<table>
<thead>
<tr>
<th>VOLUME 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
</tr>
<tr>
<td>B LASCHKA .. XXVI</td>
</tr>
<tr>
<td>IN MEMORIAM .. XXXII</td>
</tr>
<tr>
<td>Frank L WATTENDORF 1906 - 1986</td>
</tr>
<tr>
<td>Hendricus J VAN DER MAAS 1900 - 1987</td>
</tr>
<tr>
<td>ICAS-VON-KARMAN LECTURE</td>
</tr>
<tr>
<td>ICAS-88-0.5 The International Vortex Flow Experiment for Computer Code Validation G DROUGGE .. XXXV</td>
</tr>
<tr>
<td>ICAS-88-0.1 The Outlook for Wind-Tunnel Testing W R SEARS .. not available</td>
</tr>
<tr>
<td>GENERAL LECTURES</td>
</tr>
<tr>
<td>ICAS-88-0.2 Flight Systems - Man/Machine Interface in the Computer Age S J MERHAV .. not available</td>
</tr>
<tr>
<td>ICAS-88-0.3 Part I: Technologies for Future Transport Aircraft M J ROEDER .. not available</td>
</tr>
<tr>
<td>Part II: Technology of the A320 Aircraft J P POTOCKI .. not available</td>
</tr>
<tr>
<td>ICAS-88-0.4 Emerging Hypersonic Propulsion Technology E T CURRAN, H L BEACH .. XLII</td>
</tr>
<tr>
<td>ICAS-88-0.6 NASA/Industry Advanced Turboprop Technology Program J A ZIEMIANSKI, J B WHITLOW Jr .. LIV</td>
</tr>
</tbody>
</table>
ICAS-88-1.1.1 Simulated Environment Testing for Aircraft
P W SMITH .. 1

ICAS-88-1.1.2 Windshear Detection and Avoidance: Airborne Systems Perspective
R L BOWLES, R TARG 7

ICAS-88-1.1.3 Takeoff Flight-Paths in the Presence of Wind and Wind Variation
K -U HAHN .. 21

ICAS-88-1.1.4 Results from a Programme of Low Altitude Atmospheric Turbulence Measurements by an Instrumented Aircraft
G W FOSTER, J G JONES 32

ICAS-88-2.1.1 Recent European Advancements in Hypersonic Aerodynamics and Aerothermics related to 'HERMES' Program
P PERRIER ... not available

ICAS-88-2.1.2 Effects of Reynolds Numbers on Static Characteristics of Aerodynamics of a Slender Cone
Q Y ZHUANG ... 43

ICAS-88-2.1.3 Heat Transfer Measurements on Biconics at Incidence in Supersonic High Enthalpy Air & Nitrogen Flows
S L GAI, T CAIN, W S JOE, R J SANDEMAN, C G MILLER .. 48

ICAS-88-2.1.4 Sensitivity of Supersonic Combustion to Combustor/Flameholder Design
G S DISKIN, G BURTON NORTHAM 58

ICAS-88-3.1.1 Fatigue Crack Growth Under Cyclic Compression Role of First Load Cycle
A F BLOM, D K HOLM, S SURESH 67

ICAS-88-3.1.2 Damage Tolerance and Engineering Properties of Aluminium-Lithium Alloys
W G J 't HART, L SCHRA, R J H WANHILL 75

ICAS-88-3.1.3 Fracture Mechanics and Fatigue Characterization of Aluminium-Lithium Alloys
G CAVALLINI, L LAZZERI, F BOSCHETTI, A SOLINA, M DE SANCTIS 84
ICAS-88-3.1.4 A New Approach to Load Transfer in Bolted Joints
V WEISSBERG, K WANDER, R ITZHAKOV 96

LAMINAR FLOW

ICAS-88-4.1.1 Natural Laminar Flow Research for Subsonic Transport Aircraft in the FRG
H KORNER ..not available

ICAS-88-4.1.2 Toward Lower Drag with Laminar Flow Technology
W D HARVEY, P J BOBBITTnot available

ICAS-88-4.1.3 A Study of Viscous Flow Over Elliptic Cylinders
R BAHL .. 102

ICAS-88-4.1.4 Design and Experimental Verification of an Advanced Fowler Flapped Natural Laminar Flow Airfoil
R BERTOCCHI .. 113

CFD APPLICATIONS TO PROPULSION

ICAS-88-5.1.1 Three Dimensional Inviscid Flow Calculations in Turbomachinery Components
T ARTS ... 121

ICAS-88-5.1.2 Numerical Simulation of Turbulent Flow Through Tandem Cascade
D XU, G WU .. 133

ICAS-88-5.1.3 3D Computations of Complex Internal Flow Systems
C HIRSCH, C LACORnot available

ICAS-88-5.1.4 Calculation of Flow Along a Cowl of a Shrouded Propfan Using a 3D-Euler Code
S LEICHER .. 138
HELICOPTER FLIGHT DYNAMICS

ICAS-88-6.1.1 Experimental Investigation of Strong In-Flight Oscillation on Helicopters and its Prevention
X ZHI-MING ... 148

ICAS-88-6.1.2 Optimization of Helicopter Takeoff and Landing
T CERBE, G REICHERT ... 154

ICAS-88-6.1.3 Theoretical Modelling for Helicopter Flight Dynamics: Development and Validation
G D PADFIELD ... 165

ACTIVE CONTROL TECHNOLOGY

ICAS-88-1.2.1 Integrated Control Technology for Commuter Aircraft
Experimental Results and Future Potential
W ALLES, H BÖHRET, H WÜNNEBERG 178

ICAS-88-1.2.2 Active Flutter Suppression for a Wing Model
G L GHIRINGHELLI, M LANZ, P MANTEGAZZA 184

ICAS-88-1.2.3 ACT Wind Tunnel Experiments of a Transport-Type Wing
T UEDA, H MATSUSHITA, S SUZUKI, Y MIYAZAWA 194

ICAS-88-1.2.4 Multivariable Control System Design for an Unstable Canard Aircraft
D COWLING ... 205

TRANSPORT AIRCRAFT I

ICAS-88-2.2.1 Transonic Investigations on High Aspect Ratio Forward- and Aft-Swept Wings
T OHNUKI, N KAMIYA .. 216

ICAS-88-2.2.2 Design Philosophy of Long Range LFC Transports with Advanced Supercritical LFC Airfoils
W PFENNINGER, C S VERMURU .. 223

ICAS-88-2.2.3 Aerodynamic Design and Integration of a Variable Camber Wing for a New Generation Long/Medium Range Aircraft
E GREFF ... 242
OPTIMAL AIRCRAFT GUIDANCE

<table>
<thead>
<tr>
<th>ICAS-88-3.2.1</th>
<th>Open Loop Optimal Control of Multi-Engine Aircraft After One Engine Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>W JIANPEI, B KAUFMANN ..</td>
<td>255</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICAS-88-3.2.2</th>
<th>Maximum Recovery Area in Approach for the Space Plane Hermes</th>
</tr>
</thead>
<tbody>
<tr>
<td>F JOUHAUD ...</td>
<td>269</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICAS-88-3.2.3</th>
<th>On Minimum Time to Point, Maneuver, and Shoot: Singular Perturbation Feedback Law in Head-On-Pass Engagement</th>
</tr>
</thead>
<tbody>
<tr>
<td>H STALFORD, E HOFFMAN ..</td>
<td>275</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICAS-88-3.2.4</th>
<th>Real-Time Guidance Laws for Three-Dimensional Interception</th>
</tr>
</thead>
<tbody>
<tr>
<td>M DO KHAC, H T HUYNH ..</td>
<td>287</td>
</tr>
</tbody>
</table>

TURBULENCE MODELLING

<table>
<thead>
<tr>
<th>ICAS-88-4.2.1</th>
<th>Comparison of Differential Reynolds Stress and k-€ Turbulence Models for the Driven Cavity Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>R K COOPER, M WOLFSHEIN, M BEHNIA, G DE VAHL DAVIS, J REIZES ...</td>
<td>297</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICAS-88-4.2.2</th>
<th>Numerical Simulation of an Unsteady Turbulent Flow Past a Sudden Expansion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y GAGNON, A GIOVANNINI ..</td>
<td>307</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICAS-88-4.2.3</th>
<th>Efficient Numerical Simulation of Turbulent Flows</th>
</tr>
</thead>
<tbody>
<tr>
<td>E ARAD, M WOLFSHEIN ..</td>
<td>317</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICAS-88-4.2.4</th>
<th>A Direct Aerofoil Performance Code Incorporating Laminar Separation Bubble Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>F N COTON, R A McD GALBRAITH ...</td>
<td>329</td>
</tr>
</tbody>
</table>

COMPOSITES I

<table>
<thead>
<tr>
<th>ICAS-88-5.2.1</th>
<th>Delamination Buckling of Cylindrical Laminates</th>
</tr>
</thead>
<tbody>
<tr>
<td>G J SIMITSES, Z Q CHEN, S SALLAM ...</td>
<td>339</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICAS-88-5.2.2</th>
<th>Buckling of Edge-Damaged Cylindrical Composite Shells</th>
</tr>
</thead>
<tbody>
<tr>
<td>M SABAG, Y STAVSKY, J B GREENBERG</td>
<td>not available</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICAS-88-5.2.3</th>
<th>Dynamic Bucking of Composite Plates and Columns Under Axial Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>T WELLER, J SINGER, H ABRAMOVICH, H RÖHRLE K JORDE</td>
<td>not available</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICAS-88-5.2.4</th>
<th>A Geometrically Nonlinear Theory of Shear Deformable Laminated Composite Plates and Its Use in the Postbuckling Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>L LIBRESCU, M STEIN ..</td>
<td>349</td>
</tr>
</tbody>
</table>
CERTIFICATION

ICAS-88-6.2.1 The FAA Designee System and its Contribution to Commercial Aviation
F W ZAPPERT, R A PARKER .. 360

ICAS-88-6.2.2 A Review of Requirements, Design Considerations and Resulting Experience for Extended Range Operation of Two-Engine Airplanes
C F FICKEISEN .. 368

ICAS-88-6.2.3 International Regulations for the Safe Transport of Dangerous Goods
J L COX ... 374

ICAS-88-6.2.4 Application of Physiological Measures to the Estimation of Pilot's Mental State
R L HARRIS, A T POPE ...not available

MISSILE GUIDANCE AND CONTROL

ICAS-88-1.3.1 Optimal Guidance Law for a Bank-to-Turn Missile
Y Di, Z Lan, X Gao, Y Wu, S Tangnot available

ICAS-88-1.3.2 Optimal Guidance for High Order and Acceleration Constrained Missile
L RUSNAK, L MEIR .. 383

ICAS-88-1.3.3 Real-Time Analysis of Microcomputer-Based Adaptive Flight Control Systems
J CHEN, Y OU, Y WANG, J LIAN, C LU, S SU 392

HYPERSONIC STRUCTURES AND MATERIALS

ICAS-88-2.3.1 Materials and Structures for Hypersonic Vehicles
D R TENNEY, W B LISAGOR, S C DIXON 398

ICAS-88-2.3.2 Metallic Thermal Protection Concept for Aerodynamic Controlled Hypersonic Vehicles
H GRALIENT, K KELLER ... 416

ICAS-88-2.3.3 Application of Integrated Fluid-Thermal-Structural Analysis Methods
A R WIETING, P DECHAUMPHAI, K S BEY, E A THORNTON,
K MORGAN .. 424

ICAS-88-2.3.4 On the Determination of Heat Transfer in Structures of Re-Entry Vehicles
C HABERLAND, A LAHRMANN, W NITSCHIEnot available
AIRCRAFT CONTROL IN WINDSHEAR

<table>
<thead>
<tr>
<th>ICAS-88-3.3.1</th>
<th>On the Compensation of the Phugoid Mode Induced by Initial Conditions and Windshears</th>
<th>435</th>
</tr>
</thead>
<tbody>
<tr>
<td>L M B C CAMPOS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICAS-88-3.3.2</th>
<th>Optimization and Guidance of Landing Trajectories in a Windshear</th>
<th>445</th>
</tr>
</thead>
<tbody>
<tr>
<td>A MIELE, T WANG, W W MELVIN</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICAS-88-3.3.3</th>
<th>Airbus Airborne Windshear System and Windshear Warning Design Process</th>
<th>463</th>
</tr>
</thead>
<tbody>
<tr>
<td>P CAMUS, J L BONAFE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PLANFORM OPTIMISATION

<table>
<thead>
<tr>
<th>ICAS-88-4.3.1</th>
<th>Turbulent Flow Measurement Behind the Wing/Body Junction of an Airbus A310 Model</th>
<th>468</th>
</tr>
</thead>
<tbody>
<tr>
<td>J OLSSON, J SZODRUCH</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICAS-88-4.3.2</th>
<th>An Aerodynamic Comparison of Planar and Non-Planar Outboard Wing Planforms</th>
<th>481</th>
</tr>
</thead>
<tbody>
<tr>
<td>D A NAIK, C OSTOWARI</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICAS-88-4.3.3</th>
<th>Flow Properties Associated with Wing/Body Junctions in Wind Tunnel and Flight</th>
<th>495</th>
</tr>
</thead>
<tbody>
<tr>
<td>A BERTELrud, J SZODRUCH, J OLSSON</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COMPOSITES II

<table>
<thead>
<tr>
<th>ICAS-88-5.3.1</th>
<th>Large Deflections of Laminated Composite Plates and Shells</th>
<th>506</th>
</tr>
</thead>
<tbody>
<tr>
<td>R SCHMIDT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICAS-88-5.3.2</th>
<th>Dynamic Stability of Transversely Isotropic Viscoelastic Flat Plates</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>L LIBRESCU, N K CHANDIRAMANI</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICAS-88-5.3.3</th>
<th>Optimization of Conical Anisotropic Shells</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>G V VASILIEV, G N ADAM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
UNSTEADY AERODYNAMICS - NONVISCID MODELLING

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICAS-88-6.3.1</td>
<td>Unsteady Transonic Flows Past Airfoils and Wings Using a Fast Implicit Godunov Type Euler Solver</td>
<td>A BRENNERIS, A EBRELE</td>
<td>not available</td>
</tr>
<tr>
<td>ICAS-88-6.3.2</td>
<td>Thickness Effects in the Unsteady Aerodynamics of Interfering Lifting Surfaces</td>
<td>L P RUIZ-CALAVERA, W GEISSLER</td>
<td>514</td>
</tr>
<tr>
<td>ICAS-88-6.3.3</td>
<td>Unsteady Supersonic Flow Computations for Arbitrary Three-Dimensional Configurations</td>
<td>D D LIU, P C CHEN, P GARCIA-FOGEDA</td>
<td>524</td>
</tr>
</tbody>
</table>

AIR TRAFFIC CONTROL

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICAS-88-1.4.1</td>
<td>ATSAM (Air Traffic Simulation Analysis Model) A Simulation-Tool to Analyze En-Route Air Traffic Scenarios</td>
<td>A HÜRMANN</td>
<td>545</td>
</tr>
<tr>
<td>ICAS-88-1.4.2</td>
<td>Flight Simulations on MLS-Guided Interception Procedures and Curved Approach Path Parameters</td>
<td>L J J ERKELENS</td>
<td>554</td>
</tr>
<tr>
<td>ICAS-88-1.4.3</td>
<td>Approach Flight Guidance of a Regional Air Traffic Aircraft Using GPS in Differential Mode</td>
<td>T JACOB</td>
<td>566</td>
</tr>
<tr>
<td>ICAS-88-1.4.4</td>
<td>In-Flight Inertial Guidance Alignment</td>
<td>D GOSHEN-MESKIN, I Y BAR-ITZHACK</td>
<td>575</td>
</tr>
</tbody>
</table>

MODERN PROPELLER AERODYNAMICS

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICAS-88-2.4.1</td>
<td>From Single Rotating Propfan to Counter Rotating Ducted Propfan Propeller/Fan Characteristics</td>
<td>M LECHT</td>
<td>578</td>
</tr>
<tr>
<td>ICAS-88-2.4.2</td>
<td>Single and Contra-Rotation High Speed Propellers: Flow Calculation and Performance Prediction</td>
<td>P W C WONG, M MAINA, C R FORSEY, A J BOCCI</td>
<td>589</td>
</tr>
<tr>
<td>ICAS-88-2.4.3</td>
<td>From Single-Rotating Propfan to Counter-Rotating Ducted Propfan Propeller/Fan Characteristics</td>
<td>P SCHIMMING</td>
<td>not available</td>
</tr>
<tr>
<td>ICAS-88-2.4.4</td>
<td>Experimental and Numerical Study of Propeller Wakes in Axial Flight Regime</td>
<td>D FAVIER, A ETTOUIL, C MARESCA, C BARBI</td>
<td>602</td>
</tr>
</tbody>
</table>
DYNAMICS AND FATIGUE

ICAS-88-3.4.1 In-Flight Processing of Aircraft Fatigue Loads from Aerodynamic Parameters
D BARUCH, A BERKOVITS not available

ICAS-88-3.4.2 Fatigue Life Improvement of Thick Sections by Hole Cold Expansion
J Y MANN, P W BEAVER, J G SPARROW 617

ICAS-88-3.4.3 The Use of Static Analysis and the Stress Modes Approach as an Engineering Oriented Procedure for Calculating the Response of Aeronautical Structures to Random Excitation
G MAYMON 626

ICAS-88-3.4.4 Quadrilateral Coons Surface Shell Finite Element with Discrete Principal Curvature Lines
T Q YE, Y ZHAO 631

AERODYNAMIC DESIGN NUMERICAL METHODS

ICAS-88-4.4.1 Aerodynamic Optimization
K -W BOCK not available

ICAS-88-4.4.2 Subsonic Aerodynamic Prediction of Shuttle-Like Configurations Using Nonlinear Vortex-Lattice Method
D ALMOSNINO, J ROM 638

ICAS-88-4.4.3 Computational Aerodynamic Design Concepts for Futuristic Air Combat
S C GUPTA 644

ICAS-88-4.4.4 Navier-Stokes Computation of High-Speed Wing Flow
A RIZZI, C ERIKSSON not available

VORTEX FLOWS - VISCOUS EFFECTS

ICAS-88-5.4.1 Investigations on the Vorticity Sheets of a Close-Coupled Delta-Canard Configuration
H -C OELKER, D HUMMEL 649

ICAS-88-5.4.2 Study of Three-Dimensional Effects of Vortex Breakdown
M D SALAS, G KURUVILA 663

ICAS-88-5.4.3 Numerical and Experimental Determination of Secondary Separation at the Leeward Side of a Delta Wing in Compressible Flow
E M HOUTMAN, W J BANNINK 673
<table>
<thead>
<tr>
<th>Conference</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICAS-88-5.4.4</td>
<td>Investigation of Flow Over Cavity-Blunt Body Combination at Supersonic Speed</td>
<td>O H Rho, D H Lee, J H Kim, S J Kim</td>
<td>681</td>
</tr>
<tr>
<td>HYPersonic Vehicle Design and Propulsion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICAS-88-1.5.1</td>
<td>Sänger II, A Hypersonic Flight and Space Transportation System</td>
<td>D E Koelle</td>
<td>687</td>
</tr>
<tr>
<td>ICAS-88-1.5.2</td>
<td>Air Breathing Combined Engines for Space Transportation Systems</td>
<td>A LARDELLIER, M POULIQUEN</td>
<td>694</td>
</tr>
<tr>
<td>ICAS-88-1.5.3</td>
<td>Driving Mechanisms in Unstable Ramjet Combustors</td>
<td>U G Hedge, D Reuter, B T Zinn</td>
<td>701</td>
</tr>
<tr>
<td>INLETS AND NOZZLES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICAS-88-2.5.1</td>
<td>New Guide for Accurate Navier-Stokes Solution of Two-Dimensional External Compression Inlet with Bleed</td>
<td>C K Forester, E Tjonneland</td>
<td>709</td>
</tr>
<tr>
<td>ICAS-88-2.5.2</td>
<td>Numerical Prediction of Flow Entrainment Around a V/STOL Aircraft in Ground Effect</td>
<td>C M Milford</td>
<td></td>
</tr>
<tr>
<td>ICAS-88-2.5.3</td>
<td>Investigation of the Pressure Distribution in 2D Rocket Nozzle with Mechanical System for TVC</td>
<td>T Dragović, B Jojić, Z Stefanović</td>
<td>719</td>
</tr>
<tr>
<td>EMERGING MATERIALS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICAS-88-3.5.1</td>
<td>The Design of Aerospace Materials for the Future</td>
<td>C J Peel, R Moreton</td>
<td>724</td>
</tr>
<tr>
<td>ICAS-88-3.5.2</td>
<td>Emerging Materials Technologies for Future Aero Gas Turbines</td>
<td>A Hirst</td>
<td></td>
</tr>
<tr>
<td>ICAS-88-3.5.3</td>
<td>Some Novel Test Methods for, and Associated Problems of, Mechanical Strength Characterisation of Engineering Ceramics</td>
<td>G R Esoam, G Syers</td>
<td>744</td>
</tr>
</tbody>
</table>
VORTEX FLAPS

ICAS-88-4.5.1 Effectiveness of Combination of Apex and Leading-Edge Vortex Flap on a 74 Degree Delta-Wing or Without Trailing-Edge Flap
T D HSING, K X SHEN, Z F WANG, W H GUO, F G ZHUANG 749

ICAS-88-4.5.2 The Behaviour and Performance of Leading-Edge Vortex Flaps
D G ELLIS, J L STOLLERY .. 758

ICAS-88-4.5.3 Control-Configured Vortex Flaps - A Feasibility Study
D M RAO ..not available

UNSTEADY AERODYNAMICS - VISCOUS MODELLING

ICAS-88-5.5.1 Viscous/Inviscid Interaction Procedure for High-Amplitude Oscillating Airfoils
W GEISSLER, I W CARR, T CEBECI 766

ICAS-88-5.5.2 Time-Consistent Computation of Transonic Buffet Over Airfoils
P GIRODROUX-LAVIGNE, J C Le BALLEUR 779

ICAS-88-5.5.3 Application of Unsteady Aerodynamic Methods for Transonic Aeroelastic Analysis
W WHITLOW .. 788

TRANSPORT AIRCRAFT II

ICAS-88-1.6.1 Transegession Investigations of Helicopter Dynamics
K SZUMAŃSKI ... 797

ICAS-88-1.6.2 The Aerodynamic Development of the Fokker 100
E OBERT ... 807

ICAS-88-1.6.3 Evolution of the LAVI Fighter Aircraft
S TSACH, A PELED ... 827

ICAS-88-1.6.4 Design Evolution for a New Regional Airliner
J SPINTZYK, H KROJER ...not available
GAS TURBINE TECHNOLOGY

ICAS-88-2.6.1 3D Flow Computations in a Centrifugal Compressor
With Splitter Blade Including Viscous Effect Simulation
V MILLOUR .. 842

ICAS-88-2.6.2 Detailed Measurements of the Flow in the Vaned
Diffuser of a Backswept Transonic Centrifugal Impeller
Ch FRADIN .. 848

ICAS-88-2.6.3 Aerodynamic Response of Multi-State Blade
Rows
S FLEETER ..not available

ICAS-88-2.6.4 Optical Diagnostic for Air Breathing Engines
Y LEVY, Y M TIMNAT 855

SYSTEMS EVALUATION

ICAS-88-3.6.1 Flight Evaluation of the ATTAS Digital Fly-By-Wire/
Light Flight Control System
D HANKE, H -H LANGE 866

ICAS-88-3.6.2 An Intelligent Fiberoptic Data Bus for Fly-By-Light
Applications
L C MANOHARAN, S MUTHUVEL 877

ICAS-88-3.6.3 Digital Electronics on Small Helicopter Engines
K J HICKS ... 880

ICAS-88-3.6.4 Engine Control – A New High Accuracy Pressure Sensor
J PASCAL, H BARNY, H FIMA 886

CFD METHODS - I

ICAS-88-4.6.1 Accuracy Versus Convergence Rates for a Three
Dimensional Multistage Euler Code
E TURKEL .. 892

ICAS-88-4.6.2 An Artificial Viscosity Model and Boundary Condition
Implementation of Finite Volume Methods for the Euler Equations
L WANG, F ZHUANG .. 898
Numerical Simulation of Transonic Wing Flows using a Zonal Euler / Boundary-Layer / Navier-Stokes Approach
M A ZCHMATZ, F MONNOYER, K M WAKIE

Numerical Simulation of 2-D Turbulent Flow Fields With Strong Separation
W FRITZ
VOLUME II

TRANSPORT AIRCRAFT III

ICAS-88-1.7.1 The Designer's Impact on Commercial Aircraft Economics
A L JACOBSON, D G MURPHY ... 945

ICAS-88-1.7.2 Influence of EFCS-System Failures on Structural Design of Modern Transport Aircraft
M BESCH ..not available

ICAS-88-1.7.3 Sensitivity Analysis and Multidisciplinary Optimization for Aircraft Design: Recent Advances and Results
J SOBIESZCZANSKI-SOBIESKI .. 953

ICAS-88-1.7.4 High Speed Commercial Transport Study Status Report
M MACKINNON ...not available

ULTRALIGHTS AND SAILPLANES

ICAS-88-2.7.1 The Calculation of Aerodynamic Forces on Flexible Wings of Agricultural Aircraft
T GAUSZ .. 965

ICAS-88-2.7.2 Aerodynamic and Structural Design of the Standard Class Sailplane ASW-24
L M M BOERMANS, G WAIBEL .. 969

ICAS-88-2.7.3 Man Powered Aircraft - State of the Art 1987
G M LILLEY, P G FIELDING ..not available

ICAS-88-2.7.4 Flight Mechanical Analysis of Procedure Turns in Agricultural Aviation
I LOVRO ...not available
BOUNDARY LAYER CONTROL

ICAS-88-3.7.1 **Flight and Windtunnel Investigations on Boundary Layer Transition at Reynolds Numbers up to 10^7**
K R HORSTMANN, A QUAST, G REDEKER
979

ICAS-88-3.7.2 **Experimental Study of the Behaviour of NACA 0009 Profile in a Transonic LEPU Configuration**
J P BONNET, J DELVILLE, J LEMAY
987

ICAS-88-3.7.3 **Turbulent Boundary Layer Manipulation in Zero Pressure Gradient**
E COUSTOLS, J COUSTEIX
999

ICAS-88-3.7.4 **Laminar Flow Control Leading Edge Systems in Simulated Airline Service**
R D WAGNER, D V MADDALON, D F FISHER
1014

CFD METHODS II

ICAS-88-4.7.1 **A Parallel Algorithm of AF-2 Scheme for Plane Steady Transonic Potential Flow with Small Transverse Disturbance**
S-Y LI, Q-W LIAO, D-J LUO
1024

ICAS-88-4.7.2 **The Embedded Grid-Concept and TSP Methods Applied to the Calculation of Transonic Flow About Wing/Body/Nacelle/Pylon-Configurations**
W DIEGIAN, S G HEDMAN
1029

ICAS-88-4.7.3 **Multigrid Computation of Transonic Flow About Complex Aircraft Configurations, using Cartesian Grids and Local Refinement**
B EPSTEIN, A L LUNTZ, A NACHSHON
1038

ICAS-88-4.7.4 **Towards a General Three-Dimensional Grid Generation System**
L G TYSKLL, S G HEDMAN
1047

AEROELASTICITY I

ICAS-88-5.7.1 **Research and Application in Aeroservoelasticity at the NASA Langley Research Center**
J ABEL, T E NOLL
1059

ICAS-88-5.7.2 **Aircraft Aeroelasticity and Structural Dynamics Research at the NASA Langley Research Center—Some Illustrative Results**
R V DOGGETT JR, F W CAZIER JR
1072
ICAS-88-5.7.3 Optimization of Nonlinear Aeroelastic Tailoring Criteria
F ABDI, H IDE, V J SHANKAR, J S SOBIESKI 1083

ICAS-88-5.7.4 Aeroelasticity and Structural Optimization of Rotor Blades with Swept Tips
P P FRIEDMANN, R CELI 1092

METALLIC ALLOYS

ICAS-88-6.7.1 Behaviour of Aluminum-Lithium Alloys in Typical Aircraft Structural Applications
J C EKVALL, D J CHELLMANnot available

ICAS-88-6.7.2 Alloy Design, Microstructure and Mechanical Properties of Superlight High Stiffness Aluminium-Lithium Materials
M PETERS, W BUNK 1109

ICAS-88-6.7.3 Ni18, A new High Strength, Damage Tolerant PM Superalloy for Turbine Discs Application
A WALDER, M MARTY, J L STURDEL, E BACHELET,
J H DAVIDSON, J F STOHR 1120

MEASUREMENT AND CRASHWORTHINESS

ICAS-88-1.8.1 A System for Measuring, Recording and Processing Flight Test Data
J T M VAN DOORN, P J H M MANDERS,
O VAN TEUNENBROEK 1127

ICAS-88-1.8.2 Non-Destructive Methods Applied to Aviation Equipment Testing in Service
J LEWITOWICZ 1145

ICAS-88-1.8.3 Application of a Flight Performance Advisory System to the F/A-18 Aircraft
M J FRIEDMANnot available

ICAS-88-1.8.4 Damage Development in Composite Materials During Fatigue, Impact and Hygrothermal Loading
I H J M VERPOEST, M G T WEVERSnot available

XVI
ADVANCES AVIONICS

ICAS-88-2.8.1 The Design, Development and Integration of the Complex Avionics Systems
P SCHIRLE .. 1155

ICAS-88-2.8.2 Optimal Integration of Inertial Sensor Functions for Flight Control and Navigation
U KROGMANN ..not available

ICAS-88-2.8.3 Central Fault Display Systems
F VAUVERSIN, J P POTOCKI DE MONTALK 1164

ICAS-88-2.8.4 Fit and Forget Avionics
T G HAMILL ..not available

WIND TUNNEL TESTING

ICAS-88-3.8.1 Some New Test Results in the Adaptive Rubber Tube Test Section of the DFVLR Gottingen
A HEDDERGOTT, E WEDEMEYER 1172

ICAS-88-3.8.2 Application of a Flexible Wall Testing Technique to the NASA Langley 0.3-m Transonic Cryogenic Tunnel
S W D WOLF .. 1181

ICAS-88-3.8.3 Blockage Corrections at High Angles of Attack in a Wind Tunnel
P A GILI, D M PASTRONE, F B QUAGLIOTTI, E BARBANTINI 1192

ICAS-88-3.8.4 Cryogenic Wind Tunnels for High Reynolds Number Testing
R A KILGORE, P L LAWING 1199

CFD APPLICATIONS TO AIRCRAFT DESIGN

ICAS-88-4.8.1 NASA - The First Year
F R BAILEY, P KUTLER 1210

ICAS-88-4.8.2 Recent Developments and Industrial Applications of Euler- and Navier-Stokes-Solvers
B WAGNER, W SCHMIDTnot available

ICAS-88-4.8.3 An Efficient Method for Computing Transonic and Supersonic Flows About Aircraft
G VOLPE, A JAMESON 1224

ICAS-88-4.8.4 Managing CFD in Industry
R H WICHEMeyer .. 1237

XVII
ICAS-88-5.8.1 A320 Full Scale Structural Testing for Fatigue and Damage Tolerance Certification of Metallic and Composite Structure
B BRANDECKER, R HILGERT
1244

ICAS-88-5.8.2 Summary of the Kfir Fatigue Evaluation Program
E REINBERG, A BROT
1257

ICAS-88-5.8.3 Space Shuttle Orbiter Windshield Bird Impact Analysis
K S EDELSTEIN, R E McCARTY
1267

ICAS-88-5.8.4 Multi-Mode GVT/FEM Correlation
S SIEGEL, V K GUPTA
1275

ICAS-88-6.8.1 The Application and Improvement of "Wall Pressure Signature" Correction Method for the Tunnel Wall Interference
J GUIQING
1291

ICAS-88-6.8.2 Analysis of Fluctuating Pressure on a Nose-Cylinder Body Measured in a Transonic Wind Tunnel
M EBIHARA, Y AIHARA
not available

ICAS-88-6.8.3 Unsteady Motion of Vortex-Breakdown Positions on Delta Wings
H PORTNOY
1299

ICAS-88-1.9.1 Design of Higher Bandwidth Model Following for Flight Vehicle Stabilization and Control
F HENSCHEL, G BOUWER
1304

ICAS-88-1.9.2 Phase II Flight Simulator Mathematical Model and Data-Package, Based on Flight Test and Simulation Techniques
A M H NIEUWPOORT, J H BREEMAN, M BAARSPUL
J A MULDER
1311

ICAS-88-1.9.3 Sensitivity of Reduced Flight Dynamic Model Depending on Elasticity of Aircraft Structure
J JANKOVIĆ
1328

XVIII
PROPELLER NOISE

ICAS-88-2.9.1 Predicting the Noise of Counter-Rotating Propellers
 J M CAILLEAU .. not available

ICAS-88-2.9.2 Analysis of the Transmission of Sound into the Passenger Compartment of a Propeller Aircraft Using the Finite Element Method
 P GÖRANSSON, P DAVIDSSON 1334

ICAS-88-2.9.3 The Ultralight Aeroplane - A "Pain in the Air" or an Environmentally Acceptable Flight Vehicle?
 H HELLER, W DOBRZYNSKI, H DAHLEN 1342

AIRCRAFT STABILITY AND CONTROL

ICAS-88-3.9.1 The Study of Global Stability and Sensitive Analysis of High Performance Aircraft at High Angles-of-Attack
 H GAO, Z D HE Z Q ZHOU 1356

ICAS-88-3.9.2 Determination of Departure Susceptibility and Centre of Gravity Limitations for Control Augmented Aircraft
 M MEDINA, M SHAHAF 1364

ICAS-88-3.9.3 Aerodynamic Design of a Manual Aileron Control for an Advanced Turbo-Prop Trainer
 O L P MASEFIELD 1374

LOW SPEED FLOW

ICAS-88-4.9.1 Experimental Investigation of the Complex 3-D Flow Around a Body of Revolution at Incidence
 G IUSO, M ONORATO, M S OGGIANO, S DE PONTE, B YUZHIANG, Z XIAODI 1382

ICAS-88-4.9.2 The Flight Performance of an RPV Compared with Wind Tunnel and Theoretical (CFD) Results
 J L STOLLERY, D J DYER 1392

ICAS-88-4.9.3 Some Types of Scale Effect in Low-Speed, High-Lift Flows
 D S WOODWARD, B C HARDY, P R ASHILL 1402
VOXER FLOWS - N/S EULER EQUATIONS

ICAS-88-5.9.1 Aerodynamic Applications of an Efficient Incompressible Navier-Stokes Solver
P -M HARTWICH, C -H HSU, J M LUCKRING, C H LIU 1417

ICAS-88-5.9.2 Basic Analysis of the Flow Fields of Slender Delta Wings Using the Euler Equations
S SCHERR, A DAS ... 1428

ICAS-88-5.9.3 Modeling of Vortex Dominated Flowfields in the Euler Formulation
K D LEE, S A BRANDT .. 1437

DAMAGE MECHANICS

ICAS-88-6.9.1 Stress Intensity Factor of Three Dimensional Crack at the Edge of a Hole
M OORE .. 1451

ICAS-88-6.9.2 The Calculation of Energy Release Rate Components Using the Coupled Strain Energy
F WEINSTEIN .. 1461

ICAS-88-6.9.3 Axisymmetrical Response by a Penny-Shaped Interface Crack in Multi-Layered Composites
X MA, Z ZOU, W HUANG, C SHAO 1466

ICAS-88-6.9.4 Impact of Carbon Fibre Composites
J MORTON .. not available

OPTIMAL DESIGN

ICAS-88-1.10.1 Controlled Non-Conforming Finite Elements and Data Base as Approach to the Analysis of Aircraft Structure
Z BOJANIČ, M JOSIFOVIĆ 1472

ICAS-88-1.10.2 Optimal Design of Large Laminated Structures
R I WATKINS .. 1480

ICAS-88-1.10.3 Efficient Procedures for the Optimization of Aircraft Structures with a Large Number of Design Variables
U -L BERKES, J WIEDEMANN 1487

ICAS-88-1.10.4 Variation of Anisotropic Axes Due to Multiple Constraints in Structural Optimization
D W MATHIAS, G HORNUNG, H RÖHRLE 1498
AIRCRAFT POWER PLANT CONTROL

ICAS-88-2.10.1 Mathematical Model of a Turbo-Fan-Engine with Real-Time Capabilities
R BROCKHAUS ..not available

ICAS-88-2.10.2 Toward More Effective Redundancy in Digital Gas Turbine Engine Controls
K ROBINSON ..not available

ICAS-88-2.10.3 A Turbofan System Using a Nonlinear Precompensator and a Model - Following Riccati - Feedback
H SOLTER ..1505

ICAS-88-2.10.4 Propulsion Interface Unit (PIU) Controller on PW1120/DEEC Re-Engined P4 Aircraft
I FRISCH, D IVerson, E T Jonneland1511

TRANSONIC FLOW

ICAS-88-3.10.1 The Cause and Cure of Periodic Flows at Transonic Speeds
J GIBB ..1522

ICAS-88-3.10.2 Calculation and Measurement of Transonic Flows Over Aerofoils with Novel Rear Sections
P R ASHILL ..1531

ICAS-88-3.10.3 Experience in Application of Active Vibration Control Technology to a Wind Tunnel Model and to Flying Airbus
K KOENIG ..1542

ICAS-88-3.10.4 Transonic Magnus Force on a Finned Configuration
M RINGEL, A SEGINER1553

AEROELASTICITY II

ICAS-88-4.10.1 Flutter Calculation of Flutter Models for JAS 39 Gripen
V J E STARK ...1559

ICAS-88-4.10.2 Three Dimensional Flow Simulation with Application to Aeroelastic Analysis
J L F AZEVEDO ..1570

ICAS-88-4.10.3 Design and Analysis of a High Speed Composite Material Wing Flutter Model
A P N SUTHERLAND1580

ICAS-88-4.10.4 Orthogonalisation: A Tool for Improved Test Data
D M WILSON ..1591
COMPOSITES IV

ICAS-88-5.10.1 Advanced Composite Development for Large Transport Aircraft
R D WILSON .. 1600

ICAS-88-5.10.2 Composite Secondary and Primary Structures for Pilatus Aircraft. Experience from the Development and Considerations for Future Applications
V DORER, K WIESSLER ... 1605

ICAS-88-5.10.3 New Developments in ARALL Laminates
L B VOGELSAANG, J W GUNNINK, D CHEN,
G H J J ROEBROEKS, A VLOT 1615

ICAS-88-5.10.4 Randome Technology
M NATTER, H-W SCHRODER, W SCHAER 1634

DESIGN OPTIMISATION AND CAD/CAM

ICAS-88-1.11.1 Integrated CAE-Application of a CAD/CAM System Through the Extensive Use of Interfaces
L THIEME .. 1641

ICAS-88-1.11.2 Aircraft Configuration Analysis/Syntesis Expert System: A New Approach to Preliminary Sizing of Combat Aircraft
R BARGETTO, B MAZETTI, G GARBOLINO 1645

ICAS-88-1.11.3 Computer-Aided Structural Optimisation of Aircraft Structures
P BARTHOLOMEW, H WELLEN 1650

ICAS-88-1.11.4 Computational Design and Efficiency Optimization of Agricultural Airplanes
R STAUFENBIEI, T SCHERER, I STEIGER 1664

LIFE CYCLE AND RELIABILITY

ICAS-88-2.11.1 The Review of Progress on the Development of Life Cycle Costing Techniques as an Aid to Procurement and Modification Decisions
D W DANIEL ... 1677
ICAS-88-2.11.3 A Reliability and Maintainability Prediction Method for Aircraft Conceptual Design
V C SERGHIDES, J P FIELDING .. 1683

ICAS-88-2.11.4 Mechanical Failure Analysis as a Means of Improving Quality Assurance in the Aeronautical Industry
M KENDLER, E MAKEVET ... 1693

VOXETE FLOWS - EXPERIMENTAL

ICAS-88-3.11.1 Canard / LEF Design for a Multi-Mission Fighter Aircraft
M SHEPSHELOVICH, D ABoudI, E BAHRAv,
B EBSTEIN, A LUNTZ ... 1700

ICAS-88-3.11.2 Vortical Flows Around Delta Wings in Unsteady Maneuvers and Gusts
R STAUFENBIEL, B STECKEMETZ, S ZHU 1714

ICAS-88-3.11.3 Quantitative Flow Field Visualization in Wind Tunnels by Means of Particle Image Velocimetry
J KOMPENHANS .. 1725

ICAS-88-3.11.3 Vortex Breakdown - Investigations by Using the Ultrasonic-Laser-Method and Laser-Sheet Technique
R H ENGLER .. 1731

ICAS-88-3.11.4 Effects of Maneuver Dynamics on Drag Polars for an Aircraft with Automatic Wing Camber Control
J W HICKS, B J MOULTON .. 1738

ENGINE/AIRFRAME INTEGRATION

ICAS-88-4.11.1 Low Speed Wind Tunnel Investigation of Propeller Slipstream Aerodynamic Effects on Different Nacelle/Wing Combinations
I SAMUELSSON .. 1749

ICAS-88-4.11.2 Very High Bypass Ratio Engines for Commercial Transport Propulsion
H SKAVDAHL, R A ZIMBRICK, J L COLEHOUR,
G P SALLEE .. 1766

ICAS-88-4.11.3 Aerodynamic Instability Definitions and Their Use in Illustrating Nonrecoverable Stall Technology
W G STEENKEN ... 1773

ICAS-88-4.11.4 Engine Surge Simulation in Wind-Tunnel Model Inlet Ducts
K W LOTTER, P -A MACKRODT, R D SCHERBAUM 1773
ICAS-88-5.11.1 Molding and Joining of Continuous Fiber-Reinforced Polyetheretherketone (PEEK)
G KEMPE, H KRAUSS 1789

ICAS-88-5.11.2 Stability of Simply Supported Sandwich Panels
Having Anisotropic Faces Under Uni-Axial Compressive Load
R J FRITZ, C DIAMANTAKOS, M A STONEnot available

ICAS-88-5.11.3 NDE of Composites Using Lamb Waves: Theory
and Experiment
V DAYAL, V K KINRAnot available

ICAS-88-5.11.4 The Measurement and Comparison of Material and
Structural Damping in Metal-Matrix Composites
V K KINRA, G G WREN, A K RAYnot available
RESERVE PAPERS

ICAS-88-1.1R Icing Degree Moderate to Severe: If and Where in Clouds
 H-E HOFFMAN .. 1801

ICAS-88-1.5R1 Rarefield-Flow Pitching Moment Coefficient Measure-
 ments of the Shuttle Orbiter
 R C BLANCHARD, E W HINSON 1813

ICAS-88-1.10R Integrated Structural-Aerodynamic Design
 Optimization
 R T HATKEA, P J KAO, B GROSSMAN, D POLEN
 J SOBIESZCZANSKI-SOBIESKI 1820

ICAS-88-3.7R Transonic Shock Boundary Layer Interaction with
 Passive Control
 S RAGHUNATHAN, S T MCILWAIN 1826

ICAS-88-3.8R Wind Tunnel Blockage Corrections for Bluff
 Bodies with Lift
 G N V RAO, J DEENADHAYALAN 1835

ICAS-88-3.11R Flow Field Visualization Study on a 65° Delta Wing
 K A BUTEFISCH ... 1845

ICAS-88-4.5R Non Linear Aerodynamics of Delta Wings in
 Combined Pitch and Roll
 J ER-EL, D SATER, D WEIHS 1852

ICAS-88-4.6R1 Boundary Conditions for Viscous Incompressible
 Two-Dimensional Flows
 A DAGAN, R ARIELI 1859

ICAS-88-4.9R1 Flow Separation on Yawed Cylinders: Pressures and
 Wake Surveys
 S DE PONTE, A ABBÀ P BORSA 1866

ICAS-88-4.9R2 Body Wing Tail Interference Studies of High
 Angles of Attach and Variable Reynolds Numbers
 K HARTMANN, V KANAGARAJAN, D NIKOLITSCHEK 1871

ICAS-88-5.7R Effect of Aerodynamic Heating on Deformation of
 Composite Cylindrical Panels in a Gas Flow
 V BIRMAN, C W BERT, I ELISHAKOFF 1886

THE INTERNATIONAL COUNCIL OF THE AERONAUTICAL SCIENCES LXXVIII

ICAS PROGRAM PLANNING COMMITTEE LXIX

ICAS MEMBER ASSOCIATIONS .. LXX

ICAS ASSOCIATE MEMBERS ... LXXIV

XXV