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Abstract

The chattering arcs of a winged space vehicle at
its hypersonic reentry flight have been studied.
With the use of dimensionless variables, we need
only two parameters to specify the aerodynamic
characteristics of the vehicle, one is the ballistic
coefficient and the other is the maximum lift-to-
drag ratio. Also, the Earth’s atmosphere is speci-
fied by one parameter, the so-called Chapman’s
parameter. The two control variables are the nor-
malized lift coefficient and the bank angle. The
normalized lift coefficient is defined to be the ratio
of the lift coefficient and the lift coefficient at the
maximum lift-to-drag ratio. We use the chattering
control on the normalized lift coefficient to obtain
the maximum drag or, say, the maximum decel-
eration. When the maximum and minimum nor-
malized lift coefficients have the same absolute
value, the theoretical chattering arc only exists in
the vertical plane flight. The bank angle control is
invalid. The resulted reentry trajectory is a two-
dimensional ballistic trajectory with maximum
drag. When the maximum and minimum normal-
ized lift coefficients have different absolute values,
we can have either two-dimensional or three-
dimensional reentry chattering flight. For numeri-
cal computation, we assume that the absolute
value of the minimum normalized lift coefficient is
smaller than the maximum normalized lift coeffi-
cient. In the case of two-dimensional reentry
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chattering flight, the trajectory is ballistic type
again with the drag-effective normalized lift coef-
ficient equals to the average of the absolute mini-
mum and maximum normalized lift coefficients.
The lift-effective normalized lift coefficient is the
difference of the two values. In the case of three-
dimensional reentry chattering flight, the lift-
effective normalized lift coefficient is used as the
lift control. It is then used with the bank angle
control to obtain the lateral range of the winged
reentry vehicle. A three-dimensional reentry chat-
tering trajectory for maximum lateral range has
been computed under the assumption of equilib-
rium glide condition. The three-dimensional reen-
try chattering trajectory with constant bank angle
has also been investigated. In summary, the theo-
retical three-dimensional chattering arc will be
existing only when the maximum lift coefficient is
different from the absolute value of the minimum
lift coefficient.

Introduction

Theoretically, in chattering arc of the first kind,
the control chatters between its maximum and
minimum values at an infinite rate.) Its existence
in optimal trajectories has been discussed exten-
sively in two eminent books™” and some pub-
lished papers.“® In Ref. 4, a study of chattering
cruise flight was presented. In Ref. 5, it was found
that the chattering arc is a part of the minimum
time optimal trajectory at constant altitude flight.
Then the approximate chattering arc was devel-
oped in which the control switching is at a finite
rate.” This development is for the purpose of
practical maneuver since the control switching at
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an infinite rate is not possible. In these discussions,
the flight is at constant altitude.

The theoretical chattering arc for hypersonic
flight in a vertical plane has been developed in Ref.
8. With the use of dimensionless variables, we
need only two physical values of the space vehicle
for numerical computation: the maximum lift-to-
drag ratio and the ballistic coefficient.”> The bal-
listic coefficient also represents the initial altitude
through the atmospheric density. The atmosphere
of the planet is specified by the so-called Chap-
man’'s parameter. The control variable is the nor-
malized lift coefficient. From the singularity analy-
sis, it is found that the theoretical chattering arc in
the vertical plane is a kind of ballistic trajectory
with maximum drag.

The purpose of this paper is to investigate the
chattering arc for hypersonic flight in the three-
dimensional space. The theoretical chattering arc
will be studied and analyzed. This study will be
useful for solving minimum time aerobraking tra-
jectory in three-dimensional flight.

Model and Equations of Motion

Equations of Motion
For reentry flight in three-dimensional space,
the motion of the center of mass of a winged space

Originat ground track
{reference plane)

Descending orbit

FIGURE 1 - Geometry of Reentry Trajectory.

vehicle can be defined by six state variables 7, V) v,
0, ¢, and y, where  is the distance measured from
the earth center, V' is the vehicle speed, y is the
flight path angle, 0 is the longitude, ¢ is the lati-
tude, and v is the heading angle. The geometry is
shown in Fig. 1. Since there will be no thrust dur-
ing the reentry flight, the governing differential

equations for the six state variables are®

dr .
—=Vsin
@t 4
2
T
p & _pSCV? V?

coso — (g ——)cosy
dt 2m r

(1
e _ V cosy cosy

dr rcos¢

dg _ Vcosy siny

dr r
2 2
V—aj{l— = Bisg—sina ——I-/—cosy cosy tan ¢
dt  2mcosy r

where p is the atmospheric density, § is the refer-
ence area, Cp is the drag coefficient, C; is the lift
coefficient, ¢ is the bank angle, g is the gravita-
tional acceleration, and ¢ is the flight time. The
two control variables are C; and o.

Models of Aerodynamics, Atmosphere and
Gravitation

For aerodynamic model of the winged space
vehicle, we shall use a parabolic drag polar of the
form

CD=C130+KCL2 2

where Cpy is the zero-lift drag coefficient, and X is
the induced drag factor. By defining the normal-
ized lift coefficient A such that
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where () is the lift coefficient corresponding to
maximum lift-to-drag ratio, we have

Cop SO
Ch  20CooK
)

In this paper, we shall assume that both Cpy and K
have constant values at hypersonic speed during
reentry flight.

The atmospheric density is assumed to be lo-
cally exponential, that is

p_peﬂ(t)(fo—r)
— 0

©)
where r,1s the specified reference radial distance,
p, is the atmospheric density at 7, and f(r) is
the inverse of the scale height. By defining the
dimensionless altitude 4 such that

(6)

and using the so-called Chapman's parameter
B(ryr,=1/e(r), we have

‘%(r)

P = poE (7

Finally, the gravitational field is modelled to be
Newtonian:

Py ®

where gy is the gravitational acceleration at 7.

Dimensionless Equations of Motion

With the definition of the dimensionless kinetic
energy u, the dimensionless arc length s, and the
ballistic coefficient B as given below,

y? 14 SC, 1,
y=—— §= "L cosydt, B= Atrh
Loly or

©)

2m

we have the following dimensionless equations of
motion:

dh
—=(1+A)tan
e (1+ A)tany
Y
du _ B(l+h)e “”UOMZ)~ 2tany
ds Ecosy (1+ A)
_h
dr _Blthe A(r)/‘tcosa— L +1
ds cosy u(l+h)
(10)
_a_’QZ cosy
ds  cos¢
do .
_— n
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_4
dy  B(l+h)e oo
ds cos’ y

Asino —cosy tan @

The two control variables are subject to the con-
straints

Agin SASA O

<A <o<0,, an

Variational Formulation
Hamiltonian

Using the maximum principle, we introduce the

adjoint vector p to form the Hamiltonian"'”

H=p, (1+h)tany

_h
_ B(L+h)e % up, (14 g0 2B
E" cosy (1+4h)
A
+ B+ me ™~ glcoso—— ! +1
cosy u(l+h) by
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Domain of Maneuverability
The controls C; and 6 must be selected such
that at each instant the Hamiltonian is an absolute
maximum. Regarding the optimal lift control, it
suffices to consider the part of the Hamiltonian
containing A:

H=

B+ me (_ 1

up A’ + p,Acoso +
cosy

E cosy

(13)
The optimal bank control can be derived from
JH/| o =0.1t gives

tano = ._p_"’_.
D, cosy

(14

@: ] = A

D, Asin 0')

Now, we use Eq. (14) to eliminate p, inEq. (13).
It becomes that

H=

B(+4A 4 1 1
__(_+_)€_(___*_upu/12 + pyﬂ’j
E coso

(15)
For the reentry flight we shall consider in this pa-
per, the absolute value of the bank angle is con-

strained to be less than 90°. That is, |o,,,| < 90°

and we always have cosc > 0. Then the reduced

cosy

Hamiltonian A can be expressed as the dot prod-
uct of the two vectors (P;, P>) and (Q;, O>) such
that®®

D, 1
B = ! s P =-—1up,,
' coso 2 E P
Q =4, Q,=x, (16)
and
Qz‘ P2

©): [A| < A

FIGURE 2 - Domain of Maneuverability for Normalized Lift Coefficient.
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B(l+b)e_%

H= T(Pl@l + B0,)

a7
When A varies, the vector (Q,,Q,) describes the
domain of maneuverability which is the parabola

as shown in Fig. 2,

Q,=0Q" (18)

To maximize H , if the vector (P;, Py) is inside
A,OA,, the optimal lift used is an interior value
such that the tangent to the parabola is perpen-

dicular to (P;, P;) as shown in Fig. 2. This is ex-
pressed by

a0, A
—==20=-—,
a T B
or
E*p E" 2
A= 4 - 2+
2up,cosc 2up, cosy [(‘D’ cosy Y+ by ]
(19)

Therefore, it is necessary that £, <0, or in other
words, p, > (0. When the vector (P,, P>) is out-
side the angle A OA,, the optimal control to be
used must be either A=Amin When p, <0 or A=Amax
when p, >0. In the case when p, =0 and

p, <0 fora finite time interval, there may exist a

singular arc in which the lift control switches rap-
idly between Amin and Amax at an infinite rate. This
is the so-called chattering control and the resulted
flight path is called the chattering arc. It is obvious
that when the chattering control is applied, the
drag is at its maximum value. Accordingly, the
vehicle can use chattering arc to obtain maximum
~ deceleration and to reduce its speed in the shortest
time.

From Fig. 2, it is found that we have different
domains of maneuverability when Apin= — Amax and
Amin# — Amax. The domain of maneuverability for
Amin= — Amax 1 shown in Fig. 2(a). In this case, the
effect of the A* term on the chattering arc will be

existing while the effect of the Asino and Acoso
terms will be cancelled. For the case when

!ﬂ,min} <A, , as shown in Fig. 2(b), we shall as-
sume that on the chattering arc, the terms
A2, Asino, and Acoso can be replaced by

Ao
(—— ‘ l , A,.sino,and A, coso, respec-

tively. The definition of 4 is

A = Age ~ e (20)

In three-dimensional flight, it is well known that
there are four integrals.® At first, H is not an ex-
plicit function of s, we have

H=C, @1
where C,, is the first integral. Secondly, from

a, _ _H

= =0,
ds o0 B

we have
Dy =C) (22)

where (| is the second integral. Then for p, and

D, , we have
dp, OH cosy .
s ap COSZ¢(—Clsm¢+p,,,),
(23)
dp, CH _siny :
=- = C,—p, sing)— p,cosy .
ds Oy cos¢( 1" By ¢) Py cosY

By using the fourth equation of Egs. (10) in Egs.
(22), they become

dp¢
dae cos¢

24
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dp .
EV- = —(l + p, sin ¢)tany/ — Dy COSP.

and p, and p, can be solved and expressed as

ps = Cysin@—C; cosb,

(25)
D, =Cising+ (C2 cos8 + C, sin@)cos¢,

where C, and 7 are the third and fourth integrals,
respectively. Finally, the differential equations for
Dy, P,,and p, are

h B
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ﬂ=-p tany + £_¢£
ds g cosy
x[”pfauz)—#}
E Cosy sinoc
_2ptany D,
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By
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zp,,(lw?)_ﬂp.,(. 1 ) 2,
x{ A ™ }F(Hb)}'
(26)

Numerical Computation and Results

For numerical computation, we assume the
following values for the physical parameters of the
winged space vehicle:

E' =1, B=0.15,

Ao =2.5, Ay =-2.50r —2.0. 27
The property of the Earth’s atmosphere is repre-
sented by £(r) =1/8(r)1,=1/900, a constant.”
The initial altitude is 120 km, the initial flight path
angle is zero, and the initial vehicle speed is the '
circular speed at the initial altitude.

Chattering Arc in the Vertical Plane
For flight in the vertical plane, we have 6 = ¢ =

v = 0 and s = 0. The dimensionless equations of
motion are

dh _
B—g—(1+b)tan7,

di B(+he NRESL/ N ¢
a6 E"cosy 2
_ 2tany
(a+4)’
dy B(l-i-]])e‘% 1
E: cosy Aum u(l+ h) +l (28)

There is no control variable in Egs. (28). Conse-
quently, the chattering arc of a winged space vehi-
cle in the vertical plane is equivalent to the flight
trajectory of a ballistic type projectile with maxi-
mum drag. To obtain the chattering arc, we simply
integrate Eqs. (28) from the initial state

6,=0, (%,u,7,)=1(0,1,0°) (29)

The integration is completed when u, = 0.01 is

reached. The chattering arcs for
Mg = |Ams| =2.5,  and A, =25 and
A =—2.0 are shown in Fig. 3. It is clear that

Jom =0 when A, =|Au|=2.5,and 4, =0.5
when A, =2.5and 4, =-2.0.
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FIGURE 3-Chattering Arcs in the Vertical Plane.

3-D Chattering Arc with Constant Bank
When the bank angle is kept at a certain con-

stant value, we can obtain the three-dimensional
chattering arc by integrating the Egs. (10) from
the initial condition

(bO:UO)}/;):GO)¢0"//0) = (051’0’03070) : (30)

It is obvious that the three-dimensional chattering
arc will be existing only when |Aml < A, - There-

fore, in the second equation of Egs. (10), the A2

o * e,
2

value (2.25)%. Also, the A in the third and sixth
equations of Eqgs. (10) will be replaced by A and
has the value 0.5. The integration is stopped at the

will be replaced by ( and has the
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final speed u, =0.01. The chattering arcs for

o =10°,20°, ..., and 90° are presented in Fig. 4.

3-D Chattering Arc with Optimal Bank Control

It 1s intended to use the optimal bank control to
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FIGURE 4 - Three-Dimensional Chattering Arcs with Constant Bank Angle.

maximize the final latitudinal range for the three-
dimensional chattering flight. In other words, we
try to reduce the vehicle speed as soon as possible
by using the maximum drag, and at the same time
try to obtain the maximum lateral range by using

0.8
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(d). Trajectory Mapping on 6—¢ Plane.
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the optimal control on the bank angle. Thus the
performance index is

J=max ¢,

GD)

In Eq. (21), since the dimensionless final time is
free, we have

H=C,=0 (32)
Also, from Eq. (22) we have
p=G=0, (33)

since B;is free. For the final condition of the other
state variables, we assume that A, = free,
u =0.01, y, = free, and y, = free. Therefore,
from Eqgs. (25) we have

p¢f =1= CZ Sinef —C3 COSQ:
p,, =0=(C,cos0, +Cysinb; )cosg, (34

Solving for the integrals C, and C,; we can obtain
the solutions for p, and p,,

p,; = cos(6; — 6)

D, = sin(6; — @)cos¢ (35)
To obtain the optimal trajectory, we integrate Egs.
(10) from the initial condition given in Eq. (30),
with A? replaced by (2.25)* and A replaced by 0.5,
and using the control law (14) and the Egs. (35)
for p;, and p, . There are four parameters, namely,

6; and the three initial values p, , p, , and
p,, . Since we can use the Hamiltonian integral

H=0 to eliminate one of the parameters, this is a
three-parameter problem.

A simplification has been made in Ref 3 by
using the so-called equilibrium glide condition. It
is a condition with the assumption that the glide
angle is small and varies very slowly, so that we
can have

n

0 (36)

dy
=0, —
4 ds

With this condition, an explicit law for the bank

angle control can be derived®”

ma{ L] sin(§} — 6)acs

u(1+£) |aos(§ ~O)siny—sin(§ — O)singocsy
@37)

For numerical computation, we use the control

law (37) to integrate the full set of exact state

equations (10), with a guessed value for 6, . This

value is to be adjusted such that at the final time
when 6 = 6, the prescribed final value uz, =0.01

is satisfied. The sub-optimal trajectory obtained is
shown in Fig. 5. The maximum lateral range ob-
tained is ¢r= 0.013592. This value is greater than
the maximum value 0.013141 obtained in the con-
stant bank angle case.

Conclusions

The theoretical two- and three-dimensional
chattering trajectories of a winged space vehicle at
its hypersonic reentry flight have been investigated.
The aerodynamic characteristics of the vehicle are
specified by the ballistic coefficient and the maxi-
mum lifi-to-drag ratio, and the Earth’s atmosphere
is specified by the so-called Chapman’s parameter.
We use the normalized lift coefficient and the bank
angle as the control variables, and the chattering
on the lift control is studied. The resulted chatter-
ing arc, either two- or three-dimensional, is a flight
trajectory with maximum drag and maximum de-
celeration. The net effective lift coefficient for the
drag is equal to the average of the maximum lift
coefficient and the absolute value of the minimum
lift coefficient, while the net effective lift coeffi-
cient for the lift is equal to their difference. There-
fore, we can have theoretical three-dimensional
chattering reentry flight only when the two ex-
treme lift coefficients have different absolute val-
ues. The two-dimensional chattering reentry tra-
jectory is a maximum deceleration ballistic trajec-
tory. The three-dimensional chattering reentry is
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FIGURE 5 - Sub-Optimal Trajectory for Maximum Lateral Range
in Three-Dimensional Chattering Reentry Flight.

mainly at maximum deceleration, with a certain Applications, Vol. 11, No. 5, 1973, pp. 441-468.

part of the lift for lateral maneuver.
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