersonic Transport Airplane

At designing of the SST-2 it is supposed, that
there should be two cruise flight regime:
supersonic regime at a Mach number M=2.0-
2.2, and subsonic one at M=0.9-0.95. For the
first (supersonic) regime all panel methods give
close results on the characteristics of static
aeroelasticity. A first generation SST experience
demonstrates that these results are rather well
agreed with experimental data. The second
regime is more critical from the static
aeroelasticity viewpoint - both on stability, and
on a controllability and ensuring the demanded
characteristics of trimming. Therefore the
refinement of the linear static aeroelasticity
characteristics is urgent with allowance for of
transonic phenomena.

The version of SST-2 with titanium wing
(40m span, 3% thickness ratio) is considered;
total weight equals to 300 tons. A structural
computational model consists of a set of beams,
orthotropic panels, concentrated masses and

joint springs. The aerodynamic model for DLM
and supersonic panel method is presented in a
fig. 1; it contains 359 boxes for half structure.

Fig. 1. SST aerodynamic model for DLM and panel
methods

The spatial aerodynamic grid for transonic
computations contains 60×15×30=27500 cells.
From them 361cells are adjacent to a wing
surface; α∆ piC  are determined in them. The

computations were executed on the personal
computer Pentium-2; one iteration took
approximately 90 minutes.

Fig. 2. Aerodynamic cells for Godunov’s method

It is difficult to compare among themselves
the free airplane characteristics which are
obtained with the linear and transonic theory as
the trim angles will be different. Therefore the
characteristics of an airplane which is fixed near
to a center of mass at specified angle α0 are
considered for comparison.
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Fig. 3. Flexibility influence on a lift slope coefficient.
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Fig. 4. Flexibility influence on aerodynamic center
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The characteristics which are obtained by
the linearization of pressure distribution at
various α0 demonstrate that they differ
insignificantly up to values α0=2°-3°. Fig. 3, 4
show a lift coefficient slope and position of an
aerodynamic center in parts of a mean
aerodynamic chord versus dynamic pressure at
values α0=0.5°, 2°, 5°. However these linearized
characteristics essentially differ from the
characteristics which are obtained by using
DLM even at the small α0 (fig. 5).
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Fig. 5. Comparison of DLM and TRANS (α0=2°) results
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Fig. 6. Aerodynamic center position versus Mach number
for rigid and elastic structures.

One of the principal features of transonic
flow is the downstream shift of the aerodynamic
center in comparison with linear methods
(fig. 6).
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Fig. 7. Elastic displacement (W) and streamwise twist
angle (α) along a center of the wing box for DLM and

TRANS (M=0.95, α0=2°).
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This phenomenon causes substantial
growth of stream-wise torsion angles (fig. 7, c).
Elastic displacements along wing box center
differ slightly (fig.7, b).
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Fig. 8. Relative aileron effectiveness.

The shift of the aerodynamic center
downstream causes also some decrease of
dynamic pressure of aileron reversal (fig. 8).

10. Concluding Remarks

The considered above method of static
aeroelasticity analysis in the transonic flow is
not perfect and it has several limitations:
•  only a set of lifting surfaces (without body

configuration) are considered;
•  the linearization of pressure distribution is

performed on angle of attack only;
•  a calculation of aerodynamic derivatives on

angular rate is not considered.
Further studies must be performed for

many aspects of the task. But in our opinion the
approach allows to take into account principal
features of transonic flow for aeroelasticity
analysis. An important advantage of the
approach is that it is well coordinated with
linear analysis and it is adapted and integrated
to software package KC-2. We hope that
transonic analysis of static aeroelasticity will
come into practice at stage of aircraft design and
analytical support of wind tunnel tests.

Acknowledgement

This work was partially sponsored by the ISTC
Project No. 761-99.

References

[1] Albano E., Rodden W. A Doublet-Lattice Method for
Calculating Lift Distributions on Oscillating Surfaces
in Subsonic Flows. AIAA Journal, Vol. 7, No. 2,
1969, pp. 279-285.

[2] Mosounov V.A., Nabiullin E.N. Determination of
aerodynamic forces acting in subsonic flow on
flexible oscillating surfaces arranged in different
planes. Trudy TsAGI, issue 2118, 1981.

[3] Woodward F.A. A Unified Approach to the Analysis
and Design of Wing-Body Combinations at Subsonic
and Supersonic Speeds. AIAA Paper, 1968, No 55.

[4] Liu D. D., Jamest D. K., Chen P. C., Pototzky A.S.
Further studies of harmonic gradient method for
supersonic aeroelastic applications.  Journal of
Aircraft,  Sep. 1990. Vol. 28.

[5] Kuzmin V.P., Kuzmina S.I., Ishmuratov F.Z.,
Mosounov V.A. Influence of nonplanar supersonic
interference on aeroelastic characteristics. In:
International Forum on Aeroelasticity and Structural
Dynamics, Williamsburg, VA, USA, 1999.

[6] Kroll N., Rossow C.C., Becker K, Thiele F.
MEGAFLOW - A numerical flow simulation system.
In: Proceeding of 21st ICAS Conference, Melbourne,
1998, A98-31517, ICAS Paper-98-2,7,4.

[7] Eastep F., Andesen G., Beran P., Kolonay R. Control
Surface Effectiveness in the Transonic Regime. In:
Proceeding of 21st ICAS Conference, Melbourne,
1998, ICAS Paper-98-4,6,4.

[8] Neill D.J., Johnson E.H., Canfield R. ASTROS - a
Multidisciplinary Automated Structural Design Tool.
In: AIAA/ASME/ASCE/AHS 28th Structures,
Structural Dynamics and Materials Conference,
1987, Part I, pp. 44-53.

[9] Ishmuratov F.Z., Chedrik V.V. Development of
methods and software for multidisciplinary structural
design of airplanes. In: V International Symposium
“New Aviation Technologies of the XXI Century”
Zhukovsky, Russia, 1999.

[10] Raveh D., Levy Y., Karpel M. Structural
optimization using computational aerodynamics. In:
International Forum on Aeroelasticity and Structural
Dynamics, pp. 469-481, Williamsburg, Virginia,
1999.

[11] Chen P.C., Sarhaddi D., Liu D.D. Transonic-
Aerodynamic-Influence-Coefficient Approach for
Aeroelastic and MDO Applications. Journal of
Aircraft, Vol. 37, No. 1, pp. 85-94, 2000.

[12] Kouzmina S, Mosounov V, Karkle P. Iterative
Method for Transonic Flutter Calculation. In:
International Forum on Aeroelasticity and Structural
Dynamics. 1997. Rome, Italy.


