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Abstract

The present article deals with rotor dynamics
and aerodynamics. The combined blade-element
and momentum theory and the ONERA semi
empirical  model were applied in the
aerodynamical calculations. The unsteady and
compressibility effects can be calculated by
using  the ONERA semi empirical aerodynamic
model. The equation of the flapping motion was
solved by applying the induced velocity field. So
the generalised equilibrium path of the rotor
blades was approximated by an asymptotic
solution.

The equations of the rotor blade motion
were solved in linear and non-linear case too.
Also the equation of the feathering was solved
in order to find the required control moment of
the rotor blades.

1 Introduction

In this article was assumed that the helicopter
flies horizontally with constant speed. The aim
is approximate determination the effects on the
rotor blade of the  unsteadiness and
compressibility, blade bending deflections and
mechanical non-linearities.

In order to determine the forces acting on
the helicopter rotor we should investigate the
rigid motion and the elastic deflections of the
rotor blades, the flow over the rotor disk and the
aerodynamic forces on the rotor blades
together.

The aerodynamical basic of the calculation
is the combination of the blade-element and the

momentum theory. Using them with the semi-
empirical ONERA model the induced velocity
distribution and  the unsteady-compressibility
effects can be determined.

The motion of the rotor blades is calculated
on the ground of  the classical differential
equation of the flapping motion and also of the
full non-linear differential equation too. The
generalised equilibrium state of the rotor blade
can be calculated by successive approximation.

This calculation method was applied to the
main rotor of  the  Hughes MD 500 E helicopter.
This helicopter type flies in Hungary and some
investigations to determine  the rotor blade
loads were done [6].

2 The Momentum Theory

The classical momentum theory was developed
by Glauert. In this a distinct stream tube with a
circular cross section was defined - the radius of
the circle is equal to the rotor radius.

Airflow over the rotor disk
Fig. 1.

In this article the author applies a better
estimation: the cross section of the stream tube
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is an ellipse which can be determined on the
ground of the advanced vortex theory of  the
wings [8]. The cross section - shown in figure 1.
- for the Hughes MD 500 can be characterised
by K y r( )  function:
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where:

R - the rotor radius.

The helicopter rotor acts on the airflow
continuously, namely the induced velocity
continuously changes - in general increases -
from the "leading edge" along the rotor surface.
The induced velocity (v i ) at a given y r  co-
ordinate - according to the figure 1. - can be
calculated:
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where:
),( rr yxp - is the load distribution over 

   the rotor disk;

rV - is the flying velocity.

3 Blade Element Theory

The blade element theory was used with
combination of the momentum theory. The first
one is very suitable for applying of the ONERA
semi-empirical model. To apply the blade
element theory we should know the rotor blade
velocities:

( )[ ] ( ) ( )ψα sincos�cos rlt VexU ++Ω= ;

and

elasticilpp vvxVU ++′Ω+= � ;

where:

( ) ( ) ( ) ( ) ( )�cossin�sincoscos αψα += rp VV ;

and
α - is the angle of attack of the rotor;
β - is the flapping angle;
ψ - is the azimuth angle.

The values of steady lift- and  drag-
coefficients for NACA 0015 profile are given in
[10]. In linear case according to [1] and [3] the
unsteady part of the lift coefficient can be
calculated:

( ) Θ++Θ+Θ+= ������� scsccL σλλ ;               (3)

where:
c�  - is the translation velocity of the

  section;
Θ� - is the rotational speed of the section.

The coefficients of the ONERA model are
valid for the NACA 0012 profile, we can
assume, that in this meaning the difference
between the 0012 and the 0015 profiles is small.

After the estimation of the velocities the
force coefficients can be calculated. From the
equation (3) the time derivative of the lift
coefficient can be determined. In the numerical
calculations the total value of the lift coefficient
will be taken as the sum of the steady value and
its changing due to unsteadiness.

4 The Flapping and Feathering Motion of the
Rotor Blades

The motion of the rotor blade was investigated
in a coordinate system that was fixed to the rigid
rotor blade. This system has three possible
rotations (the lagging motion was neglected):

•  together with the main shaft (Ω);
•  along the flapping hinge (β);
•  along the length axis of the blade (ϑ).
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The equations of the flapping motion was
derived by using with the above mentioned
transformations. The full (non-linear) flapping
equation:
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m  -  the mass of the rotor blade;
xcg -  coordinate of the blade centre of

    gravity;
e   -  flapping hinge offset;
Ma - the aerodynamical moment;
Mg - the moment of the blade weight.

After some simplifications we get the
classical differential equation of the rotor blade
flapping:
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The differential equation of the feathering
motion was derived to calculate the control
moment of the rotor blades:
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In calculation above we assumed that the
aerodynamical moment is zero.

5 The Bending Deformation and Equations

The flapwise bending deformation is an
important form of the rotor blade motions. This
type of motion was investigated by using the
normal modes [2]. There was used the first
normal mode (equivalent with the rigid blade)
and additionally the second and third normal
modes ( ( ) 3,2,1; =ixSi ).

The bending stiffness was determined on
the ground of measuring [6]. The second and
third normal modes were calculated by the
„method of assumed modes” [2]. For the
calculation of the bending deflections the next
two modal equations can be written:
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where:

iϕ     - the ith  generalised co-ordinate;

Ωi�  - the ith natural frequency;

( ) ( ) ;
0
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and
pb is the external load along the rotor blade.

The modal equations were integrated
together with the other differential equations.

6 The Collective and Cyclic Control

The most important control  of the helicopters is
the collective and cyclic control of the blade
pitch. This control is characterised by the
following equation:

( ) ( )ψψ sincos 210 pppp ++= ;           (7)

where:
p0 - is the collective control coefficient;
p1 - is the cyclic control coefficient;
p2 - is the cyclic control coefficient.
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The feathering motion is connected with the
flapping motion: the flapping motion causes
feathering motion too by which the original
flapping motion is damped. The relationship can
be characterised by the equation:
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or in the simplest linear form:
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where:
areand0 −fr geometrical parameters of

the control system.

The equation (8/a) can be applied for linear
calculation and equation (8) in the  non-linear
case.

7 Description of the Numerical
Computation

The numerical calculation was done for the
main rotor of  Hughes MD 500E. For the
realising of this procedure a general computer
code was developed.

First the program reads the geometrical,
aerodynamical and further data. The second step
is the computation of the preliminary induced
velocity distribution on the ground of the
Glauert's approximation.

Then the program numerically integrates
the differential equations of the flapping and
bending motions during one revolution. In the
calculation of the flapping motion and bending
deflections there are included the unsteady-
compressible lift coefficient and the equation of
the flapping-feathering connection. This
calculation uses the polar coordinate system.

The force distribution over the rotor surface
is known - the corresponding (new) induced
velocity distribution can be calculated in a
Descartes coordinate system.

On the ground of these calculations - in
order to investigate the equilibrium state  of the
helicopter - can be determined the horizontal,
side and trust force of the main rotor.

After these steps the program goes back to
the flapping calculation - while the rotor blade
turns to the generalised equilibrium state. This
can be realised practically after 10-15
revolutions.

In this point we have possibility to
investigate the equilibrium of the whole
helicopter. If the equilibrium state is not
reached, then the parameters of the collective
and pitch angle control of the rotor blades
( 210 ,, ppp  ) can be changed.

At the end of this procedure we can get the
asymptotic solution of the rotor blade motion
and the induced velocity distribution.

8 Results of the Computation

In the present calculation run three variations of
the general program:
 •  rigid rotor blade, steady lift and linear

   system (RSL system);
•  elastic rotor blade, unsteady lift and
   linear system (EUL system);
•  elastic rotor blade, unsteady lift and
   non-linear system (EUN system).

In all cases was applied the same set of
control parameters, on this ground there was
possible the comparison of the results of the
different program variants.

8.1 Calculation of the Forces

The forces (T - Thrust, H - Horizontal, S - Side
force) are summarised in the following table:

Table 1.
T

[N]
H

[N]
S

[N]
RSL 12018 301 -155
EUL 12092 360 -143
EUN 11957 363 -142
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Changing in thrust is smaller than 1% - it is
quit small. Changing in side force is bigger -
approximately 8% - and the greatest is the
change of the horizontal force, it is
approximately 17%. This means, that the thrust
is practically constant and the inclination of the
rotor has change.

8.2 The Flapping Angle

The flapping angle characterizes only  the rigid
blade motion, but in the elastic cases the path of
the rotor blade tip is much more interesting. The
flapping angles are shown in figure 2.
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Figure 2.

As it shown in figure 2. the flapping angles
are similar - the calculation gives the biggest
results in the EUN case. It means, that in the
non-linear case the coning angle has greater
values but the longitudinal and the lateral
flapping has only small changes.

8.3 The Tip Path

The tip path of the rotor blades is much more
characteristic for the rotor blade motion because
it include the elastic deflections. The three tip
path of the rotor blades can be shown in figure
3.:
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Figure 3.

The tip path of the elastic blades goes under
the tip path of the rigid blade, however the
flapping angle in the case of EUN was the
biggest. It is so, because the centrifugal force
increases strongly outward of the rotor blade
and the rotor blade have commonly a downward
elastic camber. This camber was demonstrated
in [6] too.

The non-linearity has no considerable effect
expect that close to the maximum there is
noticeable difference.
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8.4 The Control Moment

The control moments are shown in the figure 4:
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Figure 4.

The control moments are similar, the
greatest values are given for EUN case. But the
change of the control moments is the smallest
also for EUN case. It means, that the elastic and
unsteady calculations give a compensative
effect.

9 Summary

This approximate calculations are quite
complicated but gives acceptable, preliminary
results. It is possible to extend this computations
for general flight too.

The time effort of the calculations is not too
big, it give possibility to create a real time rotor
and helicopter simulator.

The computer program has a modular
structure, the developing of the modules or the
whole program is easy.
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