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Abstract

An inverse method for designing airfoils,
in which final profiles are determined from

prescribed pressure distributions, is researched.

First, an inverse method using the panel method
is briefly introduced. Then, a method using a
nonlinear equation as the governing equation is
proposed. Due to the treatment of the boundary
condition on the airfoil surface, modification of
the airfoil geometry is complicated, so an itera-
tive direct-inverse approach is applied. Residual
of the calculated pressure distribution by the
direct method solving compressible Navier-
Stokes equation and the prescribed pressure
distribution will be minimized by a numerical
optimization method. The procedure is repeated
until good convergence is attained in the final
profile. A brief result of a non-lifting case is
shown.

Nomenclature

Svmbols:

e internal energy per unit mass

I length of the panel

m number of node at trailing edge

b static pressure

r distance from trailing edge

t time

u, v velocity components in a Carte-
sian system

C surface curvature

c, pressure coefficient

J Jacobian

M local Mach number

Re Reynolds number

T temperature

uv contravariant velocity compo-
nents

U. free stream velocity

o angle of attack

Copyright © 1996 by the AIAA and ICAS. All rights reserved.

Vi vortex strength of i-th panel
K coefficient of bulk viscosity
U coefficient of viscosity

&n transformed coordinates

o density

T shear stress

Suffix

(n) normal

@ tangential

© uniform flow

1. Introduction

Due to the cost of wind tunnel testing and
improvement in the performance of computers,
designing components of airplanes using com-
puters is playing an important part in the design
stage today. Direct method which analyze the
flow around an airfoil whose shape is prescribed
is used as a tool for designing airfoils in the
industrial stage. Inverse method, which deter-
mines the airfoil shape satisfying the prescribed
flow condition, however, is still in the experi-
mental stage.

Although the inverse method has a possi-
bility of not having a solution to the prescribed
condition, it also has a possibility to obtain a
breakthrough to the performance which may be
difficult to attain using the direct method.

Inverse method can be divided into two
categories: analytical method and computa-
tional method. The analytical method which
transforms an airfoil into a circle whose solution
is known using conformal mapping was used by
Lighthill® and Sato®. This method is limited to
only solving a two dimensional problem.

One of the most simple ways to solve an
inverse problem computationally is to assume
the flow as a a potential one, and use the
Laplace equation as the governing equation. For
example, the method by Bristow and Grose®
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can cover a wide range of inverse problems,
including designing a portion of an airfoil, with
the remaining portion already designed.

2. Inverse Panel Method by Shigemi

The panel method is one of the most
widely used tool to solve a potential flow prob-
lem. Although the flow solved by the panel
method is inviscid and incompressible, it ap-
proximates the flow around an airfoil very well
in case the flow is in a low Mach number region
and has no large separations. The panel method,
which was originally developed to solve the
direct problem, can also be applied to the in-
verse problem.

We briefly introduce the panel method
which was modified by Shigemi‘?-®. First, we
give the principle of the panel method as a solu-
tion to the direct problem, then we apply it to
the inverse problem.

An airfoil is discretized tom-1nodes,
starting counter clockwise from the trailing
edge, so the trailing edge point is counted again
as the m-th node. The density of the distributed
vortex is y; at the i-th node, and varies linearly

fromy;toy,,along the i-th panel.

At the i-th control point(x;, y;) of the i-th
panel (typically the midpoint), the velocity
component normal to the surface vi(") is given
as follows:

2 Mo U X;sina-Y; cosa
" I
1 m1A;yi+By i
27rl,~ j=1 l]
(i=1,2-,m-1) (n
where
Ai=1Y; +1; X, (2)
B;=1,Y;+1,X,; (3)
Xi=%4-% 4)
Y=y~ (5)
L=yX;*+Y;? (6)

and I;~1, are coefficients which are functions
of x;and y,.U, and « are the free stream velocity
and angle of attack, respectively. Boundary
condition of zero normal velocity at the body
surface is given by setting the left hand side of
Eq. (1) to zero, which will be rewritten as fol-
lows:

”‘z‘:l Ay i+Biy ju

i=1 lj

=270, (Y;cosa - X, sina)

(it=12,m-1) 7

The Kutta condition at the trailing edge will be
given in the form of

Y1+7m=0 (8)
7; can be obtained by solving the system of Eqs.
(7) and (8).

An equivalency between the tangential
velocity »® and the vortex density is held on
the surface of the airfoil can be proven.

vW=y ©)
The principle of solving the inverse prob-

lem using the panel method is to specify a set of
coordinates(x;,y;,) of nodes of the polygon
which satisfies Eq. (7), wherey; is already
given. If the prescribed condition is given as
velocity distribution, it can be converted into
vortex distribution by Eq. (9), and if the pre-
scribed condition is given as pressure distribu-
tion, it can be converted into velocity distribu-
tion by the following equation.

B 2, ,2

C,= Prpy g M HY (10)
1 2 U,?
Epr »

It is sufficient to set only y; (or Y;) as un-
knowns. Although Eq. (7) is a linear equation of
9;, it becomes nonlinear with regard to y;, so the

solution is attained only iteratively, for example,
by using the Newton-Raphson method. Eq. (7)
can be rewritten as follows:

a; y+b;=0 (=12, m-1) (11)
where
a;=(a;,a;,  a;)
r=Gnre Y w)
b;=27U ,(Y; cosa—- X, sina)
and a;, b;are function of Y =(¥,,Y,,-,Y,).

The initial guess(¥;’, ¥,°, -, ¥, ,*)to the solu-
tion of Eq. (11) can be expanded into a Taylor
series, neglecting higher orders.

m=1 mda.j db.
. = Yy +—1)5Y, 12
A0=E (S5 ) a2

When 8§Y;is obtained as the solution of Eq.
(12),Yi°improves to Y,.°+ 8Y;, and the same
procedure is repeated until the solution con-
verges.

Eq. (12) represents m —1equations, while
the number of unknowns is m. In order to close
the system of equations, one of the values of
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0y, must be fixed. It is natural to fix the lead-

ing edge point, and so the shape of the whole
airfoil is improved by moving the relative posi-
tion of each node with respect to the leading
edge point.

The flow chart of this procedure is given
in Fig. 1, and a result using this procedure is
shown in Fig. 2. The number at the left side
indicates the number of iteration and 0 corre-
sponds to the initial profile. In this case, the
final profile is attained after 5 iterations. Target
pressure distribution is NACA 4415, which is
represented with a solid line, obtained from
experimental data, with the Reynolds number of
1x10° and a=0°. The difference at the upper

surface near the trailing edge is thought to be
the effect of the boundary layer.

3. Inverse Method Using
Navier-Stokes Equation

Using the panel method, the final profile
can be obtained easily, however, due to the
governing equation, the application is restricted
to a low Mach number region and has no large
separations. In order to solve transonic flow
problems, using Navier-Stokes equation as the

governing equation would be a natural approach.

Due to the treatment of the boundary condition
on the airfoil surface, modification of the airfoil
geometry is complicated, so what is called an
iterative direct-inverse approach will be ap-
plied.

3.1 Grid Generation

Computational grid system is generated
using Poisson equation.

Eaxt &y =PE ) mu+my,=Q ) (13)
The actual solution of Eq. (13) is carried out in
the computational (¢, 7) domain. In this domain,
Eq. (13) will be transformed to

axee=2Px., +yx,,=-J 2P +Qx,)

AYee=2BYey+ 7y, =~ 2(Py:+Qy,)
where

Jh=xey, -2,

a= x,,2+ y,lz, p= e+ YeXpe V= x52+ y52
and P, @ are functions used to control interior
grid clustering.

P(& m)= py(De™ 7+ py (He s Vo= 1

Q& 1) = g, (et + g, (e~ Uimes = 1)

14)

(15)

where a,, a,, b;, by are constants and p;, p,, ¢q;,
g, are functions of £.

The type of grid which is said to be most
suitable to calculate the flow around an airfoil is
what is called a C-type. In this type of grid,
treatment in the vicinity of trailing edge is most
important, however, it is quite difficult to main-
tain the orthogonality.

Orthogonality in the region of the trailing
edge can be obtained using the method pro-
posed by Catherall®”, which adds the following
doublet term to Eq. (15).

Py=qape 70", Qp=age’n’ (16)

where
: 2
7’=\/(‘5"‘§TE)Z+(’7"7TE)
apand agare parameters,(&qg, n77g) are the

coordinates of the trailing edge in the computa-
tional domain, andy, is used to restrict the
extent of the region surrounding the trailing

edge which is affected. The results are shown in
Fig. 3(a) and (b).

3.2 Governing Equations

The governing equation is compressible
Navier-Stokes equation®. Two dimensional
Navier-Stokes equation can be written in gener-
alized coordinates as follows:

50 S(E-E,) &(F-F,)
—— ~ -+ fuund

0 (17)
ot OE °on
where
P
~ 1 pu
Q==
J|pv
e
- pU - O ]
A 1 puU+§xP 7 1 gxrxx'J“gyTxy
E:—— . Ev:—-
] va—nyP ] é?xf,vx_*'gyTN
| (e+p)U | EBe+EB,
- pV - O 7
] va+77y[) ] NeTye Ty Tyy
| (e+D)V ] N Be+1,8, ]
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1
7° XeIn=*nde
U=¢u+éy, V=nu+nw

2 2
Ter =§y(2ux—vy), Tyy :§,u(2uy—1)x)
Try = Tys =/—‘(uy+vx)

Bi=tu+7,,0+xT,, By=1,,u+7,0+cT,

3.3 Updating Algorithm

The designing procedure is as follows.
First, we assume the target pressure distribu-
tion and initial geometry. Then the flow around
initial geometry is calculated using the direct
method. The updating of geometry is done by
changing the surface curvature, A4C, which is
related to the difference between target and
calculated pressure distribution, 4C, , using the

algorithm developed by Campbell®: 19,

For subsonic and low-supersonic Mach
numbers (M <11), the following equation is
used.

AC=4C,- A(1+C%)B (18)

where A is a relaxation factor that is positive for
the upper surface and negative for the lower
surface. The exponent B may vary between 0
and 0.5, with higher values yielding a faster
convergence rate but less stability in the lead-
ing edge region.

When the local Mach number is above 1.1,
the equation initially used is

e d(4C,) AYM,2-1 1

dx 2 dy2 T
[u(b_jc)z}

When the streamwise slopes of the calculated
pressures are close to the corresponding slopes
of the target distribution, Eq. (18) is used in
combination with Eq. (19) to obtain faster con-
vergence. Since Eq. (19) is not technically valid
when the free stream Mach number M, is less

19

than 1.0, an effective free stream Mach number
of 1.01 is applied for the subsonic cases.

These equations are applied at each point
along the airfoil surfaces, marching from the
leading edge to the trailing edge. The local
curvature changes are made by shearing the
points aft of the current through a given angle
(See Fig. 4(a)). This approach results in mini-
mal changes to the curvatures at the other
points, however, at the end of the design sweep,

the airfoil will typically have either an open or
crossed trailing edge. To remedy this situation,
the surface is rotated about the leading edge
back to the original trailing edge location (See
Fig. 4(b)). Smoothing is applied to both the
airfoil surface and the nose camber line to en-
sure that a reasonable airfoil geometry is main-
tained throughout the design process.

Once a new surface is obtained, a new grid
system is developed and the same procedure is
continued until convergence is obtained. The
flow chart of this procedure is given in Fig. 5.

3.4 Computational Result

Fig. 6 shows the result obtained by the
procedure given in the former section. The final
pressure distribution is given as an experimen-
tal data of NACA 0015 ( M, =0.15, Re=6.0x10%,
a=0). At this level of development, a subsonic
and non-lifting case is the case that can be cal-
culated. The present iterative procedures con-
verge well in this numerical experiment.

4. Conclusions

An inverse problem of obtaining an airfoil
which satisfies a given pressure distribution is
researched. The present research can be sum-
marized as follows:

(1) Using the inverse panel method, the final
profile can be obtained easily, however, the
application is restricted to low Mach num-
ber region and has no large separations.

(2) A non-lifting subsonic airfoil inverse design
is studied. An inverse method is introduced,
and the present method is found suitable to
be employed in this case.

The Navier-Stokes equations have a pos-
sibility of solving the inverse problems where
shocks and boundary layer separation can be
seen. The future work is to apply the present
procedure to solving the high Mach number
problems, as well as high angle of attack prob-
lems. Shortening of calculation time is also
expected.
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Fig.1 Panel Method Computation for NACA 4415

Transform the given velocity distribution v,

into the density of the distributed vortex 7 ;

|
| Distribute 7 ; around the initial profile |
i

Calculate the velocity component

normal to the surface »{"by Eq. (1)

Update Profile

Fig. 2 Flow Chart of Panel Method
Computation



[ Set initial proﬁleJ
v

Generate grid around initial profile
by Eq. (14)
4

Fig.3(a) Effect of Doublet Term on Trailing Edge
(No Control)

Fig.3 (b) Effect of Doublet Term on Trailing Edge
(With Control)

I / I+

(b) Rotate entire surface to recover original trailing-edge
points,

Fig.4 Procedure for Modifying Airfoil Geometry

Calculate the pressure distrubution

by Eq. (17)
(AC,,)JIW
0

N
Update Profile

by Eq. (18), (19)

Fig. 5 Flow Chart of Inverse Method
Using N-S Equation
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Fig.6 N-S Computation
(Initial NACA 0016, Final NACA 0012)
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