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ABSTRACT

This is an investigation of the transonic pressure-drag
coefficient over axisymmetric bodies, with a set of unique
afterbody contours developed by the authors. The contour
surfaces were obtained from an exact solution of the small-
perturbation transonic equation. In this work,
Computational Fluid Dynamics (CFD) is used to establish
the afterbody contour drag. This drag is then compared to
that a conical afterbody; subsequently, a complete body
composed of an arbitrary forebody (an ellipsoid) and
variable afterbody (ours and conical contours) is analyzed.
Euler as well as Navier-Stokes flow-solvers were applied
to the geometries of interest giving Mach-number mappings
for inviscid and viscous flows as well as pressure drag
coefficient magnitudes, and depicting shock wave locations.
Based of these results, it can be shown that our afterbody
contours will decrease by 15% the peak of the pressure
drag coefficient (C;) versus Mach number curves which are
evidenced in conical afterbodies in the transonic regime.
Our contours can then be used to design low pressure drag
surfaces for such shapes as missiles, projectiles and aircraft
engine nacelles.

Introduction

Aerodynamic drag represents a significant adverse force
on all flying objects such as aircraft, missiles and
projectiles. A high drag force reduces the craft’s range
capability or equivalently requires more energy to achieve
a certain range. Any effort to reduce the drag coefficient
in the design process must concentrate on reducing the
wake and pressure drag (inclusive of wave drag)
contributions to the total drag.

Inherent difficulties, coupled with the presence of
shocks which cause boundary layer separation, have
resulted in the creation of many approximate methods of
solution in the design of transonic airfoils and the like">>.

This paper is declared a work of the U.S. Government and is
not subject to copyright protection in the United States.

On the other hand, the use of numerical simulation
Computational Fluid Dynamics (CFD) to predict
aerodynamic characteristics greatly increases possibilities to
improve design optimization at relatively low cost and
allows for ease of design changes. Using the latest
capabilities of Euler as well as Navier-Stokes flow-solvers,
it is possible to compute the flow over axi-symmetric
bodies with various contours in the transonic regime®’.

These flow solvers, however, are designed to "test" a given
configuration having no contour generating capabilities.
The shapes of afterbodies is thus restricted to the traditional
ogives and cones. This work implements solutions to the
small perturbation equation for transonic flow which have
been developed at the Naval Postgraduate School. The
technique is briefly summarized below.

For axially symmetric flow, where the conditions are
the same in every meridian plane, there is no variation with
polar angle 0 so the small perturbation, non-linear, axi-
symmetric transonic potential equation can be written as
follows:

P, 100, 1m0 - Mv+1) ap #o )
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or rewriting in shorthand notation,
2
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Reference 6 introduces a modified potential equation for
axi-symmetric flows
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where the modified velocity potentials are :
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Solutions to the modified transonic eq. (3) have been
given by Biblarz%’ using the separation of variables
approach with a potential function ¢(x,r) of the form

P(r) = Em() + (L-M)x ®

Substituting the above ¢ function in the modified transonic
€q. (3) results in two ordinary, second order, non-linear
differential equations

dt d%E _ -
———= "M =0 ©
and
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where A is the separation constant.

Equation (6) has been numerically integrated and plotted
in the transonic range. A "patching" technique discussed
in Ref. 8 has been used here. Equation 7 is solved by a
perturbation method®,

Pressure Coefficient

The linearized pressure coefficient approximation for
axi- symmetric flow turns out to be

2u
G = ®

Recall the modified axial velocity potential, eq. (4), yields
-2
C, = _._2&_ o
M (y+1)

Finally, rewriting the pressure coefficient G as

-2 [0 2 = 2
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Boundary Surfaces

In terms of perturbation velocities this boundary
condition becomes

il an
dx surface Y

Finally leading to,

dF
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where Fj = _—— .
Il-Milo'Wl

Al-hashel® reports on computations of eq.(12) using
numerical integration. Boundary surfaces in dimensional
and non-dimensional (normalized) form for M, = 1.05,
1.10 and 1.20 are indicated. Based on these calculations,
the geometric grid of the afterbody for Mach number 1.10
and 1.20 are developed for further study with CFD.

This work also examines conical afterbodies as a solid
afterbody boundary surface with base diameter ratio (d,/d,,)
of 0.50 and 0.75 and conical turning angle () of 26.6 and
14.0 degree respectively'®", Then, for further
investigation, the complete bodies as a solid boundary
surface are generated, with a kind of forebody (ellipsoid)
joined with the contour surface afterbodies as well as the
conical afterbodies.

Computational Fluid Dynamics

As a model based method, CFD can provide the
convenience of being able to switch off specific terms in
the governing equations'?, so as to assist the researcher in
understanding the contributions of various physical factors.
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In this work, CFD was used to compute the axi-
symmetric flow over the afterbody geometry of models
only (the boundary surfaces obtained by the small
perturbation method® and conical afterbody) and over
complete body models which are composed of forebody
(ellipsoid) and the previously mentioned afterbodies.

Grid Generation

The computer programs GRAPE™ and GRIDGEN2D*
are tools used to generate two-dimensional structured grids
about airfoils and other shapes by the use of algebraic or
Poisson differential equation solvers. GRAPE was used for
the geometry with smooth contour surfaces, while
GRIDGEN2D was used for the geometry with a conical
afterbody with non-smooth points.  The important
characteristics in a grid generation technique are the ability
to specify the spacing between mesh points at the
boundary, in the direction normal to the boundary, and the
control of the angles with which mesh lines intersect the
boundaries which is known as orthogonality.

We developed a fine grid for complete bodies, where
the radius of outer boundary is set up to be five times of
the body’s length. Figure (1) is a typical fine grid for the
complete body with a conical afterbody and a complete
body with contour surface afterbody.

Results

The OVERFLOW program® was developed by the
NASA Ames Research Center. 1t uses either 3-D Euler or
Navier-Stokes flow-solvers for inviscid/viscous flow, by
setting the viscosity input parameter in the input file.

Results of this CFD investigation are grouped into the
corresponding geometric shape, namely, afterbody onty and
complete body. The Euler flow-solver (inviscid flow) was
applied to all axi-symmetric bodies, and for the afterbody
models, both Euler and Navier-Stokes (viscous flow) were
applied. Most of the calculations converged in 500
iterations, meaning that the residual history achieved a two
order of magnitude drop.

Results can be analyzed by interpreting the Mach
number contours surrounding the body surfaces where one

can be determine the characteristics of the flow field. In
addition, the drag coefficient C,;, can be obtained as an
output from OVERFLOW. Hence, in the sequences of
mach number, one can describe the significant flow
characteristic of each geometric shape.

Afterbodies

An Euler as well as a Navier-Stokes flow-solver were
applied as previously described. The approaching free
stream Mach number (ranging from 1.05 to 1.50) starts
from the mid-section of the afterbodies, then the flow
follows along the afterbody surface until it reaches a
maximum local Mach number. The maximum local Mach
number for viscous flow is always lower compared to in
the inviscid flow. This may be caused by the viscous flow
itself since we are taking into account shear forces in the
boundary layer.

In inviscid flow, the shocks form right at the surface.
The location of the shock depends on the specific afterbody
contour and the approaching Mach number; at the higher
Mach numbers the shock appears a bit further downstream.
As shown in figures (2) and (3), there are differences as a
result of viscosity. Figure (3) shows the boundary layer by
the increment of Mach number away form the surface.
Weak shocks are formed further downstream compared to
inviscid flow. Flow separation occurs in the starting
contour region and is followed by circulating flow in the
base region.

For the conical afterbody, the approaching free stream
Mach number increases following the mid-section surface,
then an expansion occurs at the turning angle region, until
the maximum local Mach number is reached. A weak
shock is formed at the end of the boattail region as shown
in figure (4), while for the viscous flow, the weak shock
develops away from boattail surface due to the boundary
layer and the separation of the flow, figure (5). The
circulating flow in the base region is more significant than
in the inviscid flow as depicted. In addition, for viscous
flow, the maximum local Mach number for the conical
afterbody is higher than for the contoured afterbody.

For each afterbody, the pressure drag coefficient (C,)
versus free stream Mach number (M,) for inviscid and
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viscous flow are plotted in figure (6). The negative sign of
C, is due to the fact that the calculation of pressure starts
from mid-section through the base of afterbody and ignores
the forebody pressure. These results show that, as
expected, the pressure drag coefficient is higher for viscous
flows than for inviscid flows for each given afterbody.
This is caused by the both viscosity and the pressure
distribution difference in the flow field. In addition, it can
be seen from the chart, that the C, for the afterbody with
small perturbation solution contour Mach 1.10 (SPS1.1) has
the lowest C, values over the entire Mach number range.
Therefore, the SPS1.1 contour shows to be relatively the
best among these afterbodies.

Complete Bodies

Complete bodies consist of an arbitrary forebody
(ellipsoid) joined to various afterbodies such as the small
perturbation solution contours (SPS_1.1 and SPS_1.2) and
conical afterbodies. The approaching free stream Mach
number (M, ranging from 0.50 to 1.50) starts from outer
boundary with a of distance S times body’s length for the
fine grid. For this grid, the bow shock dies out before
reaches the outer boundary.

The flow stagnates on the nose and then follows the
body surface until it reaches a maximum local Mach
number as tabulated in Table 1. The critical Mach number
for these complete bodies is approximately at M, = 0.70,
where the maximum local Mach number reaches unity at
the shoulder region.

TABLE 1.

MAXIMUM LOCAL MACH # FOR COMPLETE BODY
Mach # SPS_1.1 SPS_1.2 SPS-26 |CONE-14
0.50 0.68 0.66 0.70 0.64
0.75 L10 110 0.95 1.05
0.85 1.30 130 1.50 .30
0.95 1.45 1.45 1.65 140
105 L.60 1.60 175 1.45
110 170 1.70 175 1.50
1.20 1.80 1.80 1.85 1.60
1.30 L.90 1.90 1.90 L70
1.50 210 210 2.10 L.90

A supersonic approaching free stream Mach number, is
depicted in figure (7) for SPS_1.2. A bow shock should be
apparent in front of the nose. A subsonic region is formed
between bow shock and the nose, then the flow accelerates
along the forebody surface up to a supersonic region in the
mid-section. - The expansion flow occurs in the starting
contour region until it reaches a maximum local Mach
number. Then, a shock is formed in the contour region.
Similar as in the afterbody only, the shock location depends
upon the contour surface and M,,. The shock location for
a given contour is more downstream for higher M,, and at
the same M, the shock location for SPS 1.1 is more
downstream than SPS_1.2.

For the conical afterbody, the flow characteristic is the
same as the other complete bodies up to the mid-section
region. The expansion flow occurs at the turning angle,
then the flow accelerated along the conical surface and
weak shock is formed at the edge of base. Figure (8)
shows the Mach number contour and corresponding
residual calculation for conical afterbody at M,,-= 1.10.

The pressure drag coefficient (C,-press) versus free
stream Mach number (M,) for fine grid complete bodies
are plotted in figure (9). The drag rises sharply in the high
subsonic Mach number (M, ~ 0.95) and reaches a
maximum (peak) at M, ~ 1.10. Then the drag decreases
with a shallow curve as the M, increases. The decreasing
shallow curve may be caused by the bluntness of the nose
and it agrees with Shapiro'® because the fineness ratio and
bluntness of the nose of bodies of revolution are the
important factors that contribute the drag curve at transonic
and supersonic range. As can be seen from the graph, the
drag curve for the complete body with a conical afterbody
is higher than with the small perturbation solution contour
for the entire M, -range. Furthermore, the peak of the drag
curve is approximately 15% higher. The drag curve for
SPS_1.1 and SPS_1.2 are likely to have the same trend up
to M,, = 0.95; beyond this Mach number, the drag curve
for SPS_1.2 is slightly greater than for SPS_L.1.
Therefore, the complete body with small perturbation
solution contour afterbody Mach 1.1 (SPS_1.1) relatively
gives the lowest drag.
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Conclusions and Recommendations

For any given body contour, the use of numerical
simulation (CFD) appears to be the most cost effective
method of predicting acrodynamic performance, especially
in the transonic range. To be sure, the quality of the grid
as well as the details of the turbulence formulation in the
Navier-Stokes approach affect the validity of the results.
In this research, the grid-generating program GRAPE was
found suitable only for smoothly contoured surfaces (e.g.,
SPS_1.1 and SPS_1.2); the program GRIDGEN2D was
used for the geometry of a conical afterbody because of its
non-smooth points. We have also shown® that for a
complete body model the use of a fine grid is required.
This was evidenced by the absence of the bow shock at M
> 1 for the coarser grids.

The pressure drag coefficient (C,) versus free stream
Mach number (M, graphs show that the small perturbation
solution contour for Mach 1.10 (SPS_1.1) gives relatively
the lowest C; on both models (after body and complete
body), a decrease of nearly 15% in the transonic peak,
compared to the conical afterbody. These results are true
for both the viscous and inviscid calculations and, by the
using the comparison with the same technique, we have
shown a relative improvement. Therefore, an attractive
design for axi-symmetric bodies such as missiles,
projectiles and aircraft, can be based on the small
perturbation solution contour studied.
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FIG 2. AFTERBODY MODEL SPS_1.1, INVISCID
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