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Abstract

The excessive numerical dissipation, which is
known to occur when the steady Euler equations
are solved on fine, highly stretched grids is
investigated. A new formulation of the higher
order MUSCL scheme that accounts for grid
non-uniformity is derived and applied to the
alleviation of this “phantom vorticity”.

1  Introduction

Several investigators have shown that numerical
solutions of the Euler equations on highly
stretched grids past a smooth inclined body can
exhibit a numerical boundary layer leading to
the development of symmetric leeward side
vortices [1][2][3]. The development of this
“phantom vorticity” can occur even with the
application of a slip boundary condition at the
wall.

The inviscid character of the Euler
equations means that they cannot account for
viscous vorticity generation. Numerical solution
of these equations can, however, involve
mechanisms for the erroneous generation of
vorticity.

In inviscid flow, curved shock waves
introduce circulation, entropy layers and
vorticity into the solution. Marconi [1]
demonstrated that for a conical-Euler solution
on a slender cone at angle of attack in a
supersonic stream, a curved embedded
crossflow shock causes separation of the flow
from the cone surface and a vortex to form near
the leeward symmetry plane. In addition, since

numerical solutions are obtained from
approximate or discretised forms of the
governing equations, Euler solutions may
include vorticity generation by the effect of
truncation error – numerical dissipation.

Once a vortex is formed the Euler
equations allow for its convection downstream
but cannot simulate its diffusion due to physical
viscosity. All computational schemes, however,
are dissipative and even without the addition of
artificial viscosity, will diffuse and destroy
vorticity. Numerical dissipation will diminish
the strength of vortices, but not in a manner
representative of a viscous flowfield.

The accurate capture of boundary layer
separation and subsequent vortex development
is critical for the computational prediction of the
flow past smooth aircraft or missile forebodies.
If the errors associated with phantom vorticity
are large enough, will they lead to errors in
viscous calculations, and if so, what can be done
to alleviate its effect?

This paper seeks to address these issues by
detailed numerical studies of the supersonic
flow about an inclined slender body, and by
careful investigation of the solution algorithms
used in the flow solver.

2 Previous Investigations

Chinilov [4] investigated the phenomenon of the
non-physical, numerical boundary layer that he
found to develop near the body surface when a
supersonic inviscid stream flows past a blunt
body. A steady two-dimensional supersonic
flow past a circular cylinder was investigated
using several mesh resolutions by use of a first-
order finite volume numerical Godunov scheme.
Chinilov found that he could reduce the
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phantom viscosity by either refining the grid or
employing second-order spatial discretisation.

In order to compute a flow solution
efficiently and to resolve the boundary layer and
associated flow features, grid stretching is often
used. Typically a grid is created which is
stretched in a wall normal direction such that
the cell width is a strictly increasing function of
the distance from the wall. Although the
previous investigation was performed without
any appreciable grid stretching, a number of
investigators have shown that grid stretching
can have a big effect on the accuracy of modern
schemes for compressible fluid flows.

Turkel [5] showed that many popular
central difference and upwind methods reduce
to first-order spatial accuracy in regions where
the grid is highly non-uniform. Various
algebraic and exponential grid-stretching
functions were investigated. It was found that
algebraic stretching was sufficiently smooth to
allow second-order techniques to maintain their
formal accuracy. Exponential stretching
functions however proved to deteriorate the
spatial accuracy to first-order unless special
weighted formulas are used. In addition it was
demonstrated that second-order accuracy could
be maintained with these schemes only if the
mesh accurately reflects the properties of the
solution.

A number of methods have been developed
to account for grid stretching and thereby
maintain spatial accuracy. Batina [6] developed
improved algorithms for spatial and temporal
discretisation in his unstructured Euler solver
for the investigation of the unsteady
aerodynamics of a two-dimensional pitching
aerofoil. In particular he developed a simple
interpolation of the primitive variables that he
employed in the standard MUSCL scheme in
order to treat highly skewed tetrahedral cells.
This weighted interpolation of the primitive
variables was based on the distance between the
centroid and the midpoint of the appropriate
edge. Batina [7] further developed this
technique for three-dimensional flows, this time
with a different MUSCL type scheme.

Liou and Hsu [8] developed a high
resolution scheme for their time accurate three-

dimensional structured finite volume solver
based on Roe’s upwind technique for flux
difference splitting. Non-uniformity of cell sizes
was accounted for by deriving a number of
factors based on the sizes of each cell in the
stencil.

With this information it was decided to
investigate the generation of phantom vorticity
around a slender, sharp nosed, smooth
cylindrical body. In particular, the affect of grid
stretching and the spatial accuracy of the solver
were studied.

3 Numerical Solver and Grid

The numerical analysis was performed using a
three-dimensional time-marching, cell-centred
finite volume Navier-Stokes (NS) solver that
was operated in Euler mode. The steady
compressible Euler equations were solved using
a cell-centred finite volume approach within a
structured discretised domain. Inviscid fluxes
were calculated using Osher’s approximate
Riemann solver. Higher (second or third) order
spatial accuracy was attained by the use of the
MUSCL variable extrapolation together with a
slope limiter. An approximate solution of the
Riemann boundary problem was used to
prescribe the Euler slip boundary conditions at
the wall. More details about the solver can be
found in [9].

A three-calibre tangent-ogive cylinder
geometry was chosen for the current numerical
investigation. Experimental studies with this
geometry inclined at 10 degrees to a Mach 2.0
flow has been carried out at ONERA [10]. The
Experimental results revealed a well-developed
symmetric vortex pattern on the leeward side of
the body.

Five single-block structured grids of
varying cell number, were generated around the
body. The coarsest “Euler” grid was of size 60×
54×45 and employed near-wall cells of
0.00185D radial thickness (D=1 calibre) and a
tanh radial stretching function. The next four
grids, suitable for NS calculations, all used near
wall cells of 2×10-4D radial thickness and again
employed a tanh radial stretching function. The
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cells in each grid were spaced uniformly in the
circumferential direction.

4 The Effect of Spatial Accuracy and Grid
Stretching.

The NS solver was employed in Euler mode to
obtain solutions on the five grids (detailed in the
key in Figure 1) using the standard MUSCL
formulation with a κ factor set for third-order
spatial accuracy. It was found that the first two
grids converged well down to five orders of
magnitude, whereas those on the three finest
grids stalled at around 2 to 2.5 orders of residual
convergence. The CFL number, initially set to
0.3, was successively reduced to 0.05 in an
attempt to converge the solutions further, but
was found to have little effect. Analysis of the
stalled solutions, checking every 1000 time
steps, revealed that the flow structure did not
exhibit any appreciable change. Figure 1
presents the five solutions for the
circumferential pressure distributions at x/D=7.
It would be expected that, as the grid is further
refined, the solution would converge to the
same circumferential distribution. What is
observed, however, is a progressive deviation
from the expected solution (curve for grid 1)
and the development of pronounced suction
peaks due to the resolution of phantom vortices
on the leeward side of the body.
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Figure 1: Grid convergence for Euler solutions
on five grids using third-order MUSCL scheme.

Figure 2 presents the computational grid
and density contours at x/D=8 obtained by the
fully converged Euler solution on grid 1. This is

the correct flow structure expected of an Euler
solution, without any flow separation or leeward
side vortices. Close inspection of the crossflow
velocity vectors, however, did reveal the
presence of a slight velocity profile close to the
leeward body surface.

Figure 2: Density contours for third-order
MUSCL Euler solution on grid 1.

The corresponding flow solution on the
finest NS grid (60×85×73) at the same axial
station is presented in Figure 3. Figure 3b)
clearly shows a well-developed numerical
boundary layer that separates off the leeward
side of the body to form a primary, secondary
and tertiary vortex system similar to that
expected of a viscous solution rather than an
Euler solution.

Since the origin of the vorticity is non-
physical the resulting vortex pattern does not
agree with either experiment or with the laminar
NS solution on the same grid. Solutions were
also obtained using a different formulation of
the Euler wall slip boundary condition and using
the Roe Approximate Riemann Solver. None of
these changes had any appreciable affect on the
solution.

The next step in the investigation was to
look at the effect of spatial accuracy. By altering
the κ factor in the MUSCL scheme one can
obtain second-order spatial accuracy, and by
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switching off the MUSCL scheme one can
obtain solutions of first-order spatial accuracy.
Figure 4 presents the first-order solution at
x/D=8. A small numerical boundary layer is still
observed on the leeward surface and the flow is
seen to separate forming a very small, hardly
visible, vortex close to the leeward symmetry
plane.

a) Density contours and crossflow plane grid

b) Crossflow velocity vectors

Figure 3: Euler third-order MUSCL solution on
grid 5.

Figure 5 compares the circumferential
surface pressure distribution at x/D=7 for the
first and third-order accurate solutions on grid 5.
The higher order result predicts separation at
around φ=100o and two suction peaks associated
with a primary and secondary vortex. The first-
order solution is much closer to that expected of
an Euler solution, with only a slight inflexion at
φ=150o indicating a small weak primary vortex.

a) Density contours and crossflow plane grid

b) Crossflow velocity vectors

Figure 4: Euler first-order MUSCL solution on
grid 5.
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The third-order value of the pressure
coefficient (Cp) at the leeward symmetry plane
is equivalent to that predicted in a third-order
viscous solution, but that for the first-order
solution is over-predicted by ∆Cp ≈ 0.01. This
can be explained by the overall reduction in
spatial accuracy and the corresponding increase
in numerical dissipation.

Figure 5: Effect of spatial accuracy on Euler
solution on grid 5

A sixth grid was then generated in order to
investigate further the effect of grid stretching.
Grid 6 (60×140×73), shown in Figures 7 and 8
had a region of cells of identical cell width
adjacent to the wall; outside these cells the cell
width was increased smoothly, using a tanh
function, to the freestream boundary. The
interface between the uniform and stretched
regions of the grid was positioned well beyond
the influence of any boundary layer

A third-order MUSCL calculation was
performed on grid 6. While the solution no
longer contained a numerical boundary layer at
the wall, a spurious numerical shear layer was
seen to develop from the interface where the cell
width began to increase away from the wall. As
with the other computations where phantom
vorticity was found to develop, the solution
could not be fully converged.

Grid 6 was then further modified by
pulling the grid stretching interface slightly
further away from the wall, introducing more
cells into the uniform cell region such that the

cell width could be maintained. The numerical
shear layer was found to move with the
stretching interface. In effect, the numerical
boundary layer was moved away from the wall
and followed the position of the discontinuity in
the gradient of cell width. Again it was noted
that the solution could only be converged down
to 2.5 orders before the calculation stalled.

This evidence suggests that the excessive
numerical dissipation is associated with the
localized loss of spatial accuracy when using the
standard high resolution MUSCL scheme in
regions where the grid is highly stretched. In
order to rectify this problem, it was decided to
modify the MUSCL scheme to account for grid
stretching.

5 A New Formulation of the MUSCL Scheme
for Non-Uniform Grids

This section presents the derivation of a high
resolution MUSCL scheme that uses a weighted
formulation of each cell size in the
computational stencil.

The original formulation of the MUSCL
scheme [11] was derived from the piecewise
quadratic distribution for the variable U in a cell
i given by:

( )

( )
i

i

i
ii

x

Ux
xx

x

U
xxUU

2

22
2

122

3

∂
∂








 ∆−−κ

+
∂
∂−+=

(1)

where Ui is the average value defined by:

∫
+

−∆
=

2
1

2
1

)(
1

i

i

i dxxU
x

U .

The original MUSCL scheme assumes that each
cell is the same size, i.e., that there is no grid
stretching. Figure 6 shows the one-dimensional
computational stencil about cell i for a stretched
grid. For a non-uniform grid the term ∆x in (1)
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is equal to the width of cell i denoted by si such
that:
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Figure 6:  Finite volume representation of
stretched grid about cell i.

Taking the function U(x) to be a quadratic
function of x of the form:
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Substituting x=xi±1 and U=Ui±1 into equation (3)
yields two simultaneous linear equations which
can be solved for A and B. The derivatives of U
with respect to x at x=xi are then evaluated by
differentiation of equation (3). Substituting
these derivative terms into equation (1) and
setting:
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yields an equation, of the MUSCL form, for the
evaluation of the variables at the interfaces of
cell i.

For the left-hand side of the interface i+1/2,
this results in the following relation:
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The corresponding expression for the values on
the right hand side of the interface i+1/2 (by a
similar treatment for the cell i+1) gives:
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where φ represents a flux limiter, which for our
study was that developed by Anderson et al
[12]. Equations (6) and (7) thus represent a
modified MUSCL scheme for non-uniform
grids, based on a quadratic distribution of U
across the cell. If the grid is uniform then ri

±=1,
and the original MUSCL scheme is recovered.

The modified MUSCL scheme was
employed on grid 6. Figure 8 presents the
crossflow solution at x/D=8 and clearly
demonstrates the dramatic improvement the
modified MUSCL scheme produced. The
numerical shear layer and the associated
vortices, which did appear as intermediate
solutions, were convected out of the solution as
it converged down by five orders. The final
solution was comparable, even better, than the
standard third-order MUSCL solution on the
Euler grid (grid 1) despite the large cell
stretching.

A further computation was performed,
employing the modified MUSCL scheme on
grid 5. This time the numerical boundary layer
and resultant phantom vortices appeared only as
an intermediate solution and disappeared as the
solution converged down to five orders.

A final test was carried out using grid 5 to
obtain a laminar solution with both the standard
and the modified MUSCL scheme. The results,
converged by five orders, were practically
equivalent. This indicates that the phantom
vorticity is much less of a problem for viscous
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calculations; the physical dissipation being
much greater than numerical.

a) Pitot pressure contours and crossflow plane
grid.

b ) Crossflow velocity vectors

Figure 7: Euler third-order solution using
standard MUSCL scheme.

6 Phantom Vorticity: Conclusions

The phenomenon of “phantom vorticity” in
Euler solutions of the supersonic flow past
smooth inclined slender bodies is linked with

the spatial accuracy of the scheme, highly
stretched grids, and to convergence problems.

a) Pitot pressure contours and crossflow plane
grid.

b ) Crossflow velocity vectors

Figure 8: Euler third-order solution using
modified MUSCL scheme.

The phenomenon was found to be
independent of the implementation of the Euler
slip boundary condition and of the use of either
the Roe or Osher approximate Riemann solver.
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This suggests that the phantom vorticity is
generated by the excessive numerical
dissipation associated with the localized loss of
spatial accuracy in regions where the grid is
highly stretched. Schemes that do not account
for non-uniformity of the grid cannot maintain
high order spatial accuracy and introduce
excessive numerical dissipation that is localized
to the highly stretched region of the grid. The
Euler equations, having no mechanism for
diffusion, cannot delocalize these errors which
can only convect through the flow-field in the
streamwise direction. Since the source of the
numerical dissipation – highly stretched grids
with an inconsistent scheme – remains as the
flow develop, more and more numerical
dissipation is generated and eventually the
solution cannot converge any further.

Application of a scheme that accounts for
grid non-uniformity will maintain higher order
spatial accuracy in highly non-uniform regions
of the mesh. The fact that phantom vorticity
does occur but dies away as the solution is
converged beyond three orders indicates that
there is still a localized loss of spatial accuracy,
but the resulting numerical dissipation is not
strong enough to stall convergence.

The equivalence of the laminar solutions
on a highly stretched grid using both
formulations of the MUSCL scheme shows that
any numerical dissipation is effectively
dispersed by physical viscosity. With no
localized errors, the solution is able to converge
correctly down by five orders.
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