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HELICOPTER INVERSE SIMULATION INCORPORATING AN INDIVIDUAL
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Abstract

Inverse simulation is used to calculate the control displacements required for a modelled vehicle
to perform a particular manoeuvre. As with all simulations the usefulness of the technique
depends on the validity of the mathematical model used. To incorporate the latest forms of
helicopter model (“individual blade models”) in an inverse framework, it has been necessary to
modify existing inverse techniques. Such a model is described in this paper along with an
inverse algorithm capable of accommodating it. The resulting simulation is validated against
flight data and comparisons are made with a more basic model.

Nomenclature v

vtan s vV perp.

induced velocity
tangential and perpendicular velocity

ind.

speed of sound in air

. . components of air
translational acceleration components of

1.4 translational velocity vector
hinge referred to shaft axes v, helicopter flight velocity
elemental chord X, Yo Z, displacements relative to an earth fixed
local elemental lift and drag coefﬁcients inertial frame
height of ol?stagle in? pOp-up manoeuvre Xos oy distances from the helicopter centre of
blade flapping inertia and mass moment gravity to the fuselage reference point
Jacobian matrix x state vector
blade hinge spring stiffness y output vector
elemental lift and drag per unit span Y.ou ..  desiredand error output vectors
distances from the fuselage reference point
to the main rotor hub centre a blade element angle of attack
local Mach number o shaft axes angular acceleration
aerodynamic moment acting at blade hinge o rotational acceleration vector

helicopter angular velocity components
spanwise distance to blade element centre
from hub and hinge respectively

rotor radius

position vector

distance to obstacle in pop-up

time

time taken to complete pop-up manoeuvre
transformation matrix
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blade flap angle

manoeuvre discretisation interval

blade element inflow angle

aircraft attitude angles

shaft tilt angle

blade element pitch angle

main rotor collective pitch angle
longitudinal and lateral cyclic pitch angles

translational velocity components of 6y, tail rotor collective pitch angle
helicopter centre of gravity 0, blade geometric twist

control vector P local air density

control error vector w rotational velocity vector
aerodynamic velocity v blade azimuthal position
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1. Introduction: Rotorcraft Modelling and

Inverse Simulation

The conventional approach adopted in flight
simulation is to calculate the response of a modelled
vehicle to prescribed control inputs. This is achieved by
integrating the differential equations of motion, allowing
the vehicle's trajectory to be computed in response to a
defined pilot control sequence. Interest in an alternative
approach known as “inverse simulation” is growing. As
might be deduced, this form of simulation involves
calculating the pilot inputs required for a modelled vehicle
to fly a prescribed trajectory or manoeuvre. Inverse
simulation is particularly useful in studies of flight
involving precision manoeuvring. At the University of
Glasgow applications have been related to helicopter flight
dynamics and have included studies of safety during take-
off from off-shore platforms(’, manoeuvrability in nap-of-
the-earth flight® and workload whilst flying ADS-33
Mission Task Elements®. Other researchers have applied
this technique to control systems studies® and helicopter
agility®®.

The helicopter inverse simulation developed at
Glasgow, “Helinv*®), makes use of a mathematical model
known as “HGS”( (Helicopter Generic Simulation)
which describes a single main and tail rotor helicopter.
This is a nonlinear model with 7 degrees of freedom (the
usual 6 body modes plus rotorspeed) and has what is
termed a “disc” representation of the main and tail rotors.
In this form of rotor model, elemental blade forces are
calculated from simplified linear acrodynamic relationships
and expressed as functions of azimuthal and radial
position. The elemental forces are then integrated
symbolically to give closed loop expressions for the rotor
forces and moments. Clearly this type of model is limited
as it is not possible to accommodate nonlinear
aerodynamic properties such as Mach number variation, 3-
D blade tip effects or retreating blade stall - all of which
have significant influence on the thrust generated by the
rotor. Nonetheless this model has provided useful and
valid results® for a wide range of applications.

To further extend the range of applicability
(allowing valid simulation at the extremes of the flight
envelope) requires the development of a more
comprehensive model. The natural progression is to a so
called “individual blade” model where the disc
representation of the rotor is replaced by individual models
of each of its blades. Elemental blade forces are integrated
numerically allowing more accurate representation of the
aerodynamic properties to be included. Another
fundamental difference between the two models is that the
rotor loads calculated by the disc model are in effect
averaged for a complete revolution of all of the blades i.e.
a single steady value is computed over the period of
rotation. This is in contrast to the individual blade model
where the effect on the blade loads due to the periodicity of
their motion (caused by the cyclic application of blade
pitch) is fully captured. Consequently the rotor forces
calculated (which are subsequently applied to the body

equations) are periodic. Such a model, known as
“Hibrom”® (Helicopter Individual Blade Rotor Model) has
been developed at Glasgow, details of which are presented
in Section 3 of this paper.

The numerical techniques associated with inverse
simulation are still to a large extent under development(!%:
11,12 The methods currently used fall into two
categories: those employing numerical differentiation; and
those using numerical integration to solve the equations
of motion, Using the numerical differentiation approach
the problem is discretised as all of the state variable rates
are effectively calculated by numerical differencing. The
differential equations of motion become algebraic and are
readily solved for the control inputs. The alternative
method uses repeated numerical integration of the
equations of motion to determine the control
displacements required to move the aircraft between
closely spaced positional co-ordinates.

Helinv is an example of a differentiation based
inverse simulation. As discussed above there is a need to
replace the disc model (HGS) originally implemented in
Helinv with a more comprehensive individual blade model
(Hibrom). Unfortunately such a model does not lend itself
well to implementation in an inverse form, at least as far
as the numerical differentiation method is concerned. This
is partly due to the structure of the model but mainly due
to the range of characteristic frequencies associated with
the dynamics of the helicopter. Selection of an
appropriate value for the time interval for the numerical
differentiation becomes a difficult problem. The disc
model only captures the low frequency body modes of the
aircraft, so a relatively large time step can be used for
differencing (possibly as large as 0.1s) and hence rounding
errors are usually avoided. This is not the case for the
individual blade model where the higher frequency rotor
dynamics require a much smaller time interval to evaluate
their rates (typically less than 0.01s). Experience has
shown that this will lead to rounding error problems in
the much more slowly moving body modes (for example
in a side-step manoeuvre the fuselage pitch attitude will
change very little over a 0.01s interval and hence the
calculation of its rate may be prone to rounding error).
Experience has also shown that these rounding errors
eventually lead to failure of the inverse algorithm itself.

In order to implement an individual blade rotor
model in an inverse sense, the alternative approach offered
by the numerical integration technique is required.
Unfortunately this method can also exhibit unwanted
features!: 12, Work at Glasgow has solved many of the
difficulties associated with this simulation technique(!®)
and a generic inverse simulation known as “Genisa”
(Generic Inverse Simulation Algorithm) has been devised.
The resulting methodology is presented in Section 2 along
with a summary of the advances made during its
development.

A crucial element of any simulation exercise is the
validation of results. Section 4 of this paper presents
comparisons between an inverse simulation of a “quick-
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hop” manoeuvre and the actual manoeuvre flown by a
Lynx helicopter. Further, a comparison of inverse
simulation results between the two rotor models
(individual blade and disc) shows the advantages to be
gained in using an individual blade rotor model in terms of
the significant rotor information which is derived.

2. Development of a Robust and Stable
Generic Inverse Simulation Methodology

In all cases the initial phase of any inverse
simulation is the definition of the trajectory or manoeuvre
which is to be flown. This acts as the input to the
simulation, and a typical example of one such manoeuvre
definition is now presented.

2.1  The Manoeuvre Definition

Manoeuvres are defined essentially as a series of
positional co-ordinates (relative to an earth fixed frame of
reference), equally spaced in time (x,(t), y,(1), z.(2)).
The helicopter's component velocities ( x,(f), ¥.(t),

z,(t)) and accelerations ( ¥,(¢), ¥,(¢), Z,(¢)) in the earth
fixed frame of reference are then obtained by
differentiation. Though this ensures that the vehicle’s
centre of gravity follows the correct trajectory, it is still
free to adopt an unspecified attitude. It is therefore
necessary to prescribe one of the vehicle attitude angles
(the heading angle, w(r) being the most convenient) to
guarantee a realistic manoeuvre and vehicle response.
Thus the desired output vector, y___can be easily

constructed using three earth fixed displacements and
heading:

‘Xdesind = [x‘ ye Zf W]T (1)

and is, in effect, the input to the inverse simulation.

Figure 1: The Pop-up Manoeuvre

As an example consider the “pop-up”, Figure 1,
where it is assumed that the pilot's task is to clear an
obstacle, height h over some distance, s. The obstacle is
assumed to be located at the end of the manoeuvre. A
series of boundary conditions are applied to the altitude of
the helicopter at the entry and exit of the manoeuvre. The
simplest analytical function which satisfies these
conditions is fifth order polynomial:

5 4 3
ze(t)=—h[6(;'—) -15({—) +10[i-}}
" " 0)

where t,, is the time taken to complete the manoeuvre.

To complete the description we assume that the pop—up.is
performed at constant heading (i.e. y(¢)= 0) and velocity,

V., and that there are no lateral excursions (i.e. the
manoeuvre is longitudinal and performed in the x, —z,
plane, y,(t)=0). The longitudinal displacement x,(f)
can be evaluated numerically by integrating:

&m=4w—guf

whilst the manoeuvre time, ¢,,, can be calculated by
specifying the total track distance s, then noting that:

s= }fcc(t)dt.

In essence the complete manoeuvre may be defined
by specifying values for the parameters s, & and V.

This approach may seem simplistic but past experience®
has shown that profiles such as that given in equation (2)
provide realistic trajectories.

This manoeuvre definition must now be applied to
the helicopter model in such a way that the control
displacements necessary to fly it are calculated. The
scheme used by Rutherford and Thomson is presented in
detail in Reference 10, and for clarity this is now
summarised.

2.2 The Genisa Algorithm

The nonlinear equations of motion may be
expressed in the form:

£=f(x.u); x(0)=x,,

y=g(x)

where u is the control vector, x the state vector, and y
the output vector. For the helicopter we have:

x=[U VW P QR ¢ 6 yJ
and
l_‘.=[90 91, 91, 90,,]

where 6, is the main rotor collective pitch angle, 6, the
longitudinal cyclic, 6, the lateral cyclic and 6y, the tail
rotor collective pitch angle. The output vector, y , is

given by equation (1). In the context of an inverse
simulation we require to calculate u for a given y . The
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problem can be discretised into a series of time points t
at each of which there is a desired output vector Vi (%)

(as defined by the manoeuvre model) describing the
position and heading of the helicopter. At the current

time point 7 =1¢,, the value of .y_(t,() is known by
integration of the state derivatives, %(¢, ), from the
previous time point r=¢_ . The influence of the control
vector, u(z,) on %(t,) (and consequently x(t..,) and
¥(t,..)) can be found by perturbing the current value. The

problem is effectively to find a solution for the control
vector u(z, ) which will produce a value of X(’m) equal to

Y

S.desired
control inputs are required to move the helicopter from its
current position (and heading) to that specified at the next
time point in the manoeuvre definition. The equations of
motion are then integrated in the usual manner and the
actual position produced using the estimated control
displacements is calculated. The error between actual and
desired position is then used as the basis for an iterative
scheme to calculate exactly what control displacements are
required to achieve the desired positional and heading
change. The output error functions are solved over each
interval, producing control time histories for the complete
manoeuvre. This method has been used previously, by
Gao and Hess('» amongst others.

(tm ) In simple terms a guess is made as to what

At a general time point (the m" estimate at the k"
time point) g'(tk)m can be evaluated using g(tk) and the

current estimate for u(z,) :

i(t,), = fx()uz), | ©)

This in turn can be integrated, using for example
the method of Runge-Kutta'?, to produce estimates of

gc_(tM )m and X(tm)m at the next time point:
£(tkﬂfl )m = TE(I‘ )m dt + E(I‘ )m’ (4)

._V_(tm ),,, = g[&(tm ),,, ] . )

An error function is defined as the difference
between the latest estimate of the output vector, ¥t )m

and the desired value y _(t,,,):

'.y.ermr (t"‘*‘ )m = X(tkﬂ )m - »Xdﬁ;,ed (tk-H ) . (6)

The conventional approach(!? is to seek the
condition y (tm),,, =90, usually by employing a
Newton-Raphson solver such as:

li(tl’ )m+l = y—(t‘ )m - [J]_ly (t"“ )m ’ (7)

Z.error

where the Jacobian, [J] describes the rate of change of the

output vector with respect to the control vector. The
details of the Jacobian formulation are given in the next
section. Genisa uses a modified form of this iteration,

!(tk )m+1 = y_(tk )m U (tk )m ’

which in contrast to equation (7) does not involve
inverting the Jacobian explicitly. Instead the control error
vector is evaluated by solution of the linear system in
equation (8) using LU Factorisationt!?:

[Jle....(8), =y (1), ®)

“.error

This method, by avoiding matrix inversion, should
be more accurate and stable for a wider range of Jacobians.

2.2.1 Evaluation of the Jacobian

Assuming that the problem to be solved involves a
vehicle with n controls flying a manoeuvre defined by n
parameters then for the m" estimate at the k” time point,
the Jacobian is an n X n matrix, the entries of which,

J; (tk )m are evaluated by differentiating each of the
elements of the output error vector y, ., (2., )m with
respect to each of the elements of the control vector
u (t,c )m . The expression for determining a Jacobian
element is thus:

ayerror i (tlul ),,l
ou,(t,)

If the desired output is defined in terms of
displacements then the Jacobian is:

J(), =

[Jx, ox, ox, ox, |
06, 96,, 36,. 96,
aye O . O
6

[7]= Bzo ’

—c . . .
W, .

B 890 a9()tr N

where the variables are as defined earlier. Within the
algorithm, there are no analytical expressions for the
output vector, y and so the elements of the Jacobian must

be calculated numerically by central differencing, the
general representation of which is given below:

&yerrari (tk+l ),,,
aui (tK )m

aors(tes (1, (0) = 80, (1)) ] /28, (1),

m

= [ye,‘r,,,,-(tm ’(ui (tk) +du, (tk ))) -
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All n output elements must be calculated at
positive and negative perturbations from their current
estimates and hence equations (3-6) must be used a further
2n umes. This process is repeated at a series of
consecutive, equally spaced points in time along the
manoeuvre giving time histories for the controls.

2.3 Structural Differences Between Integration and
Differentiation Methods

The most significant difference between the two
types of solution is the time taken to produce results:
Genisa is typically an order of magnitude slower then
Helinv, mainly due to the large number of numerical
integrations which have to be performed. Though this is
a major drawback of the integration approach, its main
advantage lies in the algorithm structure. In the
differentiation method the necessity to express the rates of
change of state variables by numerical differentiation
forces the vehicle equations of motion to become
embedded within the main inverse algorithm. As a result,
making major changes to the model (or indeed to the form
of the output y__ ) can require significant restructuring
of the algorithm. This is not the case in methods using
the integration scheme where the model and algorithm can
be expressed independently. This is primarily because the
iteration minimises the error in flight path variables
which are not explicit in the equations of motion. The
result of this is that modelling enhancements do not
necessitate changes in the algorithm structure; indeed it is
possible to simulate completely different vehicles simply
by changing the mathematical model. Further, should an
alternative set of input motion constraints be desirable
then it is a simple case to modify the error functions. It
is for these reasons, and espite the greatly increased
computational time required, that the integration based
method is often favoured.

2.4 Improving the Numerical Stability of Integration
Based Inverse Simulations

The stability of solutions generated using the
integration method can be compromised if too small a
calculation time step, At is used. As first noted by Lin
et aldD: “when there is an uncontrolled state variable, the
integration inverse method may be unstable for small time
step”. This can be demonstrated by considering inverse
simulation using the HGS model with multiblade
flapping dynamics. As a conventional helicopter has only
four controls and the model in question has 10 degrees of
freedom it is clear that there will be uncontrolled states.
The Genisa simulation does show evidence of the
phenomenon identified by Lin; the pop-up results in
Figure 2 (where s = 250m, & = 30m, V, = 80 knots) for
example were produced using a time step of 0.01 seconds.
The small discretisation interval has introduced unstable
oscillations whose period matches the size of At. This
result is typical of those observed in other inverse
simulations of this type and is without doubt a serious
drawback to the use of such techniques. In the case of
systems which have a wide range of characteristic

frequencies, such as the helicopter, these problems can be
restrictive. Indeed for a more sophisticated individual
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Figure 2: Inverse Simulation Results Using
Displacement Error Function (HGS Model,
Westland Lynx Flying Pop-up)

blade, helicopter model to be utilised for inverse
simulation, a solution to the problem of numerical
stability with small time steps is essential.

It is shown in Section 2.2, equation (6), that the
iterative solution most often used in integration inverse
algorithms is based upon minimising the difference
between the actual and desired helicopter position:

Y=Y i =0 ®

where the output vector y contains the elements x,, y,,
z, and . The rationale behind making this choice is
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that it is most convenient and natural to describe a
manoeuvre in terms of these parameters. A simple
alternative to this is that the error to be minimised is
defined in terms of the aircraft’s acceleration i.e. the

output vector y contains the elements X,, ¥, Z, and V.

In the manoeuvre definition used to initiate the simulation
the desired accelerations are evaluated simply by
differentiating the representative polynomials (equation (2)
for example is readily differentiated to give Z, etc.). The

algorithm as described in Section 2.2 is unchanged; that
is, estimates of control displacements are made and the
equations of motion are integrated between time points
until equation (9) is satisfied.
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Figure 3: Inverse Simulation Results Using
Acceleration Error Function (HGS Model,
Westland Lynx Flying Pop-up)

This simple modification has the effect of
eliminating the instabilities observed previously. Figure

3 shows controls calculated for the sample pop-up
described earlier, again using a time step of 0.01 seconds.
Direct comparison can then be made between Figures 2
and 3 and it is evident that the instabilities associated with
a small time increment have been eliminated leaving only
low amplitude oscillations associated with blade flapping.
It is apparent then that a simple modification has produced
a significant improvement in the quality of the results. A
complete explanation of why such a dramatic
improvement is achieved is given by Rutherford and
Thomson!9. In summary, however, the underlying
reason is that an error function associated with
accelerations will have greater sensitivity to control
displacements than will one associated with positional
displacements. This has implications when using
numerical differentiation to calculate the Jacobian.

When using a very short time interval the positional
displacements due to small perturbations in controls may
be similar and very small, hence leading to rounding errors
in the differencing process. This may not be the case
using the more sensitive acceleration error vector where
even small positive and negative control displacements
should provide distinct and differentiable function values.

It has been shown in this section that it is possible
to obtain stable inverse simulation results using an
inverse simulation technique the structure of which is
capable of accommodating a complex (individual blade)
rotorcraft model. This combination is demonstrated in
section 4 of this paper, however it is first necessary to
give some details of the individual blade helicopter
mathematical model itself.

3. Development of an Individual Blade
Rotorcraft Model, Hibrom

To successfully simulate the dynamics of a given
aircraft requires calculation of the external forces and
moments generated by each of the vehicle’s components.
For a helicopter, modelling the main rotor occupies the
majority of effort as this is the most complex component.
The forces and moments generated by a helicopter rotor are
most conveniently estimated by use of Blade Element
Theory. As already discussed in the context of
helicopter simulation, there are two commonly adopted
approaches: the Disc Model and the Individual Blade
Model. Blade element theory is used in both cases to
calculate the rotor forces and moments. The primary
difference between the two model types is that simplifying
assumptions regarding the aerodynamic properties of the
blade elements are made in the disc model to allow
analytical expressions to be derived. As will now be
shown, this is not the case in an individual blade model
where, as the integrations are performed numerically, it is
possible to incorporate a more comprehensive
representation of the aerodynamic and geometrical
properties of the blade. The main modelling features of
Hibrom are now summarised, a more detailed description
is given by Rutherford and Thomson®.
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3.1 Hibrom: Model Features

i) Blade Dynamics

It is assumed that the main and tail rotor blades are
fully rigid. This assumption has been found to be
reasonable for simulating the flight mechanics of
articulated rotor configurations®>, but may result in poor
prediction of the off-axis response of helicopters with
semi-rigid rotors(®). Lead/lag freedom has also been
neglected.

il)  Blade Aerodynamics

Aerodynamic data is for a NACA 0012 aerofoilt!¥
in the range +18° and compressibility effects have been
included. The data has been blended with suitable low
speed data for the remainder of the 360° range to model the
reversed flow region and fully stalled retreating blades.
Dynamic stall effects have not been included.

jbady

Centre of Gravi |
ibad_y ty \

Jbody Reference Point
\ Xref. i Dy

iii)  Inflow model.

The dynamic inflow model of Peters and
HaQuang(!7) has been used. This model captures the
effect of the rotor moments and the lag between
application of the blade pitch and changes in the
aerodynamic forces.

iv)  Blade geometry .
The spanwise variation of chord and geometric
twist have been included in the blade elemental data.

\2) Fuselage Aerodynamics

Look-up tables of force and moment coefficients
generated from wind tunnel tests of fuselage models have
been used. The full 360° range of angle of attack and
sideslip are accommodated.

_0O
_~""Blade Element Centre

LS

Zrcﬁ

Figure 4: Axes Sets Required to Obtain Blade Element Velocity and Accelerations

3.2 Blade Element Kinematics

To calculate the forces acting upon each blade
element it is necessary to first determine their respective
velocities and accelerations. Figure 4 illustrates the axes
transformations required to find the velocity and
acceleration of a blade element, given that the kinematics
of the helicopter centre of gravity are known. The system
is assumed to be fully rigid. The first stage is to describe,

in body axes, the velocity of the hub centre with respect
to the helicopter's centre of gravity:

body __  body bady body
Viw = Kc,g, + _CQ X L.g./hub s

where v ={u v w},

Qbady - {P Q R}T ,

1287



and e I, 0 n, Y
Vosims =Xy i Zp Pyt -

ref.

The translational and rotational hub velocities are
subsequently expressed in terms of the disc axis set.
This is achieved by rotation through the shaft tilt angle,

}Ish. :
Vg = [T Jyies,

disc body! disc bod,
O® =[T""* g™,

where the transformation matrix from body to disc axes is
given as:

cosy, O —siny,
[Tbndy/disc ] = 0 1 0
siny, 0 cos Y

Similarly, further transformations allow
determination of the velocity of a blade element referred to
local blade axes:

?_:,’:: = 1_’::; + waz X Z::‘::/ekm.
=[ujme Vi ],

where @™ = phete ghiete el P
and Fomioion. = {Tuon, 0 O},

3.3  Blade Forces

The velocity of a blade element derived above can
be used to calculate the aerodynamic forces acting upon

each element. Lift and drag per unit span are L., and

d,.., respectively. To calculate these forces it is

first necessary to determine the tangential and
perpendicular components of the velocity of the air over
the blade. For a clockwise rotating rotor, Figure 5, the
tangential component of velocity of an element is given
by:

— vblade

tan, elem. *

and the perpendicular component by:

v =w blade

perp. elem. vind. €os ﬁ

where v,, is the induced velocity. Calculation of the
elemental lift and drag requires knowledge of the local lift
and drag coefficients. These can be found using
aerodynamic look-up tables as functions of local Mach
number, M and angle of attack, . The local Mach
number is determined by the ratio of the acrodynamic
velocity, V,,, - defined as the resultant of the tangential

and perpendicular velocity components - to the local speed
of sound of air, a:

2 2
(vran. + vperp.)
M=X_ "7
a

The angle of attack (which, through the inflow
model implicitly considers induced effects) is the sum of

the incidence of the elemental centre with respect to the
airflow, ¢, and the blade pitch angle, 8:

a=0+¢

Vind 0SB

blade + * * ;

Yaero ' whlade
A Yerp elem

Figure 5: Velocity Components of a Blade
Element

The incidence is defined as that relating the
tangential and perpendicular velocities:

o= tan"(———v"""‘ )
1%

fan.

and the blade pitch angle is expressed as a function of
blade azimuth position, ¥, and elemental position from

the hinge, r,, as:

0( V,’ relem,) = 90 :}- 91, Sin V’ + 91, cos V’ + olwisr (relem. ),

where @

twist

is the geometric twist of the blade.

Thus linear interpolation of the aerodynamic look-
up tables yields estimates of the lift and drag coefficients
for each element and the associated forces per unit span
can be calculated using expressions in the traditional
aerodynamic form:

2

lelem. = -;—pvaero.celem.q (a’ M) 4

;i.elem, = %pv:em.celem Cd (a’ M)’

where p and c,,, are the air density and the blade element
chord respectively.

Knowing the elemental masses and accelerations
the inertial forces can also be found. The elemental
aerodynamic and inertial forces are added for each element,
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transformed via the local inflow angle to the blade axis set
and integrated numerically over the span. This gives the
shear forces acting at each hinge. Transformations from
the blade through to the body axes yields the rotor’s
contribution to the external forces and moments at the
helicopter centre of gravity.

3.3  Blade Flapping Equation

Each blade is assumed to flap about its hinge as a
result of the aerodynamic moment, M__ due to the offset

aero.

aerodynamic forces acting upon each element.
Equilibrium is maintained by the similarly offset inertial
elemental forces and a restoring hinge spring producing a
moment proportional to the instantaneous flapping angle,
B. The second order equation governing blade flapping
dynamics about the hinge has been derived from first
principles and is expressed as:

ﬁ = — pt ot 32 +(psh¢2 — poran? +ﬂashaﬁ +_If_ﬁ_)ﬁ
1
B B

I x hinge

M M
ha ha ; B : 2
[ ps aft rshaﬁ ai aft I azslzzige Iaem ,
B B

where K, is the spring stiffness, / , 1s the blade flapping
inertia, and M, is the blade mass moment. The vertical

acceleration of the hinge referred to the rotating in-rotor
plane shaft axis is represented by a* . The other terms

z hinge *
use similar notation where o indicates rotational
acceleration and p, g and r denote components of the
angular velocity.

So far in this paper the development of an
individual blade rotorcraft model and an inverse simulation
methodology capable of accommodating it have been
presented. In the following section sample results from
this combination are given which show both the validity
of the model, and the improved results over the more basic
disc model implementation.

4. Inverse Simulations Using an Individual
Blade Rotorcraft Model

In this section sample results from the use of the
Genisa/Hibrom inverse simulation are compared with
results from The Genisa/HGS simulation. The process of
validating a mathematical model is essential before there
can be confidence in the use of the simulation in practical
applications. The results in the following section are
therefore aimed at validating the Hibrom model.

4.1  Validation of Hibrom

The most common way of validating a
mathematical model is to compare flight test results with
those from the simulation. In simple terms a standard

control input may be applied to both vehicle and
simulation, and the responses of both compared. In the
context of an inverse simulation it is possible to fly the
vehicle and simulation through identical manoeuvres, then
compare both state and control time histories®.
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Figure 6: Comparison of Flight Test and
Inverse Simulation Results for a Lynx
Helicopter Flying a Quick-hop Manoeuvre

For the current study, data from flight trials
undertaken by the Defence Research Agency (DRA),
Bedford, U.K., has been used. These trials were performed
using a Westland Lynx helicopter, and the manoeuvre
flown was the “quick-hop”. This manoeuvre is initiated
from the hover, the pilot being instructed to translate
forward to a new location some fixed distance away.
Constant altitude and heading is to be maintained, and the-
aircraft is to be returned to the hover at the final position.

1 289



On-board rate gyros and accelerometers permit the
vehicle's states to be established throughout the
manoeuvre. The pilot's control inputs are also measured
allowing blade pitch angles to be obtained. The aircraft's
position during the manoeuvre is recorded from ground
based measurements.

The flexibility of the integration inverse simulation
technique is of particular value when validating
mathematical models. It is possible to use the data
measured during the trials as the error function for the
simulation, in this case we have:

. . ) 7
Ve =0 9 ¥ 2]

desired

and with appropriate configurational data in the model it
is possible to simulate the Lynx flying precisely that
manoeuvre flown by the real aircraft.

Such a comparison is shown in Figure 6 where the
measured data from a quick-hop of distance 300ft (91m)
has been used. From these plots it is apparent that the
overall trends in each case has been captured by the
simulation although the amplitude of some inputs do
appear to be inaccurate (the initial pulse in longitudinal
cyclic, for example). When considering where the
modelling deficiencies lie one must consider again the
initial assumptions made in constructing the main rotor
model. For example, the assumption that the blades are
rigid may have a significant effect on the results. The
torsional flexibility of the blade will superimpose pitch
inputs in addition to those applied by the pilot, an effect
which is not present in the mathematical model.
Likewise the modelled flapping dynamics and inflow may
not completely replicate those of the real aircraft. A disc
model is used for the tail rotor, and under-prediction of the
collective, 8, is consistent with the observations of

other authors(!®),

The simulation results shown in Figure 6 are
sufficiently close to those from the flight tests to give
confidence in the model's use in many flight mechanics
applications. The type of modelling enhancements
required to improve the predictions will require little or no
change to the inverse algorithm itself,

4.2 Comparison of Inverse Simulations Using Disc
and Individual Blade Rotor Models

A comparison between inverse simulation results
from the disc and individual blade models is of obvious
interest. One of the first issues to be decided upon is the
choice of discretisation interval, At. In using a disc
model such as HGS in inverse simulation, the choice of
discretisation interval is determined primarily by
numerical stability. For inverse simulation using an
individual blade rotor model further consideration of the
solution interval is required. This is due to the influence
of the rotor dynamics. Too short a solution interval will
result in poor prediction of the influence of control

perturbations on the longer term dynamics of the aircraft
due to transient effects. This can subsequently lead to
failure of the algorithm. Consequently an interval must
be chosen which is sufficiently long to allow the transient
dynamics to settle. Typically this requires a time
consistent with at least half a turn of the main rotor.
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Figure 7 : Inverse Simulation of a Pop-up
Manoeuvre (s = 200m, h=25m, V; = 80kts)
with Data for Westland Lynx Helicopter

The oscillatory nature of the rotor forcing also
means that the solution interval must coincide with an
integer number of main rotor periods (a quarter turn for the
4 bladed helicopter model used here). Note that this effect
imposes the constraint of assuming constant rotorspeed on
the model. For consistency the same interval (0.086s for
the Lynx configuration) is used in both simulations.

1290



A comparison of simulations is shown in Figure 7
for a pop-up manoeuvre. The comparison shows that
both models predict very similar control displacements.
This may seem like a disappointing result, however it
should be borne in mind that this is only a moderately
severe manoeuvre and the linear assumptions made in the
disc model will be valid. The similarity of the HGS
results to the supposedly more realistic individual blade
model suggests that disc models are valid for inverse
simulation of moderately severe manoeuvres.

4.3 Increased Severity of Manoeuvre

. Increasing the severity of the pop-up manoeuvre
described in the previous section has a significant effect on
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Figure 8 : Inverse Simulation of a Pop-up
Manoeuvre (s = 200m, h=25m, V; = 85kts)
with Data for Westland Lynx Helicopter

the results. Figure 8 shows a comparison of results for the
identical pop-up but with the velocity increased to 85
knots. Whilst HGS predicts control displacements which
are very similar to those in Figure 7, Hibrom's results are
quite different. This is most evident in the discontinuous
section of the lateral cyclic time history.
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Figure 9 : Fuselage Pitch Angle During Pop-
up (85kts) Maneeuvre

This can be explained by consideration of the
fuselage pitch angle during the manoeuvre, Figure 9. It
can be seen that during the exit phase of the manoeuvre
where the aircraft performs a "push-over"” (in fact the
minimum load factor drops below 0.5g) to clear the
obstacle, the fuselage pitch attitude drops to around -20°.
At this attitude and flight speed the perpendicular velocity

component, v, , (see Figure 5) becomes negative over a

significant portion of the disc. The consequence of this is
that on the retreating side of the disc where the tangential
velocity, v,, , is small we find large negative angles of

an. °

attack, . Figure 10 illustrates the variation of angle of
attack of an in-board blade element (r/ R = 0.25) during
the pop-up manoeuvre as predicted by Hibrom. In both
simulations the modelled aerofoil section is the NACA
0012 profile, however only the tabulated data used in
Hibrom captures the stall characteristics of this section
(ag,, =t15%). Itis clear from Figure 10 that the stall is

encountered on the retreating side of the disc throughout
the push-over phase of the manoeuvre. The result of this
is that a net rolling moment is generated, and the
remedial action predicted by Hibrom is a rapid input of
lateral cyclic stick to counteract this moment. This effect
is entirely missed by the HGS disc model as the stalling
characteristics are not predicted by the linear representation
of lift coefficient.
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Figure 10 : Angle of Attack of Hibrom Inboard
Blade Station During Pop-up (85kts)
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It can be argued that such large and rapid inputs are
unlikely to be applied by a real pilot. In this case a real
pilot would be likely to feel the onset of the stall through
vibration, and "ease-off" slightly during the push-over.
From the results shown here it is clear that the manoeuvre
can be flown well within the control limits of the
helicopter, but the low load factor in the push-over phase
causes severe blade stalling, an important feature simply
not captured by the disc model. In fact as the speed of the
helicopter through the manoeuvre is gradually increased
(thereby increasing the severity of the manoeuvre) the
individual blade model, Hibrom, predicts a limiting case
of around 90knots before severe blade stall causes failure
of the algorithm (suggesting that this manoeuvre cannot
be flown). On the other hand the disc model, HGS,
continues to predict solutions well beyond this velocity
before control limits are breached. It can be concluded that
the linear approximations made in the disc model are
insufficient to accurately predict the aerodynamic loading
of the rotor in severe flight states. It follows that if
accurate results are required for manoeuvres close to the
extremities of the flight envelope, then an individual blade
rotor model must be used.

5. Conclusions

From the research presented in this paper the
following conclusions can be drawn.

i) Helicopter individual blade models require
integration methods for inverse simulation in order
to accurately predict the wide range of characteristic
frequencies.

i) The discretisation interval should be expressed as a
whole number of blade periods to capture the
periodicity of the forces. For convenience constant
rotorspeed can be assumed to determine the
calculation interval.

ili)  For improved numerical stability the error function
in the inverse algorithm should be based on
accelerations rather than displacements.

iv)  Valid results are achievable using an individual
blade model in inverse simulation. Disc models
give equally valid results for most moderate flight
conditions.

V) In severe flight conditions disc models do not
predict nonlinear aerodynamics effects. In these
conditions an individual blade model must be used
to guarantee valid results.

As the interest in inverse simulation grows, more
effort must be applied to the associated numerical
techniques to ensure that the algorithms do not impose
constraints on the mathematical models used. If this form
of simulation is to be more widely used it must be able to
accommodate state-of-the-art mathematical models. The

work presented in this paper represents a step forward in
achieving this goal.
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