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Abstract

To solve the Euler equations on a three-
dimensional unstructured grid, an efficient
procedure for generation of relatively high
quality elements is presented. The basic steps of
this method, which is essentially based on
Delaunay’s triangulation, is consisted of
generating surface points, initial tessellation,
point distribution function interpolation,
internal node generation and update
triangulation. Special treatments for
surmounting degenerate cases are considered
within the algorithm. Validation and reliability
of algorithm are checked by different examples.
An upwind scheme is used to solve Euler
equations on these unstructured grids for
steady-state problems. Spatial discritization is
accomplished by a cell-centered finite-volume
formulation using flux-difference splitting
method of Roe. Solution is advanced in time by
a simple explicit scheme. Local time stepping is
used to accelerate convergence to the steady
state. Some application cases are treated to test
the method.

1  Introduction

Structured grids have been widely used for a
long time in CFD applications [1]. Different
algorithms of generating structured grids,
solving basic equations on them and pre or
postprocessing operation on such grids are well
developed. They use less memory per unit
element compared with unstructured one. Also,
methods of generating structured meshes are
simpler. However, generating structured grids
about complex configurations, especially

automation of it, is still a difficult task.
Unstructured grids are stronger in covering
complex fields, automation of generation
process is simple, variation of element size in
grid is appliable and adaptation process is
simpler. In versus of such advantages, data
structure of unstructured grids is more complex
than structured one and optimum process of grid
generation has a complex logic and need extra
work. There are a variety of unstructured grid
generation methods. Many of these methods are
essentially based on two famous schemes i.e.
“Delaunay Triangulation” and “Advancing
Front Method” algorithms. Delaunay
triangulation methods, with applications in
CFD, are presented by Lawson, Green, Sibson
[2,3], Bowyer [4] and Watson [5]. In recent
years various modifications to Delaunay’s
method have been presented to optimize and
eliminate its practical difficulties. Frey [6]
proposed an algorithm for 2D point creation
based on circumcircle and inscribed circle
centers. This algorithm was linked with Watson
algorithm for triangulation. Schroder and
Shephard [7] have also used Watson algorithm.
To keep the boundary conforming, they used a
topological classification for grid entities, and
generated a consistent grid for complex and
non-manifold given geometries. Muller and his
coworkers [8] presented a strong method for two
dimensional grid generation by combining
Delaunay’s triangulation and advancing front
method by point creation. Some efforts in
automatic grid generation for three-dimensional
applications are also made. Researches of
Weatherill and Hassan [9], Golias and Tsiboukis
[10], Maccrum and Weatherill [11] and Zheng
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et al [12] lie in this category. In present work a
combined Delaunay/Advancing front method in
3D has been presented. Different methods of
outcoming degenerate cases in Delaunay
triangulation are considered. Relatively high
quality elements are created to be used in CFD
applications. Euler equations have been solved
in some test problems, which are meshed by
current grid generation algorithm. Following
sections describe steps of grid generation
algorithm and the numerical solution of the
Euler equations. Finally results on some test
problems are included.

2  Grid generation method

Methods using advancing front type point
placement and Delaunay connectivity have been
developed by Delaunay [1], Watson, Lawson,
Sibson, Muller et al and George et al [13]. This
idea is also used in three-dimensional grid
generation by Rebey [14], Pirzadeh [15] and
Khosravy. Current work is essentially based on
work of Khosravy. Special modifications are
applied to improve grid quality, surmounting
degeneracies and increasing robustness and
reliability of algorithm. To better description of
the algorithm some basic definitions are
presented.

2.1 Delaunay triangulation

Delaunay triangulation is the geometric dual of
the Dirichlet tessellation [4]. Given a set P of M
points in an n-dimensional space, there exists a
region Vi such that

{ }jiallforPxPxxV jii ≠   −≤− = ; (1)

The collection ∑ =
= M

i iVV
1

 is defined as the

Dirichlet tessellation. Given a Dirichlet
tessellation V, one may form the Delaunay
triangulation by connecting any two points Pi

and Pj whose corresponding tiles Vi and Vj are
neighbour. In the 3D case, Delaunay
triangulation gives a decomposition of the
convex hull of P into 3D simplexes (tetrahedra).
An important property of Delaunay triangulation

is that a circumsphere of tetrahedron contains no
points other than its vertices.

2.2 The grid generation process

The algorithm in step-by-step manner can be
expressed as follows:

1. Define a set of points, which form a
convex hull containing all other
points.

2. Add the boundary nodes to the
initial grid, using Watson algorithm.
Obtain a valid triangulation of them
and recover all boundary surfaces (if
they are lost).

3. Assign a point distribution function
to each initial boundary point.

4. Calculate a criterion for quality of
elements. If quality of an element is
under a threshold value or element
doesn’t satisfy the point distribution
function, it is marked as a bad
element.

5. Create a new point for each bad
element.

6. For each new point, search for the
element containing it.

7. Interpolate the point distribution
function for the new point from the
containing element.

8. Merge two new points that are too
close to each other.

9. Reject new points that are too close
to an existing point.

10. Insert each accepted new point in
the triangulation using the Watson
algorithm.

11. Continue from step 4; repeat until
no acceptable point is created.

12. Smooth the grid distribution.
Watson algorithm begins by finding

tetrahedron, which contains the new point. This
tetrahedron and all other tetrahedrons whose
circumsphere contain that point are then deleted.
This form a polyhedron bounded by triangular
faces. Each face of this polyhedron and the new
point form a new tetrahedron. With constructing
all such tetrahedra, a new triangulation obtained.
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2.3 Boundary point creation

Generally there are four basic topological
entities in three dimensions. These are vertex,
edge, surface and region. Each entity is
surrounded by one lower dimension entity.
Regions are surrounded by surfaces, boundary
of each surface is an edge and each edge has two
end vertices. Boundary nodes creation is a
procedure to create proper points in boundary
edges and surfaces. Edges division is done due
to local spacing requirements. Initially points
may be distributed uniformly and then relocated
using proper methods [9]. Point creation on
surfaces is a difficult task in grid generation. In
the case of planar surfaces, algebraic methods
can be used. For general curved surfaces, using
two-dimensional grid generation in surface
parametric space is a common method [1].

2.4 Convex hull

Convex hull is a simple large enough region,
which contains all nodes in the mesh. A simple
tetrahedron can be used, but experience showed
that if the number of nodes on the convex hull
were low, probability of occurring degenerate
cases would be increased. For all examples
presented here, a polyhedron with one node in
its center is used.

2.5 Nodes insertion

Node insertion algorithm is based on Watson
algorithm. This algorithm deletes all neighbors
of the containing element whose circumspheres
contain the new node. New elements are created
using the new node and each face of the
hollowed region. The difficult step of this
algorithm is the insphere check. This involves
making a decision based upon floating point
arithmetic. An incorrect deletion of a
tetrahedron can result in a disjoint, non-convex
empty polyhedron which, when new tetrahedra
are created, intersect each other. It has been
found that such incorrect decisions can also
disconnect and isolate a previously inserted
point such that it no longer appears in the data
structure of the forming points. Such problems

may even arise with simple geometries, such as
a set of points, which define a grid on the
surface of a unit cube. Founding degeneracies
and surmounting them utilizes a lot of efforts in
the three-dimensional grid generation
development [7,9,10].

2.6 Resolving degenerate cases

When more than four points of the point set lie
on the circumsphere of an element (within the
resolution of the numerical calculation), the
degenerate case occurs. Resolving degeneracies
require a consistent decision for a particular
point for being inside or outside. In practice, the
judgement whether a point Pi is inside a
particular sphere Ci of radius r and circumcenter
xc (Figure 1) can be made based on a tolerance
factor ε:

ε≤
−

∈
r

xP
CP ci

ii           when 
(2)

Figure 1 Approximate incircle test

Choosing ε>0 is equivalent to classifying
Pi outside of all degenerate Ci. Generally ε is
taken positive for convenience. The parameter ε
in fact defines an approximate “in/out” sphere

iC ′  of different radius from the real

circumsphere Ci. By using iC ′  instead of Ci, the

result is that the triangulation may not satisfy the
circumsphere condition. But even if ε=0, the
effect of numerical calculation errors is to
consider iC ′  rather than the real Ci. So, to have a

valid mesh, the method should account for the



Karim Mazaheri, Shahram Bodaghabadi

234.4

perturbed circumsphere. Three problems can
arise when computing with iC ′ . First, the

resulting triangulation may not be a Delaunay’s
one within tolerance ε. In terms of generating a
computational mesh, as long as the triangulation
is a valid one and the elements quality is
acceptable, this situation is not of concern.
Secondly a point Pi very close to point Pj, where
Pj is incorporated into the triangulation prior to
Pi, may not be inside any iC ′ , and therefore will

not be participated in the triangulation (Figure
2). In this case, it may be necessary to reduce the
size of ε. Thirdly and of most concern, is that
inconsistencies are created because the mesh
doesn’t globally satisfy the Delaunay property of
the circumsphere condition. Watson algorithm
uses this property to generate an insertion
polyhedron to get a valid mesh. The insertion
polyhedron must satisfy the condition of point
convexity [16], as described below:

A polyhedron with faces Fi, for i=1,…,nF is
strictly point convex to the point P when the
inward pointing normal to each polyhedron face,
ni, satisfies the condition of point convexity
(Figure 3):

( ) 0. >− ii xPn (3)

where xi is an arbitrary point on face Fi.

Figure 2 A point not inside any sphere

When the insertion polyhedron is strictly
point convex, creating tetrahedra by connecting
P with each face Fi produces a structurally
consistent mesh. Point convexity checking is
readily added to the Watson algorithm to
prevent structural inconsistencies. As each point

is inserted into the triangulation to create the
insertion polyhedron, the condition for point
convexity is enforced. In particular when

( ) δ<− ii xPn .  where δ>0, the point convexity

condition is not satisfied. When a face Fi does
not satisfy the point convexity, the tetrahedron it
is connected to, is deleted, forming a new
insertion polyhedron. The added faces are again
evaluated for point convexity and the procedure
is repeated.

Figure 3 Point convexity rule

2.7 Node creation

Different criteria for checking bad elements are
presented [12]. Two of them are the ratio of the
smallest edge length to the largest one and the
ratio of the inscribed sphere radius to the
circumsphere radius. After tagging bad
elements, those that lie adjacent to a good one or
the boundary, generates the front and new node
is created adjacent to each front face. New node
is located such that local spacing (based on
spacing function) is satisfied and a regular
tetrahedron is expected to be created.

2.8 Mesh smoothing

Mesh smoothing (node relaxation) is a
technique of increasing the overall quality by
suitable repositioning of nodes. Node relaxation
is applied to internal and surface nodes. Surface
nodes can be moved only on their geometric
surfaces. One of the most usual methods is
Laplacian smoothing [6], which is used in the
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current work, too. Different quality criteria can
be used [12]. In present work the ratio of
volume to cubic power of the largest edge length
is used. In order to have a picture of the mesh
overall quality, the mean (Qm) and joint (Qj)
qualities are introduced [11]:
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where N is the number of tetrahedra and Qi is its
quality.

The joint quality factor has a value that is
very sensitive to elements with low qualities. In
smoothing procedure, for each node
repositioning, the mean and joint qualities
values are calculated in new position. If these
values increase respect to their old values, the
node will be moved.

2.9 Data structure

In three-dimensional grid generation the
following information are stored: cell vertices,
cell neighbors, cell goodness/badness flag, node
coordinates and node spacing function. So, the
required storage space is 9N integer and 4M
floating words, where M is the number of nodes.

3  Solution scheme of the Euler equations

The Euler equations can be written as:

0=
∂
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The state vector U
( [ ]TEwvu ρρρρρ         = ) and the flux vectors F,
G, H are expressed in terms of the conservative
variables. ρ  is density, (u, v, w) are velocity
components and E is the total energy. E can be
related to the other variables by the perfect gas
state equation.

A cell-centered method, in which grid
elements are used as domain control volumes, is
used. Each cell has four faces and fluxes are

computed on these faces. Flux quantities are
computed using Roe’s flux-difference-splitting
[17]. The flux across each cell face is computed
using

( ) ( ) ( ) ( )[ ]LRRLRL UUAUFUFUUF −−+=
2

1
,

(6)

Here subscripts L and R denote to left and
right of the cell face. The Jacobian matrix A is
evaluated with Roe-averaged quantities [18].

Solution procedure starts by definition of
the initial conditions, and then advances in time
by using a simple explicit scheme, i.e.

∑
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where i
nF  is the normal flux across face i, Si is

the face area, V is the cell volume and t∆  is the
solution time step. Superscripts n and n+1
denote the current and the next time step. Steady
state solution is achieved when residual term of
this equation is lower than a threshold value.
Further discussion of this method can be found
in many references like [18] and [19].

Initial condition, boundary conditions and
stability

In external flows, it is common that free stream
condition is applied as initial condition. In
internal flows, like flow in supersonic ducts and
cascade flows, uniform flow based on inlet
condition is usually used.

For solid boundaries (including symmetry
planes), the flow tangency condition (slip
condition) is imposed by setting the velocity on
the boundary ghost cells as mirror image of the
boundary cell velocity. Density and pressure in
the ghost cells are simply set equal to the
boundary cell values.

For far-field boundary, characteristic
boundary conditions are applied using the fixed
and extrapolated Riemann invariants
corresponding to the incoming and outgoing
waves. An approximate method is used by
proper selection of the conservative variables to
be extrapolated from outside the domain or to be
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interpolated from the inside due to the local
Mach number.

Stability condition is applied by Courant-
Friedricks-Lewy (CFL) condition. Local time
stepping accelerates convergence to the steady
state by advancing the solution at each cell in
time at a CFL number near the local stability
limit. The expression for the local time step can
be represented as [3]:

( )∑ = ⊥ +
=∆

4

1i ii
Scu

V
t β (8)

Here β is a safety factor, iScu  and , ⊥ are

the normal velocity, sound speed and area of the
face i. Bar quantities show Roe-averaged values.

4  Results

In this section sample generated meshes are
presented to show validity of the proposed
algorithm. Also the supersonic flow around a
wedge and a cone are simulated using the Eluer
equations.

4.1 Sample meshes

A simple rectangular domain around a wedge is
the first example. Figure 4 shows a cross section
of this grid. The quality distribution for this
mesh is shown in Figure 5. The second example
is a grid around a cone. Because of the
symmetry, only one-half of the cone is
considered. The far-field boundary is a
cylindrical surface. A cross section of this grid
is shown in Figure 6. Third sample mesh is a
more complex domain, i.e. grid around ONERA
M6 wing. A spherical surface is used as the far-
field boundary. This mesh is shown in Figure 7.

It is appear from Figure 5 shows that the
quality factor has a distribution similar to the
normal distribution. Average quality for this
mesh is about 0.4 (this is true for other
examples, too). Of course, the distribution is
preferred to be as close as possible to unity.
Smoothing could move the peak of the
distribution curve to one, but in all examples,
the number of cells with quality greater than 0.9

is decreased, as it can be observed in Table 1. In
other words, smoothing distributes the
“badness” of cells among all cells. Since the
overall quality of the grid is important (and not
quality of a special cell), it can be deduced that
smoothing procedure is advantageous. An
important factor, which is also observed in
Table 1, is the very low value of the minimum
quality in the grid. It means that some bad cells
always present in grid. These cells may affect
the solution accuracy and in the worst case
deteriorate the stability.

4.2 Applications

Supersonic flow around a wedge is a good test
problem, which is a really two-dimensional
problem, so comparison of the three-
dimensional solution with the 2D one is
possible. Since the exact solution exists for this
problem. A supersonic flow with Mach number
M• =2.5 around a wedge with half-angle of 15
degree is considered. Mach contours in a 2D
section of the domain are shown in Figure 8.
Mach number and pressure ratio across the
shock is extracted from the solution and is
compared with the two-dimensional and the
exact solutions in Figure 9. 2D solution is
obtained from an adaptive solver [20]. Adaptive
2D grid is at least two levels finer than the 3D
grid and has a higher quality. Since the wedge
flow is essentially a 2D flow, the difference
between 2D and 3D solutions is acceptable.

Steady state solution of the supersonic flow
with freestream Mach number of 2 with 10
degrees angle of attack around a cone with 10
degrees half-angle is the second test problem.
This is a three-dimensional problem. Mach
contours on the cone surface are shown in
Figure 10. Pressure coefficient on the cone
surface is compared with Shankar [21] solution
in Figure 11. As expected, the pressure reaches
to its minimum on the leeward side of the cone
and then increases. In the current solution this
minimum is detected almost accurately. Weak
shock waves are not well developed on the
leeward side, and strong windward shocks
dominate the physics of this problem. Indeed the
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higher order schemes and adaptation can lead to
better results in the solution.
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Figure 4 Wedge mesh cross section

Figure 6 Cross section of mesh over cone

Figure 8 Mach contours in a section of wedge

Figure 5 Quality distributions for wedge grid

Figure 7 Mesh around ONERA M6 wing

Figure 9 Comparison of 3D, 2D and exact solutions
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Figure 10 Mach contours on cone surface Figure 11 Circumferential pressure coefficient around
cone
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Table 1 Quality comparison of meshes before and after smoothing

Qm Qj Qmin QmaxMesh

Before After Before After Before After Before After

Wedge 0.3815 0.4071 0.0583 0.0636 0.0000 0.0001 0.9978 0.9958

Cone 0.3731 0.4010 0.2032 0.2725 0.0010 0.0044 0.9924 0.9916

M6 wing 0.3484 0.3770 0.1606 0.2085 0.0011 0.0012 0.9913 0.9781


