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ABSTRACT

The Doublet-Lattice Method (DLM) is in use world—
wide for flutter and dynamic response analyses of aircraft at
subsonic speeds. The existing method is based on the paper
*“Refinement of the Nonplanar Aspects of the Subsonic Dou-
blet-Lattice Lifting Surface Method” by Rodden, Giesing,
and Kalman. The present paper develops a further refine-
ment to extend its frequency limits for applications to higher
frequency flutter (e.g. for aeroservoelastic systems with high
frequency control surfaces) and dynamic response (e.g. for
short wavelength gusts).

The DLM is an aerodynamic finite element method for
modeling oscillating interfering lifting surfaces in subsonic
flows. It reduces to the Vortex—Lattice Method (VLM) at
zero reduced frequency. The number of finite elements
(“boxes”) required for accurate results depends on aspect ra-
tio and reduced frequency, among other parameters. At high
reduced frequency, the chordwise dimension of the boxes
must be small. However, an approximation in the method,
viz., that the variation of the numerator of the incremental
oscillatory kernel function is parabolic across the span of the
box bound vortex, restricts the box aspect ratio to about 3.
Hence, high frequency requirements bring an associated re-
quirement for a large number of boxes in the aerodynamic
idealization.

If a higher order approximation is used for the spanwise
variation of the numerator of the incremental oscillatory ker-
nel, the limitation on box aspect ratio can be relaxed and the
number of spanwise divisions required in high frequency
analyses will be reduced significantly, leading to a reduction
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in the total number of boxes.

This paper replaces the original parabolic approximation
by a quartic approximation*. The quartic curve fitting coef-
ficients are determined for the planar and nonplanar kernels,
and the new integrals for the planar and nonplanar normal-
wash factors are evaluated. The refinement is incorporated
into a DLM code previously known as N5KA, and conver-
gence studies on typical configurations are presented that at-
tempt to specify a higher limit for practical box aspect ratios.

NOMENCILAT

coefficients in quartic approximations to kernel
numerators; subscripts 1 and 2 refer to planar and
nonplanar parts of kernel, respectively

b, reference semichord

total lift coefficient
normalwash factor; D, is steady normalwash
factor; D, and D, are incremental oscillatory

planar and nonplanar normalwash factors, re-
spectively

box semiwidth

integral in Eq. (21)

kernel function; K; and K, are factors in numer-
ators of planar and nonplanar parts of kernel, re-
spectively

reference reduced frequency, k, = wb /U

Mach number

number of lifting surfaces

lifting pressure coefficient

quartic approximation to kernel numerator; Q,

and @, are approximations for planar and non-

planar numerators, respectively
cylindrical radius from sending doublet
area of nth lifting surface

s semispan

W me

o~} 23‘»

o(m)

~
=U)

*
T direction cosine function; T, and T, are func-

tions for planar and nonplanar parts of kernel, re-
spectively

U freestream velocity

w dimensionless normalwash
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X Ypr 29 Cartesian coordinates of receiving point relative

to midpoint of sending line (bound vortex)

X Streamwise distance between an arbitrary point
on the sending line and the receiving point
Coordinates of receiving point relative to mid-
point of sending line parallel and perpendicular to
sending box
parameter defined in Eq. (24)
dihedral angle; 7; and 7, are dihedral angles of re-
ceiving and sending boxes, respectively, and

Y,= ¥,—7, is the relative dihedral angle be-
tween receiving and sending boxes
centerline chord of sending box

< ™

spanwise coordinate, in the plane of an element

sweepback angle of sending box 1/4—chord line
circular frequency

ISR
3 g

Note: Additional nomenclature is defined in the appendices.

INTRODUCTION

The Doublet-Lattice Method (DLM)® is a finite—ele-
ment method for the solution of the oscillatory subsonic pres-
sure-normalwash integral equation for multiple interfering
surfaces

N
w(x $)=(1/8m) Y [[K(x,Eis,0)p(&, 0)dEds (D
n=1s,

where w is the complex amplitude of the dimensionless nor-
malwash, p is the complex amplitude of the lifting pressure
coefficient, (x,5) are the orthogonal coordinates on the nth
surface §,; such that the undisturbed stream is parallel to the
x—-axis, and K is the complex acceleration potential kernel
for oscillatory subsonic flow. The original DLM algorithm
was presented at the same time (1968) as the Lifting Line
Element Method (LLEM) of Stark®. Although numerous
comparisons®® with experiments were shown at the time,
the complete details of the LLEM were never published. Dr.
Stark has written a note on the LLEM, and this is included
here as Appendix A.

A refinement to the expressions for the kernel given by
Rodemich® and Landahl® was presented by Rodden, Gies-

ing and Kalman® in the form
K = (K\T,/7 + K,T,/r)exp(-ioz/U) ()

in order to analyze the nonplanar interference correctly. K|
and K, are the planar and nonplanar parts of the kernel
numerator, respectively. Here w is the frequency, xg is the
distance between the sending and receiving points parallel
to the freestream, U is the velocity of the freestream,

T, = cos(Y,-Y,) 3

T, = (zyc0sY,~ yosiny,)(zocosY, — yosiny,) ()]

2
P =y} )

where yg and z, are the Cartesian distances between sending
and receiving points perpendicular to the freestream, and ¥,
and 7 are the dihedral angles at the receiving and sending

points, respectively. The coordinate system is illustrated in
Fig. 1. The description of K| and K, as the planar and nonpla-
nar parts of the kernel numerator is a convenience because
both are obviously nonplanar in general. The refinement in
Eq. (2) is in the second term,; this was found necessary so that
the DLM could predict the interference between a nearly pla-
nar wing and horizontal tail®, The refinement retained the
original primary approximation®, i.e., that the incremental
oscillatory normalwash factors are obtained by integrating
the difference between the oscillatory and steady kernels
over the length of the bound vortex assuming a quadratic
(parabolic) variation in the numerator of the difference. The
total normalwash factor is then the sum of the incremental
oscillatory normalwash factor and the steady normalwash
factor obtained from the expressions for a horseshoe vortex,
e.g., the Vortex—Lattice Method (VLM) of Hedman®, In this
way, the DLM converges to the VLM at zero reduced fre-
quency, and the error in the parabolic approximation of the
kernel numerator difference is small at low reduced frequen-
cies and increases with the reduced frequency.

Extensive experience with the VLM and DLM has led to
guidelines for idealization of lifting surfaces into finite ele-
ment models. It is assumed that each surface can be approx-
imated by segments of planes. The surface is divided into
small trapezoidal panels (“boxes”) in a manner such that the
boxes are arranged in strips parallel to the freestream (Fig. 2)
and surface edges and fold lines lie on box boundaries. Boxes
should be concentrated near wing edges and hinge lines or
any other place where downwash is discontinuous and pres-
sures have large gradients. (The usual practice is not to con-
centrate boxes near hinge lines because viscous effects,
which dominate trailing edge control surface aecrodynamics,
reduce hinge moments from potential theory results, so more
chordwise boxes tend to over-predict hinge moments). The
chord lengths of adjacent boxes in the streamwise direction
should only change gradually. If a surface lies in (or nearly
in) the plane of another surface, the spanwise divisions of the
downstream surface should lie along the spanwise divisions
of the upstream surface. Strips at the intersection of lifting
surfaces should have approximately equal widths.

The foregoing qualitative modeling recommendations
have been quantified [the guidelines have been summarized
by Rodden and Johnson®] as follows. The aspect ratio of the
boxes should be less than three. The chord length of the box-
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es should be less than 0.08 times the minimum velocity di-
vided by the maximum frequency (in Hz) of interest, i.e., Ax
< 0.08U/f (Note: this is a requirement for approximately 12
boxes per minimum wave length; however, no less than four
boxes per chord should be used). The limitation of box aspect
ratio to three is a consequence of the DLM assumption of a
parabolic variation in the incremental kernel numerator. The
variation of the real part of the incremental kernel numerator
along the box quarter-chord is shown in Figure 3 for an as-
pect ratio of 1. —
Aeroservoelastic analyses frequently deal with high fre-
quencies in control system components, and new design cri-
teria for short wavelength gusts (e.g., the FAA® and JAA!®
tuned discrete gust require a minimum gradient distance of
30 feet be analyzed) also require that higher reduced frequen-
cies be considered. The combination of the box chord length
limitation and the box aspect ratio limitation can result in a
requirement for a large number of aerodynamic boxes. A
higher order (than quadratic) approximation to the numerator
of the incremental oscillatory kernel will increase the limit
on box aspect ratio for accurate oscillatory aerodynamic
analysis. This paper considers a further refinement to the
DLM in a quartic approximation and then attempts to deter-
mine a new practical limit on maximum box aspect ratio.

NE FINEMENT

The original method for determining the influence of an
oscillating lifting surface element at a point was based on the
assumption that the lifting pressure could be concentrated
along a line. The line is located at the 1/4—chord line of the
element (Fig. 2). The lifting load line is represented by a
horseshoe vortex for its steady effects and a line of doublets
for its incremental oscillatory effects. The surface boundary
condition is a prescribed normalwash at the control point of
each box which is located at the 3/4—chord point along the
centerline of each box. The numerical form of the integral
equation, Eq. (1), in matrix notation becomes

{w} = [D]{p} ©

where the elements of the normalwash factor matrix [D] are

D,, = (Ax,/8m) r K di )

Here Ax; is the centerline chord of the sending box, e is its

semiwidth, and the streamwise integration of the kernel has
been performed by concentrating the lifting pressure at the
1/4~chord load line.

The evaluation of the normalwash factor Eq. (7) in ele-
ment coordinates gives

D,, = (Ax,/8m) r (K, T1/7 + KyTy/ rx
- | ®)
exp[—iw(xy—Titan) )/ Uldn

where 7> = (SJ—ﬁ)2 +7 and A, is the sweep of the 1/4-

chord line of the sending box. The normalwash factor is
evaluated as before by adding and subtracting the steady
values of K, and K, denoted by K|, and K, respectively,

from their oscillatory counterparts. Then, Eq. (8) becomes
Drs=D0r3+D1rs+D2rs ®

where

Ax,pre[K 0T, KpoTo]
DO,S=§7§J': [ et o (10)

Ax e {K exp[-i@(xy—Tftanr)/ U] - Ko}T, _
1rs=ﬁf dn

2

;
an
Ax, pre{ Kpexpl-io(xy-ftanA, )/UT-Kyg}T, _
2rs=—8;f r4 an
(12)

Eqg. (10) is the steady normalwash factor and is more con-
veniently derived from horseshoe vortex considerations than
by evaluating the integral. The steady downwash factor has
been given by Hedman™. We may evaluate the incremental
oscillatory normalwash factors [Egs. (11) and (12)] in closed
form by now approximating the numerators as quartics in 1 .
We rewrite Eq. (11) as

Ax 2,()
Dlrs = -§;s - i 2 .2dﬁ (13)
e(-N) +2z
where Q,(7) is the quartic approximation
= =2 = - —4
2,(m) =AM +Bln+C1+D1n3+Em a4

~ (K exp[-io(xy-Atan))/ Ul - K 4} T,

If we denote the inboard, inboard intermediate, center,
outboard intermediate, and outboard values of Q,(%) re-

spectively by Qy(-e), Q1(-¢/2), 24(0), Q1(e/2) and Qq(e), the
quartic coefficients are

Ay = —5[0,(~) - 160, (-e/2) +300,(0)
Ge (15)

~160,(e/2) + 0, (e)]
B, =6-lé[Q1(—e)—8Ql(—e/2)+8Q1(e/2)-Q1(€)] (16)

C, = 0,(0) an
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D, =-2510,(-¢)-20,(-e/2)
3e a8

+20Q,(e/2)-Q,(e)]
E; = 210,(-¢) - 40,(~e/2) +60,(0)
3e a9
-40Q,(e/2) + Qy(e)]
Then the planar downwash factor becomes

D, = 25l (5~ ), + 3B, + C
1rs = g [T -2)A +7B + C

+36%-32)D + 5 - 65°2° + ) E,1F

(20

o1, 1.2 2
+[yA1+§Bl+§(3y -2)D,

- 2 .2

Y - - 4
+25(5% -2 )Eljlog(y_e)_z_iz
(G+e) +z

+2e[A; +25D; + (35»2 -+ %ez)EIJ}

where the integral
@n

is evaluated as before®. The integral F may be rewritten as

22
_ 2e b4 n
F = 81-2—3—5[1—87)-#82@ (22)
y +7 e e
where
8, =18 =0for 5+ -¢> 0
8, = 1,8, = } for 7 422-¢% = 0 @3)

2
8, = 1,8, =1 for y+2i-e"< 0
in order to place the arctangent in the correct quadrant, and

ez{ 5’2 +32 & 2el7]
£==|1- — atan( )jl 24
) 2el7] P&

When l2e2/ ( 5’2 + 22 - ez)l < 0.3, the series expansion

4 7 n .
_ 4e (-1)7(  2elz -4
€= 2 22lim-1\2,,2 2 @5
G +2' =€) naa y+T-e
is used. It is seen immediately, for the cases

5:2 +22 -e2 <0, that F becomes singular like ®n/]z] and

n/2|Z| respectively. However, it can be shown that a simi-
lar contribution (of opposite sign) arises from the nonplanar
part that exactly cancels this singular term. Thus, the usual
practice for planar cases is to evaluate the Mangler principal
part of F where these two singularities are cancelled analyti-
cally(b.

The incremental nonplanar oscillatory normalwash factor
is approximated by

Ax,pe 0,
8"E[(y-ﬁ)2+z"’12

where Q,(1) is another quartic approximation

D 2rs = dﬁ (26)

= =2 = =3 4
Q,(M) = AN+ BN+ C, + Dy + ExN an

= {K,exp[-io(xy,-ftan))/ U] - Kzo}T;
Letting Q5(-¢), Q5(-¢/2), @,5(0), Q5(e/2) and Q,(e) denote

the inboard, inboard intermediate, center, outboard interme-
diate and outboard values of Q,(1]), respectively, we have

1
Ay = ——r -e)—-16Q,(-e/2) +300,(0
2= 5l0(-0- 1600/ + 300,00

-160,(e/2) + @,(e)]

B, =-6-1;[Q2(-e) ~80,(~e/2) +80,(e/2)-Q,(e)]  (29)

C, = 0,(0) (30)
D, =—2:[0,(~e) ~20,(~¢/2)
+20Q,(e/2)~Q,(e)]
2
E, = —[Q,(~e) —40Q,(-e/2) + 6Q,(0)
2 304 2\ € 2 2 (32)

-40,(e/2) + Q,(e)]

The nonplanar downwash factor is then given by
Eq. (33).
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D =
2
rs 6nz

1

{[(y +z )A2+yB2+C2+y(y +3z )D2+(y +6y b4 -3z )E,]F

=2, .20, 22 2 2.2 o =
+———-—2{[(y +2)Y+ (Y -2)elAy+ (5 + 27 +5e)By + (§+)C,

G+e)l+z

4 _4 -2 2. 4 .22 _4. _ -4 .22 4
+[J -2+ -32)yelDy+ [(§ -257°2 =32 )y+(§ -6 2 +2 )e]EZ}

1

(33)

——-—2——_3{[0' +2)5-(° - 2 )e]A2+(y +Z -ye)32+(y e)C,

(y-e) +z

-4 .4 2 2, . 4 2.2 A 4 . 2.2 4
+[§ -2 =(§" ~32)yelDy + [(y -2y 2" =32 )y—() 652 +2 )e]EZ}

2 (’-—e)2+
+li2 log—y—-—z——z-i]D +4z (:e-t»ylog

(G+e) +2

eAx J 1

A'

G-e)+7
2 2E2
(§+e) +2Z

Der =

85 + 22— A [+ &)’ + (G - ) + 7]

125 + 2+ ed) A, +C))

+45¢°B,y + 255" - 26°5° + 2578 +3¢* + 27 + 24D,

+2(35%-76%5*455%2% + 6¢*5” + 675°2" - 3¢°2" 2" + 572" 2 ) E,)

(518 A)

(y e) +zz+2
(y+e) +Z

where

2= (g) {1‘51 52:z\(y“—‘+§z'e

The simplification of Eq. (33) via Eq. (22) is tedious but
results in the more accurate form above in which € is again
given by Eq. (24). Eq. (34) has been used in general, except

when |(5° + 22— €%)/2¢2 <0.1 in which case Eq. (33) is
used.

PLI N

Figures 3, 4 and 5 show the variation of the real part of
the incremental kernel numerator along the box quarter-
chord for various aspect ratios for a unit Ax rectangular box.
The receiving point is on the box itself. The Mach number is
M = 0.8 and the reduced frequency is k, = 1.0 based on the

box semichord of 0.5. The improved performance of the

(7-e)" +1
{ewlog_y_z_z,
(G+e) +2

(34

(5" +2 )A2+yB2+C2+y(y +3z )D2+(y +6y Z —3z )E2]}

1
)

(35)

quartic approximation is evident in the 3 figures and clearly
superior with a box aspect ratio of 5.

Four examples are now considered to illustrate the im-
proved convergence characteristics of the quartic approxima-
tion. Each example has been investigated in earlier studies.
The first three examples are planar: a high aspect ratio rect-
angular wing, a wing-tail combination, and a wing with a
trailing edge control surface. The fourth example is a simpli-
fied rectangular T-tail.

A High Aspect Ratio Rectangular Wing. A high aspect ratio,

unswept, untapered rectangular wing can be used conve-
niently to investigate the requirements for box shapes
(aspect ratio) and sizes (number of boxes on a chord). At a
Mach number of zero, the calculated loads can also be com-
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pared to classical two-dimensional solutions if the aspect
ratio is high enough, although it should be noted that there
are quantitative differences between pressures at cross-sec-
tions of a wing with a finite aspect ratio and a two-dimen-
sional airfoil.

An aspect ratio of 20 is selected and the symmetric mo-
tion of pitching about the midchord is investigated.

Figures 6 and 7 show the real and imaginary parts, re-
spectively, of the lift due to pitch about the mid-chord. The
numbers in the legend (e.g. 10x20) referto the number of
chordwise and spanwise boxes, respectively. The results
show that the quartic solution with 20 spanwise strips is clos-
er to the converged solution than the parabolic solution with
40 spanwise strips. In fact, the quartic solution with 10 span-
wise boxes has acceptable accuracy up to a reduced frequen-
cyof 3.

Figures 8 and 9 show the effect of box aspect ratio on
convergence for the same wing. Additional cases were calcu-
lated with 5 chordwise boxes. The real part converges more
slowly than the imaginary part, however, the quartic is closer
to convergence with far fewer boxes than the parabolic ap-
proximation. The immediate implications of this are that ex-
isting models are accurate to a higher reduced frequency
without any change. Conversely, smaller models can be gen-
erated to give the same accuracy as the parabolic approxima-
tion.

The Wing/Horizontal-Stabilizer Combination. This configu-
ration is one of those selected by the AGARD Structures
and Materials Panel for comparison of methods used in
interfering lifting surface theories. The planar configuration
is shown in Fig. 10 with its span divided into 12 strips. The
convergence characteristics of the original DLM were stud-
ied on this configuration by Rodden, Giesing, and Kalman®
with a number of different chordwise box divisions on the
wing and the tail. The equal chordwise fraction of boxes on
the wing and tail, respectively, were 5 and 4, 6 and 5, 10 and
8, and 12 and 10.

The 12 spanwise strips were the same for all combina-
tions of boxes, so the total number of boxes in the various
idealizations were 108, 132, 168, 216, and 264. The lift coef-
ficient for oscillatory plunging was obtained at a Mach num-
ber of 0.8 and a reduced frequency of k = ws/V = 1.5 where
s is the semispan (based on b, = 0.8, k, = 1.2), and the results
are shown in Table 17, The new results with the quartic ap-
proximation have been added to Table 1 for an idealization
with the same number of chordwise boxes but with only eight
spanwise strips (with divisions at 0.0, 0.1667, 0.3333, 0.5,

T The values labeled Ref. (6) have been recalcu-
lated using slightly different strip widths scaled
from Fig. 2 of Ref. (6); the actual widths were
not reported other than in the figure shown.

0.6667, 0.8333, 0.9, 0.96, and 1.0 fractions of the span), lead-
ing to a total number of boxes of 72, 88, 112, 144, and 176
for the different chordwise divisions. A perusal of Table 1
shows the quartic approximation with fewer spanwise strips
to have the same accuracy as the earlier parabolic approxima-
tion. The convergence of both sets of results with increasing
number of chordwise boxes shows the importance of a suffi-
cient number of chordwise boxes per wavelength, 12 as sug-
gested in the published guidelines®. The performance of the
quartic approximation in this example suggests an increase in
the guideline box aspect ratio limit of 3, established for the
parabolic approximation, to perhaps 5 for the quartic approx-
imation.

Table 1: Comparison of Lift Coefficients for Plunging,
(Cr/ik(h/s)) - k=12, M=0.8

Boxes? Ref. (6) Boxes® | Present Study
108 3.792+i2.955 72 3.751 +i2.932
132 3.961+i2.963 88 3913 +i2.928
168 4.160+i2.974 112 4.098 +i2.952
216 4.299+i2.960 144 4.251 +i2.966
264 4.359+412.955 176 4341 +12.969

a. 12 Spanwise strips
b. 8 Spanwise strips

The Wing-Aileron Configuration, This configuration is one
of those selected by the AGARD Structures and Materials
Panel for comparison of methods used in isolated lifting sur-
face theories. The swept-back configuration is Planform No.
2 in Woodcock®? with the inboard end of the aileron
selected at 50% of the wing semispan and is shown in
Fig. 11. Two antisymmetric motions are considered: wing in
roll and aileron deflection. The AGARD example Mach
number of 0.7806 is assumed along with a reduced fre-
quency of 1.0, again based on the wing semispan. Several
box idealizations are considered. The wing is divided into
three panels: one for the wing inboard of the aileron, one for
the wing forward of the aileron, and one for the aileron
itself. Three sets of equal chordwise divisions of the inboard
wing, the outboard wing, and the aileron are chosen as fol-
lows: the number of chordwise boxes in each region are 8, 6,
and 2 in the first set, the second set has 12, 9, and 3, and the
third set has 16, 12, and 4. Two sets of spanwise divisions
are also chosen: the first set has five equal width strips for
the inboard wing, and six equal width strips for the outboard
wing/aileron region, the second set of spanwise divisions
has six equal width strips across the span. With 11 strips, the
various chordwise divisions lead to a total of 88, 132, and
176 boxes. With the six strips, the total number of boxes is
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48, 72, and 96.

The results in Tables 2 and 3 are rather surprising in that
they all indicate convergence of the different aerodynamic
models. Further study of this configuration is needed at high-
er reduced frequencies.

Table 2: Aileron Effectiveness for AGARD Wing/Aileron
at M = 0.7806 and k,=1.0

Boxes Ref. (6) Present Study
88 0.3341+i0.1740 | 0.3334+i0.1743
132 | 0.3389+i0.1770 | 0.3395+i0.1770
176 | 0.3411+i0.1789 | 0.3425+i0.1784
48 0.3514+i0.1805 | 0.3536+i0.1788
72 0.3559+i0.1847 | 0.3595+i0.1822
96 0.3582+i0.1869 | 0.3621+i0.1842

Table 3: Damping in Roll for AGARD Wing/Aileron at
M = 0.7806 and k,=1.0

Boxes Ref. (6) Present Study
88 0.07514-i0.1800 | 0.07538-i0.1794
132 | 0.07543-i0.1807 | 0.07574-i0.1810
176 | 0.07552-i0.1809 | 0.07589-i0.1810

48 0.07454-10.1915 | 0.07466-i0.1906

72 0.07477-10.1908
96 0.07485-10.1910

0.07516-10.1914
0.07524-i0.1917

The Rectangular T-Tail . The rectangular T-tail that was
tested by Clevenson and Leadbetter!!® has also been the
subject of previous studies. The wind tunnel tests were per-
formed at low speed and the model was oscillated about the
fin mid-chord as shown in Fig. 12. The lattice idealization in
the earlier study® is also shown in the figure. The present
study uses equal rectangular boxes chordwise and equal
spanwise on the vertical tail and equal boxes chordwise on
the horizontal tail. The spanwise variation in fraction of
semispan is (0.0, 0.05, 0.17, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,
1.0), with the spacing at the inboard edge to give similar
strip widths on the vertical and horizontal tail at the intersec-
tion. The earlier study® and the experiment!'® both non-
dimensionalized the coefficients in non-standard ways. The

present study uses a reference semichord of b, = ¢/2 = 0.5 ft,
fin area to normalize the forces and fin span to normalize the
moments. Figures 13, 14 and 15 show the variation with
reduced frequency of the magnitude and phase angle of the
side force, yawing moment and rolling moment (about an
axis 0.5 ft below the base of the fin), due to oscillatory rigid
body yawing of the fin about its midchord. The quartic
approximation gives the same results as the original study®
for these low reduced frequencies. Figures 16, 17 and 18
show that a reduction in the number of spanwise strips from
10 to 5 shows the quartic approximation to have the same
accuracy as the earlier study®.

CONCL REMA

A refinement to the Doublet-Lattice subsonic lifting sur-
face method has been formulated and implemented. The
quartic approximation to the kernel function allows either an
increase in accuracy for current box schemes, or a reduction
in the number of boxes (and subsequently the storage re-
quirements) for the same accuracy. From the results present-
ed, the limit on box aspect ratio (formerly 3 with the original
method) can now be relaxed to 5. This also allows a little
more flexibility in modelling, as boxes tend to have a higher
aspect ratio normally towards the tips of tapered wing air-
craft.

The present study has only considered rigid body modes
at a small number of Mach numbers and reduced frequencies.
Further analyses are needed to establish more accurately the
maximum value of box aspect ratio, tentatively proposed at
5. Another guideline is also needed since a minimum number
of spanwise strips has never been established for the previous
DLM. This would be a function of the aspect ratio of the lift-
ing surface and its vibration modeshapes, i.e., the number of
node lines across the span. Further studies are planned on
more practical configurations and the convergence character-
istics of the new DLM will be investigated in future flutter

and gust response analyses.

APPENDIX A
QUADRATURE ROUTINE FOR INTEGRALS IN THE
LIFTING LINE ELEMENT METHOD

by
Valter J. E. Stark’

The Doublet-Lattice Method (DLM)® and the indepen-
dently developed Lifting Line Element Method® (LLEM)
were presented for the first time at the same ATAA Meeting
in New York City in 1968. Some practical applications of the
LLEM were shown, but the method was not described in de-
tail.

t Consultant, AERELCO, Linkdping 587 39, Sweden
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The two methods are in principle identical, but there is a
difference as regards the treatment of certain integrals on the
lifting line elements. The routine applied in the LLEM shall
be described here.

The relation between the y- and z-components of the di-
mensionless velocity and the dimensionless pressure jump
Ap(u,v) across the lifting-surface S may be written

0,9) = —j Jrwn@ DI @
= '”Ap(u, vI(-(y- v)zrzln, +(y-v)zrl,
s (A2)
+2z rI L+ (y-v) rI)d-—ui‘-,
r 81\:
where I,= gl I, glr

-
2 -0.5 _;

(F+r3 e

T

[ = (0=

T=(u-x+MR)/B

R = »\/(u—x)2+Br2
_ /( 2 2
= N(y—-v) +z

B=1-M

with M and ® being the Mach number and the reduced fre-
quency, respectively.

By using a second imaginary unit j = /-1 for separa-
tion of the velocity components and for definition of the
complex variable Z = y + jz, we may write Eq. (A.2) in a
more compact form

e .0 1 1 z \dudv
o, -Jjb, = ”Ap(u, v)( a—Z(Z—v)F+Z—erGJ -
s
(A.3)
where
F = rl,
G = rl_+ r21rr

The integral relation (A.3), as well as the corresponding
relation in the DLM, is reduced to a set of linear equations by
introducing a number of lifting-lines

X = X,u() (A4)
(for ms lifting lines, the m? line was located at the fractional
chord [0.25+m-1)/ms), a number of strips bounded by
chords

y = y,%d, (A5)

(for ns chords, the n™ chord was located at the fractional
span [2(n-1)+1]/(4ns+1) ) and the expression

Y Pp A= X0y = y,)/d,) (A6)

m,n
where Py, ; is an undetermined constant, A(, ) is a special
function defined by

O(x) for Inj <1

A7
0 for Im|>1 A7)

A(x,m) = {

and 8(x) is the Dirac delta function. Inserting the expression
(A.6) for Ap(u,v) in Eq. (A.3) yields

Oy=ib, = O Wy (5% 2P, , (A8)

where

W (% 3,2) = Iil(Jéa?(z_iT»)F +

Since ¢y and ¢, for a given mode of oscillation are given,
equations for determining Pp, ;, can be obtained by requiring
that the two members of Eq. (A.8) shall be equal at chosen
control points (x,y,z) on the lifting surfaces.

The elements of the matrix of these equations are given
by the integral (A.9). A change of the integration variable
yields

W n523,2) = | (”(C n)2 Clnd )d“(Axo)

where

1 z
7o vZGJ (A.9)

C=0-y,+Jj2)/d,
F and G are defined as in Eq. (A.3)

2 -0.5 Pty

U,
_ xc)( x)r( it

Um = Xm(yn"'ndn)
1= (U,-x+MR)/B

= Ju, -x+B7

2 2
(y-y,=d,)" +z

In the LLEM, the integral (A.10) was calculated by Fou-
rier expansion of F/d,? and 2G/d,r? in terms of Legendre
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polynomials P,(1). The coefficients of the expansions, de-
noted by a, and b,,, respectively, were obtained from

_2v+1fl [F zG
(ay, b)) = =—5— y [;Z ;—r—z-JPv(n)dn (A.11)

n

by numerical Gaussian quadrature. Using the expansions for
evaluating the integral (A.10), we find

W, o(27,2) = 2("vaiz;9v(§)+bvgv(§))zlﬁ (A.12)
v

where Q,() is the Legendre polynomial of the second kind
and order v, which is related to P,(n) through

1
0,0 = % -[.1 éi(_%dt (A.13)

Formulas for Q,({) can be found in Jahnke and Emde(¥.

The Fourier expansions described above and employed in
the LLEM seem favorable, because an attempt to increase the
accuracy by increasing the number of terms in the expansion
only implies calculation of a few more coefficients and then
using a few more integration points for evaluating the inte-
gral (A.11).

As there was no time in the sixties for determining the
number of terms required for the desired accuracy, the appli-
cations described in Landahl and Stark® were simply per-
formed by retaining only three terms containing Py, Py, and
P,. The resulting approximations were thus polynomials of
degree 2 as in the earlier version of the DLM. The two meth-
ods were thus expected to yield not identical but closely
agreeing results.

The Fortran program developed (by a research agency
separate from SAAB) was found to be very expensive to run
on the computers available in the mid-sixties, and this led to
the decision to try other approaches?,

APPENDIX B

Two integrals are involved in the evaluation of the kernel
function that have utilized approximations to the function

1-u/AN(1+ u2) . The original work™ used an approxima-
tion developed by Watkins, Woolston and Cunningham(9
and later work!” used a more accurate approximation of
Laschka'®. The comparisons in the present paper are based
on the approximation of Laschka.

An improved approximation developed by Desmarais?

will be used in subsequent studies. This approximation has
the form:

n
1—u/N(1 +u?) = Y aexpl-2Y™bul @)
k=1
and Desmarais has obtained the coefficients b and ay corre-

sponding to various values of m and n for n varying from 8
to 72. The twelve term approximation D12.1 has been used
here and its parameters are tabulated below.

Table B.1: Approximation D12.1

n=12 | m=1 | b=.009054814793
aj .000319759140
ap -.000055461471
a3 .002726074362
a4 005749551566
as .031455895072
ag 106031126212
a7 406838011567
ag 798112357155
ag -.417749229098
a1Q 077480713894
aly -.012677284771
aip .001787032960

A comparison of some generalized forces using the
Laschka and Desmarais D12.1 approximations is shown in
Table B.2 for the Wing/Horizontal Stabilizer configuration.
The differences here are seen to be small and their effect on
flutter speeds will be the subject of a later investigation.

A computer program now called N5KQ incorporates the
quartic feature of this paper and the Desmarais D12.1 ap-
proximation, and is available from the authors.

Table B.2: Comparison of Generalized Forces for
Plunging, (Cy /ik(l/s)) - k,=1.2, M=0.8

No. of Boxes Ref. (6) Di12.1
108 3.792+i2.955 | 3.770+i2.965
132 3.961+i2.963 | 3.938+i2.974
168 4.160+12.974 | 4.136+i2.986
216 4.299+i2.960 | 4.274+i2.973
264 4.359+i2.955 | 4.333+i2.969
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