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1. INTRODUCTION

Since the last successive oil crises, all civil aircraft
manufacturers have made great efforts to reduce
overall drag on aircraft. The long term objective of
this effort is to reduce the specific fuel
consumption and the operating costs. An
important reduction of the skin friction, which
contributes as much as 50% of the total drag on
commercial aircraft can be achieved by maintaining
a laminar boundary layer over the longest extent
possible of the wetted acrodynamic surfaces.

More than a century of research in fluid mechanics
has provided only a few guidelines for design
engineers to predict the point of laminar/turbulent
transition in a boundary layer. The most promising
approach for studying boundary layer transition
phenomenon is the Direct Numerical Simulation
(DNS) based on Navier-Stokes formulation.
Unfortunately, the computational capacity and
time associated with this method are enormous
and the costs incurred are prohibitive for most
industrial design applications.

A more appealing strategy is to obtain a cheaper
but adequate approximation on the location of
transition from predictions based on Linear
Stability Theory [1]. This theory investigates the
behaviour of the instability waves that propagate
inside the boundary layer at a fraction of the free-
stream velocity, and may grow or damp with time
(temporal stability theory) or space (spatial
stability theory).
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2. LINEAR STABILITY THEORY
General Formulation

The local cartesian coordinate system defined in
Fig. 1 is used to derive the linear stability
equations. The instantaneous flow variables (i.c the
velocity components U,V,W in the mainstream (x),
normal (y) and spanwise (z) directions, the
pressure P and the temperature T) are decomposed
into a mean and a perturbation field, under the
assumption that the flow is locally parallel:
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Figure 1 - Local Coordinate System Used



The Locally parallel flow assumption implies that
the mean velocity components U, and W, depend
on y only. It follows from the continuity equation
that the mean normal velocity field, V,, is
identically zero over the entire domain, which in
turn implies that the pressure gradient in the
boundary layer is zero ( % .o ). Thus, the validity
of this model is limited to areas where curvature
effects can be neglected and where the growth
rates of 8, and 8, are small. For moderate to large
Reynolds numbers, R,, the error associated with
this approximation can be considered small so that
solutions of the linear stability equations are
expected to yield adequate estimations of the
transition point over airfoils.

a=a +ia and @ =0 +ifp are the
chordwise and the spanwise complex wavenumbers,
which give the wave spacing. The real part of
yields the chordwise wavenumber and the
imaginary part yields the chordwise spatial growth
rates. The real part of @ gives the spanwise
wavenumber and the imaginary part represents the
spanwise spatial amplification factor.

w =w +iw is the wave complex frequency.
The real part of w is the real frequency and the
imaginary part gives the temporal amplification
factor.

The system of equations to be solved for this
analysis are obtained by substituting the definitions
of Eq.(1) in the three momentum and the energy
transport equations. The non-—linear and the
second—order terms are then neglected to yield a
second —order system of five linearized equations.
For the purpose of this analysis, only the
homogeneous solution is of interest. Hence, the
particular solution, which represents the average
velocity and temperature fields and is assumed
known a priori, can be removed simply by
subtracting the averaged Navier—Stokes and
energy equations from the linearized system. The
resulting system of equations can thus be written
in compact matrix form as:
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where D denotes the operator 4. ; [A], [B] and
[C] are 5XS matrices depend%nt upon the
boundary layer components and disturbance
characteristics; and & is the five—element
perturbation vector, defined as:
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It is worth noticing at this point that to obtain this
form of the perturbation vector, the Stuart
transformation {2] is applied. In three—
dimensional incompressible flows, this
transformation allows a two—dimensional stability
analysis. Moreover, it should be noted that the
system is represented in nondimensional form. The
boundary conditions at the surface of the airfoil
( y =0 )andin the far stream ( y -» oo ) are
homogeneous, 1i.e. the disturbances must vanish
at the wall and in the free stream, except for the
pressure fluctuations which have a non-—zero
amplitude at the wall. However, since a staggered
grid is used, the need for a boundary condition for
the pressure field, ¢, , is obviated:
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The question of stability of the boundary layer is
whether the solutions of Eq. (2) along with
boundary conditions (4) contain disturbances that
grow or decay in time or space. At a given
position on the wing, where the boundary layer
and the Reynolds number are specified, non—trivial
solutions exist only for certain combinations of the
parameters o, § and w . The analysis of this
system of equations constitutes an eigenvalue

problem for a,8 and w which are generally



complex. A solution can only be found for one of
the parameters so that values for the other two
must be determined independently. It is common
practice to make some basic assumptions as to the
nature of these parameters which lead to two
distinct theories:

~Imposing that o and 8 be real places the
problem in the context of the temporal stability
theory in which disturbances grow or dacay with
time only. Thus, the temporal amplification rate of
a disturbance is given by the imaginary part of the
complex frequency, w,. The disturbance is amplified
when «; >0.

—For the spatial stability theory in which
disturbances grow or dacay in space only, w is
assumed real and the imaginary parts of the
wavenumbers, o,,(, yield the spatial growth rate
in the streamwise and spanwise directions. The
disturbance is amplified in both directions
when o,B, <0 .

Although the two theories should be equivalent,
they deliver complementary information. The
spatial theory allows a direct estimation of the
spatial growth rate necessary to calculate the
N-factors and thus the location of transition.
Conversely, the temporal theory supplies frequency
information directly but the spatial growth rate is
obtained only indirectly.

Discretization

The mathematical model described in the previous
section is, in general, not amenable to an
analytical solution. Consequently, the solution
procedure proposed here is based on numerical
techniques. It is convenient to map the physical
domain 0 <y =6, onto 0 <9 <K as
presented in Fig. 2, viz:
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where L is chosen to be approximately twice the
distance from the wall to the point
where U, = LU, (critical layer) and K is an
arbitrary, posi?ive integer representing the number
of grid points for the stability analysis. This
transformation offers two distinct ~advantages.
First, an equidistant grid in the mapped region can
be used, which allows a fine resolution in the
critical layer of the velocity profile. Second, the
approximations for the first and second derivatives
of the perturbation quantities using finite
differences are second order accurate.

Free Stream

Figure 2 — Staggered Finite—Difference Grid
Used

The differential equation (2) is then discretized
using K grid points to yield:

(oM]+a [M,] + a? [M,] + ®

BIM] + B M+ [MJ) (B) =0

where M, are 5Kx5K matrices and {3} isasK
vector corresponding to the 5 discretized



eigenfunctions at each grid point. The resulting
system of equations is not mathematically closed
since there are more unknown parameters than
equations. It is thus customary and necessary to
make some basic assumptions about the nature
of a, fand w.

Temporal Stability Theory

In the temporal stability theory, o and § are
assumed to be real. For given values
of o and 8 , the system of equation is amenable
to a linear eigenvalue problem in L:

[P] {B)

® [M] (B} )

Because the eigenvalue appears linearly in the
temporal form of stability equations, the first
stability calculations concentrated on this theory.

A computer code based on temporal stability
theory was developed by the Bombardier
Aeronautical Chair Group of Ecole Polytechnique
[3]- In this computer code, the global calculations
are based on the QZ algorithm of the IMSL
library. If the eigenvalue problem is descretized
using K grid points, the complete discrete
spectrum consists of 5K eigenvalues. The local
method chosen is the inverse Rayleigh iteration
procedure.

Spatial Stability Theory

In the spatial stability theory, w is assumed to be
real and given, o and @ are complex.
Assuming # known the resulting system of
equations can thus be expressed as a nonlinear
eigenvalue problem in A:

P (8} =(aM]+ a2 M)) (8 @

Spatial to
certain physical

layers. Recently,

theory corresponds more closely
situations such as boundary
the author has developed a

spatial stability analyzer [5] which is the main
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subject of this paper. In the spatial stability
theory, the resulting eigenvalue problem is
nonlinear in o. Such a nonlinear discrete
eigenvalue problem can be solved using several
methods. In this paper, the approach used to
solve the spatial eigenvalue problem is the
linearized problem given by:

[P] {8)= a(IMyl+a,,IM]) () ®

where . represents the value of the initial
guess for the eigenvalue of interest.

The imaginary part of the guess could be obtained
by using the temporal analysis and Gaster’s
relation [4]:

—
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General Eigenvalue Problem

The system, rewritten in the form of Eq.(6), is
expressed to suit the eigenvalue problem solution
for:

{[E] -E[F]}{®) =0 (11)

where £ is the eigenvalue corresponding either to
w for the temporal theory or « in the linearized
spatial theory. Using the staggered grid detailed
earlier at any station on the wing, the discretized
equations along with the boundary conditions are
formulated as a matrix eigenvalue problem. This
is a large block—~tridiagonalsystem of equations of
order 5K with 5X5 blocks.

This eigenvalue system can be solved using
classical numerical algorithms. These methods can
be divided into two categories, namely global
methods and local methods. Global methods are
used to obtain the complete eigenvalue spectrum.
They are quite expensive in terms of computational



resources but they do not need any initial guess of
the eigenvalue. On the other hand, when one is
interested in a particular eigenvalue, local methods
are more efficient. However, such procedures
need an initial guess of the eigenvalue of interest.

In this project, the solution is first determined on
a coarse grid using a global method to yield the
entire eigenvalue spectrum. For this purpose, a
standard IMSL.—packageroutine based on the QZ
algorithm is used. The system to resolve is
naturally ill-conditionedso that a global method

is inefficient and can be economically prohibitive
to use when a very accurate eigenvalue is sought
on a fine grid. Thus, the global method is only
used together with a coarse grid to obtain an
initial estimate (guess) for the eigenvalues. Since
only the amplified waves are of interest, refined
estimates of the eigenvalues are only calculated for
cases where the imaginary part of the eigenvalue
solution satisfy w, >0, for the temporal theory, or
o; <0 for the spatial theory. These values are
subsequently refined using a local method based
on the inverse Rayleigh iteration procedure. This
method is advantageous since it has a cubic rate of
convergence and involves only the calculation of
the relevant eigenmodes.

Group Velocity Concept

In a non-—dispersive media (such as for the
propagation of electromagnetic waves in outer
space) all frequencies propagate with the same
speed calied the phase velocity. A boundary layer,
however, is a dispersive media for the propagation
of instability waves. In other words, different waves
with different frequencies would propagate with
different phase velocities. In such a media, the
energy density or amplitude propagates with the
group velocity. Group velocity represents the
velocity of a group of waves at one time, that will
be dispersed from each other at some later time.
The group velocity of a specified frequency is a
property of that individual wave, and to follow the
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behavior of a particular instability one should use
the group velocity of that particular frequency (Fig.
3). For an observer moving at the group velocity
of a given frequency, the wave in the moving frame
of reference will appear to undergo temporal
amplification, while in the frame at rest it
undergoes spatial amplification. Furthermore,
because of damping and amplification, instability
waves constitute a non-conservativesystem, and
the group velocity is, in general, composed of a
real and an imaginary part. The group ‘velocity is

expressed as :
p =[9e do (12)
8 de OB

\
Free Smam'

Figure 3 - 3D Group Velocity and Wavenumber
Vector

Transition Prediction Using e Method

The linear stability theory allows the calculation of
the amplification factor of a laminar flow field.
However, the main objective of this project is
transition prediction.  Therefore, a relation
between the amplification factor and the transition
location is needed. The so—called ¢ method
provides this relation. In this method, the N—factor
is calculated by integrating the spatial amplification



factor (v,) along the path of propagation (s)
which is parallel to the real part of the group
velocity, V,:

NGs) = f - y,ds (13)
So

where s is the relative chord position and s, is
the point where (y, = 0). The transition is
assumed to occur when the N—factorreaches the
critical value of N_ =9 .The spatial amplification
factor (v,) is given by the effective growth rate of
a perturbation along its path of propagation, and
is obtained according to:

Y,ds = a;dx + B,dz

where ds is parallel to the real part of the group
velocity, V_ at all points.

Assuming §, known and that the wave can only
be amplified in the x direction (i.e 3, setequal to
zero), the spatial amplification factor in the
streamwise direction, o, is a direct result of the
nonlinear  eigenvalue problem of the spatial
stability theory. The spatial amplification factor in
the direction of the real part of the group velocity
is given by:

Re .QE)_
da

17,

(14

Yy T o

However, in the temporal stability theory, the
spatial amplification factor in the direction of the
real part of the group velocity is obtained from the

temporal amplification factor through the
application of Gaster’s relation [4]:
»
Y, =~ '—_.i‘" (15)
A

which involves the knowledge of the group
velocity. The range of validity of Gaster’s relation
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remains largely uninvestigated. Therefore, the
spatial stability theory seems promising since
Gaster’s relation is not needed. However, the
spatial formulation yields a nonlinear eigenvalue
problem in o« which is a much more involved
problem than the linear eigenvalue problem
in . of the temporal formulation.

3. RESULTS AND DISCUSSION

The results of three validation tests for different
airfoils will be presented in this section to assess
the ability of the proposed boundary layer stability
analyzer to predict the location of transition. The
rather limited availability of experimental
transition data basically determined the selection
of suitable candidate airfoils for the validation
tests. These cases were selected from the literature
where the measured surface pressure distributions
and an observed - estimate to the location of
transition were available.

The boundary layer solution is calculated by the
commercially available Cebeci—Kaups code [6],
using as input the airfoil geometry, pressure
coefficient distribution and suction distribution.
This code has proven very effective in transonic
applications with a conical pressure field.

All stability calculations are performed on the
upper surface of the airfoil, using K=21grid points
for the stability analysis.



NAE-76-060 13:1 Airfoil Test

The NAE—76-060 profile is a thick supercritical
airfoil with low drag, and was tested at the
National Research Council of Canada wind tunnel
in Ottawa [8]. This test was designed to study the
compressible (transonic regime) and three—
dimensional effects. This profile exhibits the
‘top—hat’ pressure distribution typical of
NLF —airfoils operating in the transonic regime
(Fig. 4). It should be noted that the ‘dip’ in the
pressure distribution illustrates the presence of a
shock wave. The presence of the shock wave is a
determining factor for the on—setof transition for
this profile. Typically, transition occurs shortly
upstream of the shock or it is the shock wave itself
which directly triggers transition.
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Figure 44— Geometry and Pressure Distribution
for the NAE—76—06013:1 airfoil

The N-—factor data obtained from both temporal
and spatial stability theories for the most unstable
frequency are shown in Fig. 5. The predicted
location of transition by both theories occurs very
close to that observed experimentally. In fact, the
calculations indicate that this profile design is
extremely effective at suppressing the inception of
instabilities. Namely, the N—factorcurves grow up

to Z=0.35 and then increase very rapidly up to
(4

the point of transition at X =0.45 due to the
disturbance of the boundary (iayer caused by the
presence of the shock wave, through the adverse
pressure gradient.

Such NLF profiles are designed to produce
favorable chordwise pressure gradients. Although
this favorable pressure gradient could control the
growth of TS—waves, on a swept wing it can
amplify crossflow growth. The results shown in
Fig. 6 are representative of both kinds of
instability for this profile. For the region close to
the leading edge ( 2 <0.17 ), the wavevector
associated with the dfsturbances is almost normal
to the main flow direction ( 90° <y, <100° ),
where these instabilities are propagating normal to
the flow. There is then an abrupt change in
wavevector orientation as the crossflow mechanism
becomes less significant. This typical jump’ is
characterized by the fact that the wavenumber
vector aligns with the group velocity and the main
flow direction ( ¢k,¢8—> 0 ). This behavior is
typical of airfoils with two distinct regions of
instability, crossflow at the leading edge and
streamwise downstream.
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Figure 5 — N—factor Calculation for the NAE—
76—-060 13:1 Airfoil
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Figure 6 — Wave Orientation for the NAE—76—
060 13:1 Airfoil

NLF(2)-0415 16:1 Airfoil Test

The NLF(2)—0415 airfoil test is a low Mach
number, high Reynolds number case. These
conditions are not ideal for testing the code
because the program was designed for compressible
flows. It is felt, however, that the code should still
be applicable to these cases.

The pressure distribution for this airfoil is not
typical of NLF airfoils in that it does not display
the characteristic plateau, or ‘top—hat’ form (Fig.
7). The NLF(2)—041S5 airfoil possesses a favorable
pressure gradient up to approximately 60% relative
chord length.

Whereas the experiments [9] suggest that for this
airfoil transition occurs at approximately

0.50 <X <0.55 , the N—factor calculations
based on @ critical N—factor of 9 predict the
location tobe at = =0.35 . This discrepancy can
be explained. Sincé the wind tunnel used in the
experimental study is described as being of very
low intensity level, one may recall that for free
flight conditions a critical N—factor of 12 is often
suggested.
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Figure 7 — Geometry and Pressure Distribution
for the NLF(2)—0415 16:1 Airfoil
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Figure 8 — N-factor Calculation for the

NLF(2)—0415 16:1 Airfoil

Using this criterion places transition now
at X =0.50 . Hence, the results of this test imply
that “the N, =9 criterion is not universaily
applicable. It is strongly recommended that caution
be exercised in interpreting results for extremely
quiet wind tunnels or free flight tests.




As a guide line, the empirical relationship for
selecting the critical N-factor, proposed in an
earlier investigation by Mack [10], viz:

N,=-843 -24InT, (16)

where T, is the turbulence intensity, is put forth to
obtain an estimate for an adequate critical
N—factor.This is called the modified &' method.
Unfortunately, T, is often not available. Under
these circumstances, critical values of the N~ factor
between 9 and 12 should be considered for cases
where the free stream turbulence intensity is
expected to be particularly low.

Furthermore, comparing N—factors obtained by
both theories (temporal and spatial) it can be
noticed that the transition location based on the
spatial theory is closer to that observed
experimentally. It is also interesting to mention
that the most unstable frequencies predicted are
between 100 Hz and 200 Hz, which correlates well
with the experimental findings.

YEBZ-244 Sucked Airfoil Test

As a result of three —dimensionaleffects, laminar
flow swept wings appear to be more difficult to
maintain than on unswept wings. Suction as a
mean of Laminar Flow Control (LFC) is then
expected to reduce both crossflow and streamwise
instabilities over the wing. Since the aim should be
to apply just enough suction so that the N—factors
do not grow beyond a value of 9, the first step to
estimate an optimum suction distribution is to
accurately calculate the stability characteristics of
the boundary layer.

Suction has several effects on the boundary layer.
First, it causes the inflection point of the crossflow
profile to move closer to the wall, where the
increased viscosity acts to stabilize the crossflow
instability. Secondly, suction thins the boundary
layer and thereby lowers the effective Reynolds
number. Suction also results in a shift of the most

amplified wave to a lower frequency. All these
effects are known to have stabilizing influence on
the boundary layer stability. The YEBZ —244airfoil
is an example of how suction could lead, at least
theoretically, to a fully laminar wing. The
geometry, pressure and suction distributions for
this case are shown in Fig. 9.
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Figure 9 — Geometry, Pressure and Suction
Distributions for the YEBZ— 244 airfoil
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Figure 10 — N—factorCalculation for the YEBZ—
244 Sucked Airfoil
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Figure 11 —Wave Orientation for the YEBZ 244
Sucked Airfoil

The largest N—factors computed are found for a
frequency around f=100Hz. It can be seen in Fig.
10 that the amplitude of oscillations may become
important but suction effectively suppresses
transition. Furthermore, it is noticed that the
largest amplification is found to be for oblique
waves of about ¢, =50° (Fig. 11). In fact, the
orientation angle of the most amplified wave seems
to be stabilized as a result of suction application.

Although the estimated suction distribution is
adequate to maintain laminar flow, it is not
necessarily the optimum distribution. The
boundary layer should not be oversucked, since
that has several adverse effects, e.g., larger
perturbations caused by the suction holes,
increased skin friction and increased weight of the
suction system. An iterative application of the
boundary layer stability analyzer could then help to
achieve the optimum suction distribution.
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4. CONCLUSION

The comparison of predicted and experimental
locations of transition for several swept wings
under different conditions shows that spatial linear
stability theory provides an estimate which
generally agrees within 5% of the relative
chord (i) . These predictions are consistently
conservatfve, i.e. the location is under predicted,
which is desirable from the point of view of design.
The results for three airfoils are presented in this
paper. It is clear that further work is needed to
improve the tools developed up to now. These
tools have to be validated with respect to
transition prediction and experimental verification.
Therefore, more reliable transition data including
flight experiments and transonic wind tunnel tests
with low turbulence intensity and highly flow
quality are indispensable.
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