TABLE OF CONTENTS

VOLUME 1

PREFACE

Santini, P. ... XXXI

ICAS THE DANIEL & FLORENCE GUGGENHEIM MEMORIAL LECTURE

ICAS-94-0.1 Viscous Drag Reduction in Aeronautics
Bushnell, D.M. XXXIII

AIAA WRIGHT BROTHERS LECTURE

ICAS-94-0.2 CFD and the Changing World of Airplane Design
Rubbert, P.E. .. LVII

GENERAL LECTURES

ICAS-94-0.3 Trends in Engineering Design Education
McMasters, J. .. not available

ICAS-94-0.4 Intelligent/Smart Structures
Wada, B.K. .. not available

ICAS VON KáRMÁN LECTURE

ICAS-94-0.5 The European Transonic Windtunnel ETW
- A Break-Through in International Test Facilities -
Bouis, X, Hertrich, H.A., Bliek, J.A. van der,
Harris, G.L. .. LXXXIV
SUBSONIC AIRCRAFT DESIGN AND DEVELOPMENT

ICAS-94-1.1.1 Narrowbody Development Programs at DAC
Eckels, W.E. .. available

ICAS-94-1.1.2 Overview of the NASA B737-100 High-Lift Program

ICAS-94-1.1.3 MD-12 Aerodynamic Development
Gregg III, R.D. .. available

ICAS-94-1.1.4 Advanced Agriculture Aircraft - Primary Design
Blazewicz, W., Malachowski, R.J.

AERODYNAMIC OPTIMISATION

ICAS-94-2.1.1 Multiobjective Optimization Design of Transonic Airfoils
Zhong, B.W., Qiao, Z.D. 9

ICAS-94-2.1.2 Aerodynamic Design of Aerofoils and Wings using a Constrained Optimisation Method
Lovell, D.A., Doherty, J.J. 14

ICAS-94-2.1.3 Design Optimisation of Helicopter Rotor Aerofoil Sections
Kirsten, T.J. .. 25

ICAS-94-2.1.4 Aerodynamic Design Transonic Wing Using CFD and Optimization Methods
Streshinsky, J.R., Ovcharenko, V.V. 35

REVIEWS IN AERODYNAMICS AND ACOUSTICS

ICAS-94-3.1.1 The Role of Flight Tests and Wind Tunnels in Laminar Flow Research
Körner, H., Redeker, G. 46

ICAS-94-3.1.2 Aircraft Noise Prediction and Reduction Technology
Stephens, D.G. 57

ICAS-94-3.1.3 A Review of 50 Years of Aerodynamic Research with NACA/NASA
Spearman, M.L. 65

ICAS-94-3.1.4 Standardized Wind Tunnel Design and Construction for Aerodynamic Research and Development
Ewald, B.F.R., Holzdeppe, D., Cronauer, D. 71
REAL FLOWS OVER AEROFOILS AND WINGS I

ICAS-94-4.1.1
Multi-element Aerofoils with Moving Surface Boundary-Layer Control: Wind Tunnel, Numerical and Flow Visualization Studies
Modi, V.J., Munshi, S.R., Mokhtarian, G., Bandyopadhyay, G., Yokomizo, T.
80

ICAS-94-4.1.2
On the Drag Reduction of the Flow over an Aerofoil
Maksoud, T.M., Al-Shihry, A.M.
104

ICAS-94-4.1.3
The Effect of Wing Sweep on the Flow Around a Slat and its Performance
Djatmiko, B., Sudira, I.G.N., Cakrawala, A., Berg, B. van den, Chintamani, S.H., Mack, M.D.
109

ICAS-94-4.1.4
Effect of Heat Transfer on Transonic Flow over an Airfoil
Mitchell, D., Raghunathan, S.
119

WIND TUNNEL FACILITY DEVELOPMENT

ICAS-94-5.1.1
The Modernization Program of the Transonic Windtunnel HST of NLR: Lessons from the Past, Prospects for the Future
Elsenaar, A., Jaarsma, F.J.
130

ICAS-94-5.1.2
Air Mode Operation of the U.S. National Transonic Facility
Balakrishna, S., Kilgore, W.A., Thibodeaux, J.J.
151

ICAS-94-5.1.3
Scirocco: A Project and A Programme
Russo, G.
available

ICAS-94-5.1.4
Investigation of Supersonic Transient Loads in the T-38 1.5 m x 1.5 m Trisonic Wind Tunnel at Zarkovo
Vukovic, D.
162

PROPELLERS I

ICAS-94-6.1.1
Optimum Propellers Revisited - Beyond Blade Element Theory
Fiddes, S.P., Brown, K., Bunniss, P.C.
172

ICAS-94-6.1.2
The Evaluation of Propeller Aero-Acoustic Design Methods by Means of Scaled-Model Testing Employing Pressure Tapped Blades and Spinner
Scrane, N., Maina, M.
183

ICAS-94-6.1.3
The Effect of High Thrust Pusher Propeller on the Aerodynamic Characteristics of a Wing at Low Reynolds Number
Catalano, F.M., Stollery, J.L.
196

ICAS-94-6.1.4
Calculation of Viscous Flow on Propeller Driven Airplane
Wang, D.Q.
207
HANDLING QUALITIES AND SIMULATION

ICAS-94-7.1.1 The Effect of Glaze Icing on Wing Aerodynamics and Aircraft Lateral Stability
Nair, G.G., Chapleo, A.Q. .. 218

ICAS-94-7.1.2 The Contribution of Inverse Simulation to the Assessment of Helicopter Handling Qualities
Thomson, D.G., Bradley, R. .. 229

ICAS-94-7.1.3 Initial Results of a Piloted Simulator Investigation of Modern Windshear Detection Systems
Haverdings, H., Rouwhorst, W.F.J.A. 240

ICAS-94-7.1.4 Nonlinear Decoupling Control and Aircraft Agility Maneuvres
Zhou, Z.Q., Gao, H. .. 255

SIMULATION AND DISPLAYS

ICAS-94-8.1.1 Interactive Embedded Training System for Military and Commercial Aircraft
Stanzione, K.A., Smith, R.F. 261

ICAS-94-8.1.2 The Role of In-Flight Simulation for the Definition of Simulation Fidelity Criteria
Bauschat, J.-M. ... 261

ICAS-94-8.1.3 A Piloted Simulation Study of Advanced Controls and Displays for General Aviation Airplanes
Stewart, E.C. ... 272

ICAS-94-8.1.4 The Design of an EFIS Attitude Indicator for a Flight Simulator
Handley, S.J., Allerton, D.J ... 282

FATIGUE AND DAMAGE TOLERANCE I

ICAS-94-9.1.1 Fatigue Design Model Based on Damage Mechanisms Revealed by Acoustic Emission Measurements
Fang, D., Berkovits, A. .. 293

ICAS-94-9.1.2 Damage Response of Filament Wound Pressure Vessels
Kenny, J.M., Marchetti, M., Sforza, G. 304

ICAS-94-9.1.3 Boundary Element Analysis of Fatigue and Damage Tolerance
Portela, A. .. 311

ICAS-94-9.1.4 Simulation of Buckling-Driven Crack Growth in Layered Materials
Nilsson, K.-F. ... 322
EXPERIMENTAL AERODYNAMICS (STUDENT SESSION)

<table>
<thead>
<tr>
<th>ID</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICAS-94-10.1.1</td>
<td>Unsteady Aerodynamic Effects of Trailing Edge Controls on Delta Wings</td>
<td>Pilkington, D.J., Wood, N.J.</td>
<td>333</td>
</tr>
<tr>
<td>ICAS-94-10.1.2</td>
<td>Supersonic Wing/Body Interference - An Update</td>
<td>Blank, S.C.</td>
<td>345</td>
</tr>
<tr>
<td>ICAS-94-10.1.3</td>
<td>Flow over a Delta Wing and Blunt Body Combination at Hypersonic Speeds</td>
<td>Singh, A.</td>
<td>356</td>
</tr>
<tr>
<td>ICAS-94-10.1.4</td>
<td>The Manifestation of Eddy Shocklets and Laminar Diffusion Flamelets in a Shear Layer</td>
<td>Miller, R.S.</td>
<td>362</td>
</tr>
</tbody>
</table>

HIGH SPEED CIVIL TRANSPORT STUDIES

<table>
<thead>
<tr>
<th>ID</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICAS-94-1.2.1</td>
<td>Overviews of Japanese Study Activities for the Second Generation SST</td>
<td>Iwaki, T., Sunakawa, M.</td>
<td>371</td>
</tr>
<tr>
<td>ICAS-94-1.2.2</td>
<td>Preliminary Design of the High Speed Civil Transport based on Productivity Index</td>
<td>Abel, R.W., Schrage, D.P., Mavris, D.N.</td>
<td>378</td>
</tr>
<tr>
<td>ICAS-94-1.2.3</td>
<td>The Second Generation Supersonic Aircraft Challenges</td>
<td>Michaut, C.</td>
<td>available</td>
</tr>
</tbody>
</table>

HYPERSONIC FLOWS I

<table>
<thead>
<tr>
<th>ID</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICAS-94-2.2.2</td>
<td>Analysis of Different Approximation Levels Introduced in the Developments for Transport Coefficients Models of High Energy Air</td>
<td>De Filippis, F., Borrelli, S.</td>
<td>398</td>
</tr>
<tr>
<td>ICAS-94-2.2.3</td>
<td>Computation of Supersonic/Hypersonic Flow near Complex Configurations</td>
<td>Voevodenko, N.V.</td>
<td>406</td>
</tr>
</tbody>
</table>

PROPELLERS II

<table>
<thead>
<tr>
<th>ID</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICAS-94-3.2.1</td>
<td>A Method for Evaluating Blockage Interference on Propellers in a Perforated-Wall Wind Tunnel</td>
<td>Mokry, M.</td>
<td>413</td>
</tr>
<tr>
<td>ICAS-94-3.2.2</td>
<td>A New Facility for Wind Tunnel Testing of Propellers</td>
<td>Heddergott, A., Wedemeyer, E.</td>
<td>424</td>
</tr>
</tbody>
</table>
ICAS-94-3.2.3 Approximate Momentum Analyses of the Flow Behind an Unshrouded Actuator-Disk, Normal to the Free-Stream
Chester, D.H. .. 434

MODELLING OF UNSTEADY FLOWS I

ICAS-94-4.2.1 Calculation of Unsteady Aerodynamic Load on Three Dimensional Finite Thickness Oscillating Wing
Djojodihardjo, H., Mazmur, T., Kadar, M. 448

ICAS-94-4.2.2 Theoretical and Experimental Investigations on Aeroacoustic Fatigue of Panels
Campos, L.M.B.C., Bourgine, A., Bonomi, B. 458

ICAS-94-4.2.3 Computational Techniques for Unsteady Aerodynamics
Szmeletter, J., Pagano, A. 467

TRAJECTORY OPTIMISATION

ICAS-94-5.2.1 Evaluation of Optimal Segments in Aerial Combat Simulations
Järmark, B., Findlay, P. .. 479

ICAS-94-5.2.2 Reduction in the Variation of Aircraft Response Characteristics During Optimal Trajectory Manoeuvres
MacCormac, J.K.M. .. 488

ICAS-94-5.2.3 Optimization of Branched Trajectories of Aerospace Transport Systems
Filatyev, A.S. .. 496

FLIGHT SAFETY

ICAS-94-6.2.1 The Development and Application of a Method for the Assessment of Third Party Risk due to Aircraft Accidents in the Vicinity of Airports
Piers, M.A. ... 507

ICAS-94-6.2.2 NASA Wake Vortex Research

ICAS-94-6.2.3 Realtime-Simulation of Aircraft Behaviour in Wake Vortices with Respect to Flight Safety
Heintsch, Th., Kindel, W. 529

ENHANCED MANOEUVRABILITY DEMONSTRATORS

ICAS-94-7.2.1 Control Law Design of the Experimental Aircraft X-31A
Beh, H., Hofinger, G. ... 541
ICAS-94-7.2.2 X-31 Enhanced Fighter Maneuverability Demonstrator: Flight Test Achievements
Francis, M.S., Henderson, E.DeVere .. 550

ICAS-94-7.2.3 Development and Flight Test of a Multi-Axis Thrust Vectoring System for the F-16
Baxter, J.S., Sweeney, J.E. .. available

FLIGHT TEST TECHNIQUES
ICAS-94-8.2.1 Precise Airspeed Vector Determination at the Nose of an Aircraft
Dieroff, M., Martens, D. ... 562

ICAS-94-8.2.2 Nonlinear Estimators for Obtaining Analytical Redundancy of the Aerodynamic States
Dunkel, W. ... 568

ICAS-94-8.2.3 Flight Flutter Test Program on CN 235-100/MPA
Hariowibowo, H., Mangunsuhardja, S. .. 579

ADAPTIVE STRUCTURES
ICAS-94-9.2.1 Static Aeroelastic Control of an Adaptive Wing
Gasbarri, P., Betti, F., Persiani, F., Saggiani, G.M. 589

ICAS-94-9.2.2 Integrated Structure/Control Design of Composite Plate with Piezoelectric Actuators
Nam, C.H., Kim, D.S., Nam, S.H. ... 604

ICAS-94-9.2.3 Smart Composite Structure of Self-Adaptive Strength
Tao, B.Q., Tao, Y.G., Liang, D.K., Wang, Z., Qing, T.Y.,
Yuan, S.F., Mei, S.M., Xiong, K. .. 612

EXPERIMENTAL AND THEORETICAL FLUID DYNAMICS (STUDENT SESSION)
ICAS-94-10.2.1 The Soap Film Tunnel for Simulating Two-Dimensional Flows
Amerio, P., Chiari, C., D’Aria, R. ... 621

ICAS-94-10.2.2 The Use of a Tolerant Wind Tunnel for Bluff Body Testing
De Coteau, K. ... 627

ICAS-94-10.2.3 Low-Dimensional Characterization and Control of Non-Linear Flow Phenomena
Gillies, E., Anderson, J. .. 637

LARGE SUBSONIC TRANSPORT AIRCRAFT STUDIES
ICAS-94-1.3.1 Impact of Operational and Environmental Aspects on Commercial Aircraft Design
Haberland, C., Kranz, O., Stoer, R. .. 646
ICAS-94-1.3.2 Conventional and Unconventional Configurations for Ultra-High Capacity Aircraft
Knowles, K., Martínez-Val, R. 656

ICAS-94-1.3.3 Design Study: A Global Range Large Subsonic Military Transport
James, Jr., R.W., Kochenderfer, V.E., Fung, J., Lee, S.Y.,
Baker, J.C. .. 665

ICAS-94-1.3.4 A Global Range Heavy Transport for Global Mobility
Miller, S.A., Muldoon, P., Ratcliffe, P. 676

TURBULENCE MODELLING AND NOZZLE FLOWS

ICAS-94-2.3.1 Modelling of Intermittent Flows with the K-E Low Reynolds Number Turbulence Model and Conditioned Navier-Stokes Equations
Dick, E., Steelant, J. 689

ICAS-94-2.3.2 Transonic Flow over a Delta Wing Using a K-epsilon Turbulence Model
Siikonen, T., Kaurinkoski, P., Laine, S. 700

ICAS-94-2.3.3 Numerical Solutions of 3D Transonic Viscous Flows by Using Upwind-Relaxation Sweeping Algorithm
Zha, G.-C., Bilgen, E. 711

ICAS-94-2.3.4 Hypersonic Turbulent Non-Equilibrium Reactive Nozzle Flow Calculations
Leclère, F., Aupoix, B. 718

WIND TUNNEL TEST SECTION FLOWS

ICAS-94-3.3.1 Interference Determination for Three-Dimensional Flows in Slotted-Liner Wind Tunnels
Mohan, S.R., Freestone, M.M. 729

ICAS-94-3.3.2 A Hybrid Panel/Image Method for Calculating Wall Constraint Effects in Subsonic Wind Tunnels
Fiddes, S.P., Gaydon, J.H. 740

ICAS-94-3.3.3 Alleviation of Adverse Axial Static Pressure Gradients in the Two-Dimensional Test Section of the IAR 1.5m Wind Tunnel
Medved, B.L. .. 751

ICAS-94-3.3.4 Study of Continuously Variable Mach Number Flow for a Supersonic Wind Tunnel by the Control of Mass Flow Rate
Aihara, Y., Mandai, T., Morishita, E.,
Yamanouchi, M., Nakano, S. 757
VOlTED FLOWS AT HIGH ANGLE OF ATTACK

ICAS-94-4.3.1 Turbulent Flowfield Structure Associated to Fin Buffeting Around a Vortex-Dominated Aircraft Configuration at Sideslip
Breitsamter, C., Laschka, B. 768

ICAS-94-4.3.2 Evaluation of Low-Speed Handling and Direct Lift Control Characteristics of a Wing with Collectively Variable Incidence Tip Elements
Barnard, R.H. .. 785

ICAS-94-4.3.3 The Compressible Inviscid Vortex Flow of a Sharp Edge Delta Wing
Longo, J.M.A. ... 790

ICAS-94-4.3.4 Aerodynamics of a Slender Wing with Vertical Fins at Low Speed
Hummel, D., Brümmer, A. .. 801

DESIGN APPLICATIONS OF CFD I

ICAS-94-5.3.1 3D Euler and Navier-Stokes Simulation - A Tool for Design Optimization of Transport Aircraft
Rill, S. ... 813

ICAS-94-5.3.2 Investigations Concerning Wing-Body-Interference for Compressible Flow
Wichmann, G. ... 823

ICAS-94-5.3.4 Flow and Ice Accretion Simulation around Multiple Airfoils
Volkers, D.F., Lipzig, N. van, Cock, K.M.J. de 847

VSTOL AND RPV AIRCRAFT

ICAS-94-6.3.1 Prediction and Evaluation of Vectored Jets-Induced Interference on Aircraft Configurations in Low-Speed Flight
Nangia, R.K. .. 859

ICAS-94-6.3.2 The Tilt Wing Configuration for High Speed VSTOL Aircraft
Chana, W.F., Sullivan, T.M. .. 871

ICAS-94-6.3.3 The Design and Flight Trials of a Multi-Purpose Autonomous Flight Vehicle System
Thompson, L.A., Bil, C. .. 890

ICAS-94-6.3.4 ASN Reconnaissance RPV System
Cheng, B., Li, Y., Liu, W.G. .. 900
<table>
<thead>
<tr>
<th>Topic</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Simulation-Real-Time-Models for Three-Dimensional Interaction between Wind and Aircraft</td>
<td>Kindel, W., Heintsch, Th.</td>
<td>922</td>
</tr>
<tr>
<td></td>
<td>The Effect of Propeller Slipstream on the Static Longitudinal Stability and Control of Multi-Engined Propeller Aircraft</td>
<td>Obert, E.</td>
<td>933</td>
</tr>
<tr>
<td></td>
<td>Artificial Neural Networks for Fault Tolerant Sensor Systems</td>
<td>Martens, D.</td>
<td>971</td>
</tr>
<tr>
<td></td>
<td>Multiple Hypothesis Fault Detection for an Aircraft Sensor System</td>
<td>Göllinger, H.</td>
<td>978</td>
</tr>
<tr>
<td>Damage in Composites</td>
<td>Development of a Plate Element for the Study of a Composite Plate including Delaminations</td>
<td>Roudolff, F., Ousset, Y.</td>
<td>989</td>
</tr>
<tr>
<td></td>
<td>Investigations of Delamination Growth Rates and Criticality along Heterogeneous Interfaces</td>
<td>Thesken, J.C., Brandt, F., Nilsson, S.</td>
<td>995</td>
</tr>
<tr>
<td></td>
<td>Acoustic Emission as a Predictor of Delamination Growth Rate and Criticality not available</td>
<td>Thesken, J.C., Henriksson, A.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crash Analysis and Correlation with Test of a Composite Helicopter Sub-Floor Structure</td>
<td>Giavotto, V., Sala, G., Anghileri, M.</td>
<td>1015</td>
</tr>
<tr>
<td>ICAS-94-10.3.1</td>
<td>2nd Order NND Scheme and Boundary Layer Calculation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liu, S., Lin, C.Q.</td>
<td>... 1026</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICAS-94-10.3.2</th>
<th>An Implicit Procedure for the Euler Equations with Chemical Terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spazzini, P.G.</td>
<td>... 1030</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICAS-94-10.3.3</th>
<th>Numerical Studies of Dynamic Stall on Airfoils Using Viscous-Inviscid Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Korotkov, O.Yu.</td>
<td>... 1041</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICAS-94-10.3.4</th>
<th>Calculation of the A-Airfoil using the k-tau Model</th>
</tr>
</thead>
</table>
VOLUME II

HYPERSONIC AIRCRAFT DESIGN

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICAS-94-1.4.1</td>
<td>Interdisciplinary Design of Modern Hypersonic Waveriders Using the Integrated Program PrADO-Hy</td>
<td>Bardenhagen, A., Kossira, H., Heinze, W.</td>
<td>1053</td>
</tr>
<tr>
<td>ICAS-94-1.4.2</td>
<td>Hypersonic Aircraft Conceptual Design Methodology</td>
<td>Chiesa, S.G., Maggiore, P.</td>
<td>1064</td>
</tr>
<tr>
<td>ICAS-94-1.4.3</td>
<td>Waverider Aircraft Design Technologies</td>
<td>Hagseth, P., Blankson, I.</td>
<td></td>
</tr>
<tr>
<td>ICAS-94-1.4.4</td>
<td>Low-Speed Aerodynamic Characteristics of a $M_{inf}=6$ Waverider Tactical Waverider Aircraft Configuration</td>
<td>Newberry, C.F., Price, D.R., Cedrun, M.E., Johnson, L.M., Bowles, J.V.</td>
<td></td>
</tr>
<tr>
<td>ICAS-94-1.4.5</td>
<td>Application of Euler Method to Transonic Flow Computation of a Hypersonic Configuration</td>
<td>Finley, D.</td>
<td>1075</td>
</tr>
</tbody>
</table>

LAMINAR FLOW AND TRANSITION I

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICAS-94-2.4.1</td>
<td>Stability and Transition Computations for Complex Basic Flows</td>
<td>Arnal, D., Casalis, G., Airiau, Ch., Cazenave, F.</td>
<td>1086</td>
</tr>
<tr>
<td>ICAS-94-2.4.2</td>
<td>Comparison of Several N-Factor Integration Strategies in a Compressible Boundary Layer over a Swept Curved Surface</td>
<td>Pereira, J.C.F., Melo de Sousa, J.M.</td>
<td>1093</td>
</tr>
<tr>
<td>ICAS-94-2.4.3</td>
<td>Rapid Scheme for Estimating Transition on Wings by Linear Stability Theory</td>
<td>Gaster, M., Jiang, F.</td>
<td>1104</td>
</tr>
<tr>
<td>ICAS-94-2.4.4</td>
<td>Computational Techniques for Linear Stability Analysis of Parallel Shear Flows</td>
<td>Lam, F., Gaster, M.</td>
<td></td>
</tr>
<tr>
<td>ICAS-94-2.4.5</td>
<td>Nonlinear Interaction in a Three-Dimensional Compressible Boundary Layer</td>
<td>Tumin, A.</td>
<td>1114</td>
</tr>
</tbody>
</table>

EXPERIMENTAL UNSTEADY AERODYNAMICS

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICAS-94-3.4.2</td>
<td>F-18 Wing Rock Considerations</td>
<td>Ericsson, L.E.</td>
<td>1135</td>
</tr>
</tbody>
</table>
ICAS-94-3.4.3 Rotary-Balance and Static Wind Tunnel Tests of Forebody Vortex Control Techniques on an F/A-18
Kramer, B.R., Malcolm, G.N., Suárez, C.J., James, K.D. 1143

ICAS-94-3.4.4 Flow Reattachment on Wings in Pitch-Down Motion
Ericsson, L.E. .. 1154

ICAS-94-3.4.5 An Examination of Vortex Deformation During Blade-Vortex Interaction Utilising Particle Image Velocimetry
Horner, M.B., Galbraith, R.A.McD., Coton, F.N., Stewart, J.N., Grant, I. 1161

HYPERSONIC FLOWS II

ICAS-94-4.4.1 Investigation of Thermal Loads on Hypersonic Vehicles with Emphasis on Surface Radiation Effects
Höld, R.K., Fornasier, L., Heiss, S. 1172

ICAS-94-4.4.2 Vortex Flow on a Hypersonic Spaceplane Configuration
Herrmann, U. .. 1183

ICAS-94-4.4.3 Hypersonic Control Flap Effectiveness
Kumar, D., Stollery, J.L. 1194

ICAS-94-4.4.4 Dynamic Structures and Mixing Processes in Sub- and Supersonic Hydrogen/Air Flames in Combustion Chambers with Cascades of Rearward Facing Steps
Gabler, W., Haibel, M., Mayinger, F. 1207

ICAS-94-4.4.5 Effect of Slight Leading Edge Bluntness on Flat Plate Heat Transfer and Boundary Layer Transition at Hypersonic Mach Numbers
Hozumi, K., Nagai, S., Fujii, K., Yoshizawa, A., Hara, N. 1220

CONFIGURATION AERODYNAMICS: DESIGN AND EXPERIMENTAL EVALUATION

ICAS-94-5.4.1 Design and Flight Test Evaluation of a Laminar Wing Glove on a Commuter Aircraft

ICAS-94-5.4.2 Full-Scale Wind-Tunnel Investigation of the High-Lift Characteristics of a Business Jet Aircraft Wing
Moul, T.M., Hardin, J.D., Pfeiffer, N.J. available

ICAS-94-5.4.3 Design and Windtunnel Test Results of a Flapped Laminar Flow Airfoil for High-Performance Sailplane Applications
Boermans, L.M.M., Garrel, A. van 1241

ICAS-94-5.4.4 The Aerodynamic Design of an Integrated Wing Lower Surface and Pylons for Reduced Drag
Stanniland, D.R., Macdonald-Smith, D.F.M. 1248
ICAS-94-5.4.5 Rear Fuselage Flow Studies on a Modern Transonic Transport Aircraft: Experiments and Computations
Coustols, E., Prudhomme, S., Mignosi, A., Destarac, D. 1258

AIRFRAME/PROPULSION INTEGRATION I

ICAS-94-6.4.1 Numerical Study of Interference Effects of Wing-Mounted Advanced Engine Concepts
Rossow, C.C., Hoheisel, H. 1272

ICAS-94-6.4.2 Aerodynamic Study of New Engine/Airframe Integration Concepts
Mogilka, P., Colin, Ph., Esteve, N. 1283

ICAS-94-6.4.3 The Modern Role of CFD in Addressing Airframe/Engine Integration Issues for Subsonic Transports
Lynch, F.T., Intemann, G.A. 1294

ICAS-94-6.4.4 The Boeing 777 Engine/Airframe Integration Aerodynamic Design Process
Berry, D.L. 1305

ICAS-94-6.4.5 Experimental and Numerical Investigation on Liplets for Wing/Nacelle Interference Drag Reduction
Tani, Y., Amano, K. 1321

TAKE-OFF AND MANOEUVRING PERFORMANCE

ICAS-94-7.4.1 Flight Simulator Evaluation of Take-Offs Conducted with and without a Take-Off Performance Monitor (TOPM)
Khatwa, R., Verspay, J.J.L.H. 1328

ICAS-94-7.4.2 The Manoeuvre Effect in Ski-Jump Take-Off Trajectory
Gili, P. 1340

ICAS-94-7.4.3 Solutions of Generalized Proportional Navigation with Maneuvring and Nonmaneuvring Targets
Yuan, P.-Y. 1349

ICAS-94-7.4.4 Interception of Maneuvering Tactical Ballistic Missiles in the Atmosphere
Shinar, J., Zarkh, M. 1354

ICAS-94-7.4.5 Lateral Motion of Aircraft on the Runway
Kiss, L. 1364

CONTROL SYSTEMS

ICAS-94-8.4.1 The BRISC: A Digital Signal Processor Dedicated to the Command of AC Electromechanical Actuators
Gilson, E. 1372

XIV
| ICAS-94-8.4.2 | Study of Fly-By-Wire System Stability
Shao, R.S. | 1378 |
| ICAS-94-8.4.3 | Secondary Flight Controls: Mechanical Failures of Transmission
Lines and Related Asymmetry Problems
Jacazio, G., Borello, L., Villero, G. | 1386 |
| ICAS-94-8.4.4 | A Position Control of an Electro-Hydrostatic Actuator System
Using Sliding Mode
Barroso, C., Dente, J.A. | 1395 |
| ICAS-94-8.4.5 | Anomalies in the Aircraft Control Systems
Rohács, J. | 1400 |

AEROELASTICITY I

| ICAS-94-9.4.1 | Design of an Aeroelastic Wind Tunnel Model for the N-250 Transport Aircraft
Djojodihardjo, H., Suhartono, H., Schweiger, J. | 1407 |
| ICAS-94-9.4.2 | Outline and Application of the NLR Aeroelastic Simulation Method
Hounjet, M.H.L., Eussen, B.J.G. | 1418 |
| ICAS-94-9.4.3 | Coupled Flight Mechanics and Aeroelasticity - Some Effects of Aircraft Maneuvers on Aeroelastic Divergence and Flutter
Olsen, J.J. | 1442 |
| ICAS-94-9.4.4 | Fundamental Wind Tunnel Experiments on Tip-Fin Flutter
Ueda, T., Sotozaki, T., Iwasaki, K. | 1451 |
| ICAS-94-9.4.5 | Aeroelastic Design and Flight Test Evaluation of the Experimental Aircraft X-31A
Schweiger, J., Dobbs, S.K. | 1459 |

COMPUTATIONAL AERODYNAMICS (3-D) (STUDENT SESSION)

| ICAS-94-10.4.1 | Inviscid/Viscous Coupling including Shock Induced Separation in Transonic Flow
Joona, H., Fuchs, L. | 1470 |
| ICAS-94-10.4.2 | Prediction of Boundary Layer Transition on Transonic Swept Wings
Mirshams, M. | 1481 |
| ICAS-94-10.4.3 | Navier Stokes Analysis of Low Aspect Ratio Rectangular Flat Wings in Compressible Flow
Laçin, F., Kavsaoglu, M.S. | 1492 |
| ICAS-94-10.4.4 | A Study on Numerical Approximation for the Solution of Transonic Small Perturbation Problem
Dirgantara, D. | 1499 |
| ICAS-94-10.4.5 | Computational Investigation of Tangential Slot Blowing for Forebody Flow Control on a Generic Chined Forebody
Agosta, R.M. | 1499 |
DESIGN OPTIMISATION

ICAS-94-1.5.1 Distributed Artificial Intelligence Applied to Design of Aircraft Fuselage and Wings
Saggu, J.S. ... 1509

ICAS-94-1.5.2 Aircraft Multicriteria Optimization Using Simulated Evolution
Crispin, Y. ... 1520

ICAS-94-1.5.3 Taguchi Sizing Experiments in a Capstone Aircraft Design Course
Sivier, K.R., D'Urso, S.J. 1527

ICAS-94-1.5.4 Multivariate Optimization Applied to Conceptual Design of Long-Range and Highcapacity Aircraft
Morel, F. ... available

CFD METHODS AND APPLICATIONS

ICAS-94-2.5.1 An Advanced Front Grid Generation System for 3D Unstructured Grids
Tysell, L.G. ... 1552

ICAS-94-2.5.2 Transonic Pressure Drag Coefficient for Axisymmetric Bodies
Biblarz, O., Priyono, E. 1565

ICAS-94-2.5.3 Navier-Stokes Calculation of Turbine Flows with Film Cooling
Vogel, D.T. ... 1572

ICAS-94-2.5.4 Use of CFD Methods for Transonic Wind Tunnel Nozzle Selection
Fico Jr., N.G.C.R., Azevedo, J.L.F., Ortega, M.A. 1587

WIND TUNNEL TECHNIQUES

ICAS-94-3.5.1 Advanced Force Testing Technology for Cryogenic and Conventional Wind Tunnels
Ewald, B.F.R. ... 1597

ICAS-94-3.5.2 Development of a Heat Transfer Measurement Technique for Thin Airfoils in Hypersonic Test Facilities
Ciancarelli, C.R., Ryle, S.M., Ginn, K.B. not available

ICAS-94-3.5.3 A New Method of Laser Velocimetry for Airloads Determination on Hovering Rotor Blades
Berton, E., Favier, D., Maresca, Ch., Nsi Mba, M. 1610

ICAS-94-3.5.4 Computer Controlled, Pulsed Light Sheet/Image Acquisition Systems for Use in Turbulent Flow
Grant, I., Wang, X. ... 1619

FLOW SEPARATION I

ICAS-94-4.5.1 Unsteady Separation in Two-Dimensional Turbulent Flows
Ranke, H. ... 1625
<table>
<thead>
<tr>
<th>ICAS-94-4.5.2</th>
<th>Flow Oscillation over Airfoils Near Stall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bragg, M.B., Heinrich, D.C., Zaman, K.B.M.Q.</td>
<td>1639</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICAS-94-4.5.3</th>
<th>A Study of the Influence of Cross Flow on the Behavior of Aircraft Wake Vortices near the Ground</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>ICAS-94-4.5.4</th>
<th>Studies on the Optimum Flap Deflection Angle of Vortex Flaps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rinoie, K., Fujita, T., Iwasaki, A., Fujieda, H.</td>
<td>1660</td>
</tr>
</tbody>
</table>

AIRCRAFT SUBSYSTEMS

<table>
<thead>
<tr>
<th>ICAS-94-5.5.1</th>
<th>Cabin Air Improvement System - Better Cabin Air Quality at Lower Fuel Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dechow, M.</td>
<td>1668</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICAS-94-5.5.2</th>
<th>Computer Analysis and Simulation of Aircraft Fuel Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plastow, I., Cowling, D.A.</td>
<td>1679</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICAS-94-5.5.3</th>
<th>Safe, Reliable and Economical Supply of Secondary Power for Passengers and Systems of Future Commercial Aircraft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dreier, K., Lutzer, W.</td>
<td>1690</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICAS-94-5.5.4</th>
<th>Hypersonic Aircraft Secondary Power Conceptual Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chiesa, S.G., Maggiore, P., Villero, G., Anselmino, G.C., Deandrea, P., Omero, L.</td>
<td>1700</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICAS-94-5.5.R</th>
<th>An Optimal Algorithm for Attitude and Trajectory Stabilization for the Remotely-Piloted Vehicles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trifonov, A.D.</td>
<td>1708a</td>
</tr>
</tbody>
</table>

INTERNAL FLOW

<table>
<thead>
<tr>
<th>ICAS-94-6.5.1</th>
<th>Three-Phase Flow in Engine Inlets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gopalaswamy, N., Murthy, S.N.B., Bose, T.K.</td>
<td>not available</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICAS-94-6.5.2</th>
<th>The Stepped Supersonic Intake</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raghunathan, S., Rolston, S.C.</td>
<td>1709</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICAS-94-6.5.3</th>
<th>An Approach to Numerical Experiments for Arbitrary Inlet Conditions in 3D Compressible Viscous Cascade Flows</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miyazaki, T.</td>
<td>1718</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICAS-94-6.5.4</th>
<th>A Cross Disciplinary Insight from the Physics of Super Cooled Liquids into Compressor Blading Stall Margins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thornton, B.S., Gostelow, J.P.</td>
<td>1728</td>
</tr>
</tbody>
</table>

FLIGHT CONTROL I

<table>
<thead>
<tr>
<th>ICAS-94-7.5.1</th>
<th>Practical Control Laws for Onboard Real-Time Guidance of Optimal Aircraft Trajectories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manolescu, S.</td>
<td>1738</td>
</tr>
</tbody>
</table>
ICAS-94-7.5.2 Optimal Nonlinear Estimation for Aircraft Flight Control in Wind Shear
Mulgund, S.S., Stengel, R.F. .. 1747

ICAS-94-7.5.3 A Comparison between an Optimal Control Law Design and a Pole-Placement Control Law Design with Respect to Stability Characteristics and Gibson Dropback Criterion
Oliva, A.P. ... 1756

ICAS-94-7.5.4 Singular Perturbation Theory Applied to the Flight Control System Design
Wang, Z.J., Xu, R.J., Jiang, Y.X. .. 1767

DAMAGE ASSESSMENT

ICAS-94-8.5.1 On the Significance of Probabilistic Parameters for the Assessment of MSD in the Case of Aging Aircraft
Horst, P., Schmidt, H.-J. .. 1773

ICAS-94-8.5.2 On the Structural Airworthiness of Fuselages in Presence of Multiple-Site Damage
Nilsson, K.-F. ... 1784

ICAS-94-8.5.3 Quality Assessment of Diagnostic of Non-Interference Discrete-Phase Method of Measuring Compressor Blades Vibration
Szczepanik, R., Witos, M. .. 1793

ICAS-94-8.5.4 Vibration Diagnostic of Jet-Engines - A Method for Fault Detection in High Modal Density Structures
Endrocai, G., Keszthelyi, G., Járfs, I. not available

MATERIALS AND APPLICATIONS

ICAS-94-9.5.1 The Use of Design of Experiments within the Mechanical Design Process in Evaluating Composite Material Systems for a HSCT Exhaust System
Stine, F.J., Renggli, B.J. ... 1800

ICAS-94-9.5.2 Properties of Squeeze Cast Al-Base Composite Materials Strengthened with delta-Alumina Fibres
Kaczmar, J.W., Janus, A. .. 1814

ICAS-94-9.5.3 Composite Landing Gears for Light Aircraft and Helicopters
Czarnocki, P., Swoczyna, Z., Switkiewicz, R. 1824

ICAS-94-9.5.4 High-Strength Materials and Structures of Them
Shalin, R.E. not available

MATERIALS AND STRUCTURES I (STUDENT SESSION)

ICAS-94-10.5.1 Phase Structure and Phase Transformation of Ti-25Al-10Nb-3V-1Mo Alloy
Sun, Y.F., Cao, C.X. ... 1834

XVIII
ICAS-94-10.5.2 Effect of Additives on the Oxidation Resistance of Carbon/Carbon Composite

ICAS-94-10.5.3 The Analysis of the Strength and Life Prediction of Single Crystal Turbine Blades based on the Crystallographic Slip Theory
Yue, Z.F ... available

ICAS-94-10.5.4 Reliability Analysis of Strength and Stiffness for Large Scale Aircraft Structures
Lu, Z.Z. ... available
VOLUME III

MULTIDISCIPLINARY MANAGEMENT AND DESIGN EDUCATION

ICAS-94-1.6.1 Managing Aerospace Projects in a Multi-Disciplinary Environment
Balthazor, L.R. ... 1846

ICAS-94-1.6.2 Development of a Low Cost Product: The K-MAX® Story
Hoagland, M.V. .. 1855

ICAS-94-1.6.3 Graduate Aircraft Design Education
Fielding, J.P. .. 1866

ICAS-94-1.6.4 Student Competitions As a Focus for Aircraft Design Education
Green, S.I. ... 1879

ICAS-94-1.6.5 Activities of a University Based Aircraft Design Consortium in Europe
Smrceck, L., Coton, F.N., Píštěk, A., Broz, V. 1887

DESIGN APPLICATIONS OF CFD II

ICAS-94-2.6.1 High Velocity Flow Simulations for the Design of Aircraft and Space Vehicles: Finite Element Methods and Applications

ICAS-94-2.6.2 A Hybrid Method for the Aerodynamic Design of High-Lift Systems
Fiddes, S.P. ... available

ICAS-94-2.6.3 Inviscid and Viscous Flow Modelling of Complex Aircraft Configurations using the CFD Simulation System SAUNA

ICAS-94-2.6.4 Application of Euler Code to Evaluation of Store Release in a Heavily Disturbed Aircraft Flow-Field
Barbero, S., Ferretti, A. .. 1917

ICAS-94-2.6.5 Flow Analysis and Drag Prediction for Transonic Transport Wing/Body Configurations Using a Viscous-Inviscid Interaction Type Method
Muijden, J. van, Wees, A.J. van der, Vooren, J. van der, Broekhuizen, A.J. ... 1928

DYNAMIC AND HIGH ALPHA WIND TUNNEL TESTING

ICAS-94-3.6.1 Static and Oscillatory Tests on a Generic Combat Aircraft Model in a Low Speed Wind Tunnel
Guglieri, G., Quagliotti, F.B. ... 1940
ICAS-94-3.6.2 Rotary-Balance Test Comparisons with AGARD WG-16 Generic Fighter Model

ICAS-94-3.6.3 The Dynamic Approach to Rotor Blade Research - ARA's Oscillatory Test Facility
Humphreys, C. 1963

ICAS-94-3.6.4 A New Experimental Technique to Detect Instantaneous Stagnation and Separation Points on Pitching Circular Cylinders
Venkateswaran, S., Mangalam, S.M., Korategere, S., Suryanarayan, S. 1973

ICAS-94-3.6.5 Experimental Investigations on an Ogive-Cylinder at High Angles of Attack and Various Freestream Conditions
Hartmann, K. 1982

FLOW SEPARATION CONTROL

ICAS-94-4.6.1 Tangential Leading-Edge Blowing on a Combat Aircraft Configuration
Mabey, D.G., Pyne, C.R. 2001

ICAS-94-4.6.2 Control of Three-Dimensional Separation on Highly-Swept Wings
Ashill, P.R., Riddle, G.L., Stanley, M.J. 2012

ICAS-94-4.6.3 An Experimental Study on the Mechanism of Interaction between Spanwise Blowing and Leading-Edge Vortex
Qin, Y.H., Hsing, T.D., Zhuang, F.G. 2027

ICAS-94-4.6.4 F-16 Forebody Vortex Control
Smith, B.C. 2036

ICAS-94-4.6.5 A Lex Blowing Technique for Post-Stall Roll Maneuverability
Rao, D.M., Sharma, G. 2047

AEROELASTICITY II

ICAS-94-5.6.1 Aeroelastic Analysis of an Aircraft with Stand-By Actuator Using State-Space Approach
Mursal, Y., Djiojodihardjo, H., Risdaya Fadil, M. 2059

ICAS-94-5.6.2 Transonic Flutter Control of a High Aspect Ratio Wing: Mathematical Modeling, Control Law Design and Wind Tunnel Tests
Matsushita, H., Hashidate, M., Saitoh, K., Ando, Y., Fujii, K., Suzuki, K., Baidelli, D.H. 2070

ICAS-94-5.6.3 A Prediction Method of Transonic Limit Cycle Oscillation Characteristics of Fighter Aircraft Using Adapted Steady Wind Tunnel Data
Meijer, J.J., Cunningham, Jr., A.M. available

XXI
<table>
<thead>
<tr>
<th>ICAS-94-5.6.4</th>
<th>Minimization of the Helicopter Main Rotor Vibration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lewitowicz, J., Borgon, J., Dabrowski, H., Spychala, J.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICAS-94-5.6.5</th>
<th>On the Finite-State Modeling of Aeroservoelastic Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mastroddi, F., De Troia, R., Morino, L., Pecora, M.</td>
</tr>
</tbody>
</table>

COMBUSTION AND EXHAUST SYSTEMS

<table>
<thead>
<tr>
<th>ICAS-94-6.6.1</th>
<th>Numerical Computation of Turbulent Combustion and Thermal Radiation in Gas Turbine Combustion Chambers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bai, X.S., Fuchs, L.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICAS-94-6.6.2</th>
<th>Computations of Swirling Reacting Flow in a Can-Type Combustor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Di Martino, P., Cinque, G.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICAS-94-6.6.3</th>
<th>Experimental and Numerical Study of Short Hot Jet Diffusers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Amielh, M., Chauve, M.P., Cantillon, C.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICAS-94-6.6.4</th>
<th>Application of a 3D Navier-Stokes Solver to Analyse the Performance of a Lobed Mixer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rollin, G., Duparcq, J.L., Joubert, H.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICAS-94-6.6.5</th>
<th>A Numerical Simulation of Side Jet Flow in a Jet-Engine Combustor Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Esposito, G., Gamma, F., Stella, F.</td>
</tr>
</tbody>
</table>

NAVIGATION AND OPERATIONS

<table>
<thead>
<tr>
<th>ICAS-94-7.6.1</th>
<th>Satellite Navigation and Communication Systems: Aircraft Integration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grossin, J.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICAS-94-7.6.2</th>
<th>GPS Autonomous Integrity Monitoring in Strapdown-INS/GPS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Da, R., Lin, C.F.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICAS-94-7.6.3</th>
<th>Application of Solid State Flight Data Recorders to Flight Operation Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tóth, M., Magyari, B., Czövek, L., Erseki, G., Farkas, T., Lipták, G., Maróti, T., Márton, T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICAS-94-7.6.4</th>
<th>Aircraft Operations and Regional Air Quality Impacts: A Case for Clean, Alternative Fuels</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Price, R.O.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICAS-94-7.6.5</th>
<th>Application of Markov Process Theory to Investigation of Aircraft Operational Processes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pokorádi, L.</td>
</tr>
</tbody>
</table>

MULTIPLE AIRCRAFT FLIGHT PATH MANAGEMENT AND SIMULATION

<table>
<thead>
<tr>
<th>ICAS-94-8.6.1</th>
<th>The Helicopter Air-to-Air Value-Driven Engagement Model (HADEM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bent, N.E.</td>
</tr>
</tbody>
</table>
ICAS-94-8.6.2 Models for Air Combat Simulation
Stehlin, P., Hallkvist, I., Dahistrand, H. 2190

ICAS-94-8.6.3 Principled Negotiation Between Intelligent Agents: A Model for Air Traffic Management
Wangermann, J.P., Stengel, R.F. 2197

ICAS-94-8.6.4 Towards the Logic of an Airborne Collision Avoidance System which ensures Coordination with Multiple Cooperative Intruders
Zeghal, K. .. 2208

ICAS-94-8.6.5 The DOT-Loop Architecture: A Virtual Reality-Based System for Aircraft Design, Operation, and Training
Littman, D., Gogia, B.K., Anthony, D. 2219

STRUCTURAL DESIGN

ICAS-94-9.6.1 Design of a Baseline Wing for a Tiltrotor Configuration
Friehmelt, H., Reichert, G., Schrage, D.P., Stettner, M. 2226

ICAS-94-9.6.2 Finite-Element Based Preliminary Design Procedures for Wing Structures
Dalen, F. van, Bil, C., Rothwell, A., Arendsen, P. 2233

ICAS-94-9.6.3 Design and Analysis of a CFRP Integrally Stiffened Main Undercarriage Door
Günther, G., Weisgerber, D. .. 2247

ICAS-94-9.6.4 Development of a Head Impact Compatible Partition Wall
Kaeser, R., Lang, R., Flüeli, A., Dippel, C. 2258

ICAS-94-9.6.5 Crashworthiness of Seat Restraint Systems in Civil Airplanes
Giavotto, V., Astori, P., Caprile, C. 2265

MATERIALS AND STRUCTURES II/STABILITY AND CONTROL I (STUDENT SESSION)

ICAS-94-10.6.1 On the Effect of Varying Thickness on the Fundamental Frequency of Clamped Elliptic Plates
Bayer, I. ... 2276

ICAS-94-10.6.2 Active Insulation of Aeroplane Motors
Vannier, Ph., Jezequel, L. ... 2280

ICAS-94-10.6.3 Ultra Precise Attitude Reference System for Space Transportation System
Sun, J.F., Shen, G.X. .. 2289

ICAS-94-10.6.4 Fuzzy Control for Roll Agility
Zhang, S.G. ... 2296

ICAS-94-10.6.5 Guidance System Design by the Linear Exponential Quadratic Gaussian and Dual Control Method
Chio, T.S., Lin, J.-M. .. 2302
MILITARY AIRCRAFT

ICAS-94-1.7.1 Aircraft Design - A Technology Unto Itself
Newberry, C.F., Czysz, P.A. ... available

ICAS-94-1.7.2 A Preliminary Design Study of a Joint Primary Aircraft Trainer (JPAT)
Smith, S.J. ... 2312

ICAS-94-1.7.3 The Development of the Hummingbird Composite Observation Aircraft
Monk, J.S., Sparrow, E.D. .. 2322

ICAS-94-1.7.4 Aerodynamics Airworthiness Assessment for Combat Aircraft
Gupta, S.C. ... 2329

REAL FLOWS OVER AEROFOILS AND WINGS II

ICAS-94-2.7.1 An Experimental Study of an Anti-Icing Hot Air Spray-Tube System
Meola, C., Carlomagno, G.M., Riegel, E., Salvato, F. 2345

ICAS-94-2.7.2 Unsteady Surface Pressure Characteristics on Helicopter Blades:
A Key to the Physics of Rotor Noise

ICAS-94-2.7.3 The Effect of Spanwise Surface Discontinuities on the Aerodynamic
Characteristics of 2D Wings at Low Reynolds Numbers
Garry, K.P. ... 2366

ICAS-94-2.7.4 Two-Dimensional Airfoil Wakes: Experiments and Numerical
Simulation
De Ponte, S., Gibertini, G. .. 2375

AIRFRAME/PROPULSION INTEGRATION II

ICAS-94-3.7.1 Engine/Airframe Interference on Transport Aircraft with Ducted
Propfans - The European Research Program DUPRIN
Burgsmüller, W., Hoheisel, H., Kooi, J.W. 2383

ICAS-94-3.7.2 Numerical Solution of the Flow around a Turbofan and its Wind
Tunnel Simulator
Bolms, H.-Th., Schwamborn, D. ... 2400

ICAS-94-3.7.3 Analysis of a Close Coupled Nacelle Installation Using a Panel
Method (VSAERO) and a Multigrid Euler Method (MGAERO)
Lednicer, D., Tidd, D., Birch, N. ... 2409

ICAS-94-3.7.4 Applications of the 3-D Navier-Stokes Code OVERFLOW for
Analyzing Propulsion-Airframe Integration Related Issues on
Subsonic Transports

XXIV
LAMINAR FLOW AND TRANSITION II

<table>
<thead>
<tr>
<th>ICAS-94-4.7.1</th>
<th>Recent Progress in the Development of Laminar Flow Aircraft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collier, Jr., F.S.</td>
<td>2436</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICAS-94-4.7.2</th>
<th>Calculation of Transonic Laminar Flow Airfoils Using a Navier-Stokes Method and Linear Stability Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schneider, J., Ewald, B.F.R.</td>
<td>2456</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICAS-94-4.7.3</th>
<th>Design and Experimental Investigation of Transonic Natural Laminar Flow Wings</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>ICAS-94-4.7.4</th>
<th>Design of Natural Laminar Flow Fuselages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coiro, D.P., Nicolosi, F.</td>
<td>2475</td>
</tr>
</tbody>
</table>

FLOW SEPARATION II

<table>
<thead>
<tr>
<th>ICAS-94-5.7.1</th>
<th>A Comparison of Computational Flow Separation Patterns around Ellipsoids with Different Axes Ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li, Y., Hsing, T.D., Zhuang, F.G.</td>
<td>2485</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICAS-94-5.7.2</th>
<th>Non-Conical Separated Flow About Slender Bodies at Incidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaitonde, A.L., Fiddes, S.P.</td>
<td>2494</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICAS-94-5.7.3</th>
<th>Separated and High-Lift Flows over Single and Multi-Element Airfoils</th>
</tr>
</thead>
<tbody>
<tr>
<td>Larsson, T.</td>
<td>2505</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICAS-94-5.7.4</th>
<th>On the Possibility of Mathematical Modeling of Separated Flows by solving the Euler Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vyshinsky, V.V., Kravchenko, S.A.</td>
<td>2519</td>
</tr>
</tbody>
</table>

HIGH SPEED PROPULSION

<table>
<thead>
<tr>
<th>ICAS-94-6.7.1</th>
<th>Second Law of Thermodynamics Complementary with First Law for the Optimisation of a Hypersonic Airbreathing Propulsion System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hendrick, P.</td>
<td>2529</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICAS-94-6.7.2</th>
<th>Simulation of Engine/Aircraft Dynamic Behaviour for Hypersonic Flight Vehicles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bauer, A., Ludäscher, M., Rick, H., Sachs, G.</td>
<td>2535</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICAS-94-6.7.3</th>
<th>Closed-Loop Control Simulation on an HSCT Inlet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clark, P.J., Carlin, C.M.</td>
<td>2547</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICAS-94-6.7.4</th>
<th>Second Generation Supersonic Transport Propulsion System Scheme Definition taking into Account Engine and Aircraft Performances, Ecological Restrictions, Economical Factors, Reliability and Safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotmistrov, N.Yu.</td>
<td>not available</td>
</tr>
</tbody>
</table>

XXV
FLIGHT CONTROL II

ICAS-94-7.7.1 Development of Manual Flight Control Functions for a Small Transport Aircraft
Luckner, R., Heintsch, Th. .. 2556

ICAS-94-7.7.2 Critical Aerodynamic Flow Features Indicators (CAFFI) as Higher Level Control Inputs for Future Aircraft
Mangalam, S.M., Suryanarayan, S. available

ICAS-94-7.7.3 Geometry Nonlinear Optimal Feedback Tracing in Helicopter Positioning Control
Dong, A., Hu, Z.F., Song, S.F. 2566

ICAS-94-7.7.4 The Design and Performance of Digital Control Laws for Advanced Aircraft Hydraulic Actuation Systems
Chun, L.H.L., Cowling, D.A. .. 2575

COCKPIT AND HUMAN FACTORS

ICAS-94-8.7.1 Instrument Scanning in New Cockpits
Racca, E.L. .. 2593

ICAS-94-8.7.2 CASSY - Cockpit Assistant System for IFR Operation
Onken, R., Prévôt, T. .. 2598

ICAS-94-8.7.3 Transition Training in Advanced Cockpits
Pinet, J. ... 2609

ICAS-94-8.7.4A The Method of System Analysis in the Systematic Space.
The Objective Quality Criterion of TV Reproductions
Baum, P.B. ... 2613

ICAS-94-8.7.4B The Reality of Perspectives of Equipment Intellectuality.
The Peculiarities of System Dynamics Development of N-Level in the Process of Interaction Between (N-1)-Level Systems
Baum, P.B. ... 2619

FATIGUE AND DAMAGE TOLERANCE II

ICAS-94-9.7.1 Assessment of a Time Dependent Damage Accumulation Model for Crack Growth at High Temperature
Liu, A.F. ... 2625

ICAS-94-9.7.2 Acquisition and Assessment of Fatigue Loads in the CN-235 Airplane

ICAS-94-9.7.3 Fatigue Testing of a Carbon Fibre Reinforced Epoxy Tailplane
Visser, A.G., Huston, R.J. ... 2646

ICAS-94-9.7.4 Fatigue and Damage Tolerance Assessment of Aircraft Structures in Presence of Multiple Damage
Beaufils, J.Y., Boetsch, R., Davy, A., Portelance, E. 2652
STABILITY AND CONTROL II (STUDENT SESSION)

ICAS-94-10.7.1 Effect of Non-Linearities on Thrust Vectoring
Gránásy, P. .. 2663

ICAS-94-10.7.2 SATURNE, Coupling a Distributed Synchronous Model with
Anytime Programming
Porche, P. .. available

ICAS-94-10.7.3 A Preliminary Study on Buffeting Problem Utilizing Dynamics
Response Approach
Haryanto, I. .. 2669

AIRSHIPS

ICAS-94-1.8.1 Airship Operational Considerations in Developed and Undeveloped
Areas
Arata, Jr., W.H., Ware, Jr., J.F. 2678

ICAS-94-1.8.2 Airships for the Twenty First Century, A New Dimension
Gibbens, R.P. .. available

ICAS-94-1.8.3 A Systems Engineering Definition of the Air Cruise Ship Concept
Hirsch, K., Unwin, E. 2682

ICAS-94-1.8.4 The Sentinel 1000 Airship
Miller, J.A. .. available

MODELLING OF UNSTEADY FLOWS II

ICAS-94-2.8.1 Analysis of Unsteady Flows Around Wing Profiles at Longitudinal
Accelerations
Habibie, I.A., Laschka, B., Weishäupl, C. 2692

ICAS-94-2.8.2 Mathematical Modelling of Selected Maneuvres of an Aircraft Using
Modified Vortex Lattice Method
Goraj, Z., Pietrucha, J.A. 2705

ICAS-94-2.8.3 Modelling of Wing-Body Combinations in Unsteady Supersonic Flow
Zyl, L.H. van .. 2713

ICAS-94-2.8.4 PISTON Theory Revisited and Further Applications
Liu, D.D., Yao, Z.X., Sarhaddi, D., Chavez, F. 2724

WIND TUNNEL CORRECTIONS

ICAS-94-3.8.1 Realtime Computation of Wall Shapes in a Two-Dimensional
Adaptive Test Section
Holst, H. .. 2738

ICAS-94-3.8.2 Wind Tunnel Blockage Effects on the AGARD B Model in
Transonic Flow
Lombardi, G., Morelli, M. 2754

XXVII
ICAS-94-3.8.3 Investigation of a Thermal Buoyancy Effect on the Drag of Half Models Tested in the ARA Transonic Wind Tunnel
Stanniland, D.R., Burns, I.F., Green, J.E. 2765

ICAS-94-3.8.4 Scale Effect at Transonic Flow Past a Swept Thick Supercritical High-Aspect-Ratio Wing
Bokser, V.D. ... 2776

COMPUTATIONAL AERODYNAMICS

ICAS-94-4.8.1 An Unsplit GRP Method for 2D Compressible Flow on a Curvilinear Grid
Wang, L., Igra, O., Ben-Dor, G., Falcovitz, J. 2787

ICAS-94-4.8.2 Transonic Analysis using a Boundary Element Method
Lemma, U., Morino, L. ... 2793

ICAS-94-4.8.3 SIMPLENO - A New Computational Procedure for Subsonic, Transonic and Supersonic Flows
Kobayashi, M.H., Pereira, J.C.F. 2804

ICAS-94-4.8.4 Comparison of Explicit and Implicit Pseudo-Unsteady Space Marching
Sowa, J., Tod, G.R., Delafaille, F. not available

STRUCTURAL DYNAMICS

ICAS-94-5.8.1 Transient Response of a Flap Controlled Stopped Rotor
Yilikci, Y.K., Prasad, J.V.R., Schrage, D.P. 2812

ICAS-94-5.8.2 A Reconstruction Method for Determining Spanwise Air Loads from Measured Structural Responses
Lindert, H.W., Öry, H. ... 2823

ICAS-94-5.8.3 Detection and Location of Structural Damage Using Dynamic Test Data
Sensburg, O., Worden, K., Tomlinson, G.R. 2834

ICAS-94-5.8.4 One Approach of Adaptive Control Synthesis of Systems with Flexible Structure by Using Its Reduced Dynamic Model
Jankovic, J. ... 2845

BASIC AERODYNAMICS

ICAS-94-6.8.1 Viscous Computation and Design of Optimal Aerodynamic Configurations in Supersonic Flow
Nastase, A. ... 2856

ICAS-94-6.8.2 The Sweep-Back Angle and the Aerodynamic Induction like Wing Contributions to the Dihedral Effect
Gili, P. ... 2868
ICAS-94-6.8.3 A Constant Pressure Lifting Line Theory for the Calculation of Subsonic Linearized Flows
Jadic, I. ... 2879

ICAS-94-6.8.4 Testing of the AGARD B/C, ONERA and SDM Calibration Models in the T-38 1.5 m x 1.5 m Trisonic Wind Tunnel
Isakovic, J., Zrnic, J., Janjikopanji, G. 2889

FLIGHT CONTROL III

ICAS-94-7.8.1 On a Nonlinear Flight Control Law
Lu, P., Cheng, T. .. 2898

ICAS-94-7.8.2 The Application of Artificial Neural Networks on Flutter Suppression System
Budiyono, A., Djodjihardjo, H. 2905

ICAS-94-7.8.3 Neural Networks for Flight Control: Analysis and Perspectives
Cohen-Nir, D., Schart, A., Mora-Camino, F. available

ICAS-94-7.8.4 Aircraft Nonlinear Model in Multivariable Polynomial Form for Stability and Control Analysis
Oprisiu, C.S.S. .. 2915

FLIGHT TESTING

ICAS-94-8.8.1 Review of Hardware Preparation and Flight Test Operations to Assess Actuated Forebody Strakes
DiCarlo, D.J., Murri, D.G., Shah, G.H., Lord, M.T. 2924

ICAS-94-8.8.2 Light Planes Propeller’s Design: Computer Programs and Flight Tests for Thrust and Noise Investigation
Folchini, A. .. 2934

ICAS-94-8.8.3 The Development Flight Test Programme of the Pilatus PC-XII
Masefield, O.L.P., Taylor, A.R.J. 2940

ICAS-94-8.8.4 Flight Test of BK117 Fly-by-Wire Research Helicopter
Tanase, S., Nagamori, H., Taira, T. 2946

BUCKLING AND POSTBUCKLING

ICAS-94-9.8.1 Numerical and Experimental Investigation of Postbuckling of a Composite Box Structure
Frey, M., Graf, B., Messmer, S. 2955

ICAS-94-9.8.2 Non Linear Analysis of Shear Deformable Anisotropic Plates
Carrera, E. .. 2964

ICAS-94-9.8.3 Postbuckling Failure of Composite Compression Panels
Stevens, K.A., Ricci, R., Davies, G.A.O. 2975
<table>
<thead>
<tr>
<th>ICAS-94-9.8.4</th>
<th>Post-Buckled Behaviour Investigation Using a Nonlinear Finite Element Analysis</th>
<th>Tanner, A.J.</th>
<th>2982</th>
</tr>
</thead>
</table>

AIRFRAME AND ENGINE MAINTENANCE

ICAS-94-10.8.1	Aircraft Condition Monitoring System (ACMS) for Airbus A330/A340 - New Concept and Applications	Verhufen, M., Schwenke, M.	2990
ICAS-94-10.8.2	Artificial Intelligence Tools for the Maintenance of Turbofan Engines	Torella, G., Lombardo, G.	3000
ICAS-94-10.8.3	Maintenance of Transport Aircraft in Central and Eastern Europe	Rohács, J., Gering, F., Rácz, J.	3014
ICAS-94-10.8.4	Integrating Design and Manufacturing for a High Speed Civil Transport Wing	Marx, W.J., Schrage, D.P., Mavris, D.N.	3019

THE INTERNATIONAL COUNCIL OF THE AERONAUTICAL SCIENCES

ICAS PROGRAMME COMMITTEE

ICAS MEMBER ASSOCIATIONS AND ASSOCIATE MEMBERS