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Introduction

The concept of aeroelastic tailoring has renewed the
interest in forward swept wings, and consequently this
configuration has been the focus of much of the research
on the subject. The recent survey paper by Shirk et. al.
cites many studies of aircraft with forward swept wings,
but relatively few dealing with high aspect ratio aft swept
configurations. This is quite understandable since the
first application of the concept was for the elimination
of divergence of forward swept wings?. Weisshaar and
Ryan® considered the effects of tailoring both forward
and aft swept wings, but in quite a general manner.

However, future transport aircraft are certain to
make use of composite materials in their primary struc-
tures, and are likely to have quite high aspect ratiost. A
high aspect ratio aft swept wing is less prone to aeroelas-
tic divergence, but the increase in aspect ratio could cause
fiutter to become a problem. One of the few papers de-
voted solely to the problem of tailoring high aspect ratio
composite wings was the work by Gimmestad®, but this
was limited to some simple cases. A further area of aeroe-
lastic tailoring that has received relatively little attention
i in the use of non—symmetric laminates. This research
considers the use of both symmetric and non-symmetric
laminates to improve the aeroelastic performance of high
aspect ratio, aft-swept wings.

This problem is solved using an integrating matrix
method, which was used by Lehman®’ to analyse some
simple aeroelastic examples, and by Green® to study the
effects of stores on forward swept wings. The method re-
quires the fourth order differential equation for flutter to
be written in a state vector form, and then an integrat-
ing matrix is applied to the resulting first order matrix
equation, which is then solved iteratively. Although this
is a numerical solution method, it requires only a small
number of elements (typically four or five) to obtain a
converged solution. The main advantage of the integrat-
ing matrix method is that, since it only requires a small
number of elements, a large number of parameters can
be investigated. Clearly the choice of layup of the fibres
is fundamental to the design process, and this forms the
bulk of the research. Other parameters, such as aspect
ratio and taper ratio are also investigated.

Solution of the Aeroelastic Equations

State Vector Formulation

The aeroelastic behaviour of the wing shown in fig-
ure 1 may be represented as a fourth order differential
equation, and the integrating matrix technique is applied
to this equation to obtain a solution. An outline of the
general method is given here, and a more detailed treat-
ment is to be found in ref. 7.

In order to apply the integrating matrix method, the
equation of motion must first be written in a state vector
form. The fourth order differential equation is written
in terms of a state vector comprised of four displacement
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Figure 1. Geometric Layout of Wing

and four force degrees of freedom,
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or,

y = 2y + My - Q(s,q)y (2)

The structural matrix Z is derived from an anisotropic
plate beam model®, and contains the compliances that are
required for bending, torsion, and extension of a beam.
The compliances are computed from the inverse of the
modulus matrix, for which the moduli are given by,

Y, n/2
Aij= /_h;Q-‘idz="o Y. Qlr—(r-1)

r=1-nf2
b2 Rz °A ,
By;= /_ b2 Qijzdz = —2"=§'/2% P-r-17 3
LN n/2 Y
Dy=[,,Qude=3 L & -(r-1y]



The terms @Q;; are the transformed moduli for each lamina
and are dependent on the fibre orientation angle 8. These
moduli are then integrated through the laminate, and if
all layers have the same thickness (h,) the integration is
replaced by the sum shown in equation (3). It should be
noted that if the lamina are arranged symmetrically with
respect to the mid-line, there is no contribution to the
B;; terms, which can be dropped from the analysis. In
such a case the N, and u terms may be omitted, and this
reduces the order of the system from 8 x 8 to 6 x 6. The
following development describes the non-symmetric case,
and the development using the reduced order system is
found in reference 8.

The aerodynamic matrix Q is derived from modified
strip theory'?, for which the time dependence is based
on the Theodorsen function. The section lift curve slope
may also be varied along the span.

Application of the Integrating Matrix

The integrating matrix technique is a numerical
method which requires that the wing be discretised into
n — 1 elements with n nodes. Thus each term in the state
vector, y, becomes a vector of order n, and the concept
of a global state vector, ¥, is introduced to represent the
discretised version of the problem. Similarly, there will
be global matrices Z, M and Q comprised of n X n block
diagonal matrices Z, M, and Q.

The global integrating matrix L is now defined as,

L 0
i=[s s] (4
0 L

where L is the local integrating matrix. The local inte-
grating matrix is in fact the product of a summing matrix
8 and a weighting matrix W,

L=8SWwW, (5)

The weighting matrices are based on Jacobi polynomials,
and are given in ref. 7. The summing matrix S has the
following form,

00
S— 10

ey O

(6)
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and has dimensionsn x n .

L has the effect of integrating the derivative on the
left hand side of equations (2) and (3),

(™

and reducing the integration on the right hand side to
simple matrix multiplication. Thus the integrated form
of equation (2) is

Ly =g

§ =12y + s’LMy - LQ(s,q)9 + k (8)

It is also useful to write the equations in a more
compact form by introducing the following definitions,

A =sM-Qs,9) ()
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where the contents of A can be derived from equation
(1), and, for example,

Ay = 32m-- —Ly (10)
Thus the integrated equation is
3 =127 + Ag| + 8A+3 +k (11)

where k is a vector of the constants of integration,

-~

k=[kM, kv, k., k, ke ka]r (12)

which are dete:riined from the boundary conditions.

Boundary Conditions

The choice of boundary condition is of fundamen-
tal importance, for the condition applied affects both the
complexity and accuracy of the solution. A cantilever
condition is the simplest to apply, and was used in many
of the early studies of aeroelastic tailoring. Although the
use of such a condition precludes the detection of body
freedom flutter'’!?, it is used here to avoid the appear-
ance of non-homogeneous boundary condition terms.

It is first necessary to define a global boundary con-
dition matrix B which has the following properties:

Bj=0 Bk=k (13)

This global matrix is once again made up of blocks of

local boundary condition matrices, one for each of the

variables. If both sides of equation (8) are multiplied
by B, and the properties of equation (13) are used, it is
possible to solve for k

k=-B[L(Zy +Ay)]-B

nh? ( 14)

B..: is 2 second boundary condition matrix which
accounts for any non-homogeneous boundary conditions.
This matrix is null for the cantilever case, but if rigid
body modes are included it becomes non-zero, and this
significantly complicates the solution.

Cantilever Boundary Condition

In general, a cantilever boundary condition requires
that there be no displacement at the root and no force at
the tip, thus

w(0)=0 ~(0)= w(0)=0 a(0)=0 (15)
N =0 M(1)=0 V,1)=0 M,(1)=0
(16)

In order to apply these conditions it is necessary to
expand equation (8) in terms of each variable, and then
apply a local boundary condition. For purposes of illus-
tration, the equation is expanded in terms of one variable
at the tip (M,,):

M,, =L(Aw7+Agw+ Aga)+ky,, (17)



At the free end, z = 1, use is made of
bl =0 0o 1ff (18)

having the following properties
BIM,, = My(1)  blka, =ky,  (19)

Applying the boundary condition vector to equation (17)
results in

kM,, = —B" [L (A‘“’, + Aysw + Asea)] (20)

Comparison with the appropriate part of equation (14)
yields the local boundary condition matrix,

B;,,, =1b] =B, (21)

Following a similar procedure for each of the other
variables gives the global boundary condition matrix for
the cantilever boundary condition

B, 0 0 0 000 0)
0 B, 0 0 ¢ 0090
ggB,.l;)(‘)Oﬁa}

6 0 B, 000 0
B.=1o 0 0 0 0000 (22)
0 0 0 0 0000
0 0 0 0 0000
o0 o o o0 00 0 o

If the laminate is symmetric, the boundary condition ma-
trix is simply a reduced version of equation (22), so that
the inclusion of the b;; compliances does not influence the

1:3 matrix. In the absence of non-homogeneous terms,
B,.,=0.

Equation Reduction

The problem is now in a position to be solved, since
equation (14) can now be substituted into equation (8),
and collecting terms allows the equation to be written as

[ﬁ + 1”?2]? -0 (23)

where

F=[B-1L
e an . @ (24)
H=[1+P%+B.

Since the state vector consists of force and displacement
components, it can be written in partitioned form as

([E mo]+ [0 F]) {32} = {3} ws)

This equation can be solved simultaneously in order to
eliminate the force variable yp, and this gives,

I+ TArplyp =0 (26)

where
= —HB},HDFH;;F rF (27)
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The matrix T contains structural information and in-
formation from the boundary conditions; Arp contains
aerodynamic and mass information about the wing; Since
the problem is now written in terms of only half of the
original state vector, the system of equations is reduced
in size by a factor of four and solution is much faster.

The boundary condition matrix for the cantilever
case is given by equation (22), and substitution of this
into equation (24) allows analytical inversion of Hp}, and
HyL. This in turn permits analytic expressions for T to
be formed:

LauLl LbuLl —LbuLg Lblslq
T - Lblllll LdllLl —Ldlng Ldlalll
VTl -L»,L, -L3d,L, L%d,L} -L%d,L,
Lb,;L, Ld;3L;, -Ld,L} Ldyl,
(28)
For a symmetric laminate the matrix is slightly simplified.
LdllLl —Ldlng LdlSLl
Ts = —L2d11L1 deuLf —dezsLx (29)
Ld; L, -Ld,L? Lds,lL;
with
L,=(B,-I)L (30)
Solution Procedure
Equation (26) has a solution if,
det{I+ TApp(g,8)] =0 (31)

For each value of dynamic pressure g, equation (31) is
solved iteratively to find the value of the Laplace variable
8 which makes the determinant zero. Muller’s method*®
is an efficient root solving scheme that will find the roots
of a complex matrix equation, and this is employed in the
solution procedure.

One useful property of the cantilever boundary con-
dition is that the T matrix is independent of both ¢ and
8, so for a particular wing geometry it can be evaluated
before beginning the iteration procedure. This is not so
when rigid body modes are included, because in that case
T contains terms that depend on ¢ and s. This requires
that the matrix be recalculated for each iterate, and con-
sequently increases the time needed for computational
solution.

In order to determine the dynamic pressure at which
aeroelastic instability occurs, the roots of equation (31)
are traced out for increasing values of ¢ until one of the
roots crosses the imaginary axis. Thus a root locus in
the s plane can be produced (fig. 2) which will indi-
cate when an aeroelastic instabilily has occurred, and
will also indicate whether it is flutter or divergence. If
the vibration frequencies of the wing are also known and
identified as being bending or torsion modes, it is possi-
ble to determine the type of flutter. The dimensionless
flutter dynamic pressure shown in figure 2 is the reference
flutter pressure which is used to normalise the remaining
figures.
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Figure 2. Root locus of reference flutter root:
AR =14 A=0,0=0°

It is not necessary to trace out 2 root locus for each
configuration, and a procedure was implemented to find
the dynamic pressure at which an instability occurs using
a secant algorithm. This procedure locates the dynamic
pressure at which the root locus crosses the imaginary
axis, and indicates the type of aeroelastic instability.

Numerical Stability

As with any numerical method, some attention must
be paid to stability or convergence. The choice of the
number of nodes to be used is important for reasons of
both speed and accuracy. As mentioned earlier, the size
of the determinant to be solved is 3n x 3n or 4n X 4n and,
since the determinant is solved iteratively, the speed at
which the calculations are made is highly dependent upon
the number of nodes.

Table 1
Number Straight r=0.25 Relative
of nodes Wing cpu time
4 4.158 16.66 0.39
5 4.164 17.20 0.63
5 4.164 17.24 100

Table 1 shows results for a straight wing and one
with a taper ratio of 0.25. The number of nodes is varied
from 4 to 6, and the relative computational time needed
for solution using an IBM 3084 computer is shown. For
the remaining results four nodes were used to keep com-
putational time to a minimum. For the straight wing
convergence is very good, even with four nodes, but when
the wing is $apered six nodes are needed for the solution
to converge. This is because the taper of the wing has to
be treated in a discretised manner, and more nodes are
needed to reflect the additional information. Since the
purpose of this paper is to present more general trends,
as opposed to a detailed analysis of a given configuration,
the use of only four nodes is considered to be justified.

Results

The remainder of this analysig presents results for
two different aspects of the problem. In the first part, ge-
ometric and aerodynamic effects are examined with a ref-
erence ply orientation. The integrating matrix method is
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shown to be capable of demonstrating the effects of both
geometric and aerodynamic parameters, so that the ge-
ometry of the wing is not limited to a straight, untapered
configuration with constant Cj,. In the second part sev-
eral different ply orientations, including non-symmetric
laminates, are considered, and the effects of both ply ori-
entation and modulus are shown.

In much of the literature on aeroelastic tailoring ei-
ther the ply orientation or the modulus is given, but sel-
dom both. An understanding of the effects of both are of
importance to the designer, and so the results presented
show the aeroelastic stability boundary as a function of
a reference ply angle(8), and also the dimensjonless mod-
ulus as a function of the same ply angle. This allows the
effect of ply angle on both stability and modulus to be
considered. Following the lead of Weisshaar and Ryan®,
the moduli are made dimensionless in the following way:

R= Dss ¥ = =D

Dll \' DIID” (32)
A

Dy Dss

The extensional coupling moduli need to be multiplied
by a characteristic length, in this case the semi-span I,
to become dimensionless. The use of the moduli in di-
mensionless form makes the results more general.

Geometric and Aerodynamic Effects

The design of an aircraft involves a large number of
variables, and the use of composite materials increases
the complexity of the design problem. The integrating
matrix method is a useful tool for preliminary design
work because it is not only fast, but also capable of mod-
eling fairly sophisticated effects. In this section resulis
are presented to show the effects of two geometric prop-
erties and one aerodynamic property. The properties of
the wing common to all configurations are given in ta-
ble 2.

Table 2

Structural Material: AS/3501 Graphite Epoxy
Number of Layers: 24
e=-034

Inertial my = 1.0
Xo = 0.2
ro = 0.538

Aerodynamie e.c. =0.25
p=11.1

The laminate code for all configurations in this sec-
tion is given by

[91) 62) 01 01 ;453 0, :F45) 0’ 3:4515 (33)

where # is the reference fibre orientation angle. For this
first part of the study, the outermost plies on both top
and bottom surfaces of the wing are varied as a group
between —50° and 50°. The bending, torsional, and cou-
pling moduli are shown in figure 3a, and the equivalent
dimensionless parameters are shown in figure 3b.
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Figure 3b. Dimensionless modulus parameters
as a function of fibre angle 8 for ref-
erence laminate

Aspect Ratio

Most modern commercial aircraft are operating with
aspect ratios in the range of 8 to 10, and their primary
structure is aluminium. The next generation of such
transport aircraft will make much more use of composite
materials in their primary structure, and will be able to
be designed with considerably higher aspect ratios. The
study by Jensen et. al. 4 gives a number of designs opti-
mised for various goals, for which the aspect ratios go up
to 15, and wing sweep angles range between 10° and 40°.

One of the limitations on the maximum aspect ratio
of a wing is structural, and the use of a composite wing
structure offers advantages from both the structural and
the aeroelastic viewpoint. Since the flutter speed of an
aircraft decreases as the aspect ratio increases, in order
to reach the proposed high aspect ratios the use of com-
posites is mandated. By tailoring laminate it is possible
to raise the flutter dynamic pressure over the equivalent
quasi-isotropic value. Although it is not possible to elim-
inate the problem of flutter, the point may be reached
where the aeroelastic benefits of increasing the flutter
speed are off-set by the lowering of the bending stiffness
of the wing.

Figure 4 shows the aeroelastic stability boundary for
10° swept wings of aspect ratio 10 and 14, and, as may
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Figure 4. Aeroelastic stability boundary for:
AR.=10and AR =14, A=10°
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Figure 5. Lift distribution for wing with:
AR.=14,7=10,A:=0°

be anticipated, the lower aspect ratio wing has a higher
boundary. By suitable tailoring it is possible to improve
the performance of the A.R. = 14 wing so that its maxi-
mum flutter pressure is within 10% of the # = 0 pressure
of the A.R. = 10 case. It may also be seen that when ¢ is
positive, divergence is the mode of instability. This is true
for wings with lower sweep angles, but as will be shown
as sweep increases divergence is completely avoided.

Lift Curve Slope

Modified strip theory allows some three dimensional
aerodynamic effects to be included, and in this analysis
the value of the lift curve slope (Cia) was either assumed
constant, or calculated from LINAIR *, a computer pro-
gramme based on the Weissinger method. As an example,
the lift distribution of an aspect ratio 10 wing is shown
in figure 5.

One disadvantage of chosing only four nodes is that
the distribution of C, can only be represented in a crude
fashion. When four nodes are used they are located at:

£ =00, 0.276, 0.724, 1.0 (34)

This does not cause problems for a lift distribution as
shown in figure 5, but would not be as good for a lift

* Peveloped by Prof. 1. Kroo, Stanford University



from LINAIR

Cly

Flutter

Fiutter

Normalized Dynamic Pressure

Divergence
1 1

-10. 0.

Fibre Angle

I Il

30.  40.

-50. 50.

C]

Figure 8. Effect of lift curve slope on aeroelas-
tic behaviour:

AR.=10A=07=1.

54

Normalized Dynamic Pressure

O N WA e N ©

-10.
Fibre Angle

0.
L}

Figure 7. Effect of taper ratio on aeroelastic
behaviour;
AR = 10, A
LINAIR.

30°, Ci, from

distribution which had maximum lift close to mid-span,
such as may occur with a highly swept wing.

Results are presented in figure 6 which show two dif-
ferent values of Ci, on an unswept, untapered wing of
aspect ratio 10. When the lift curve slope is set to a con-
stant value of 5, the stability boundary is more conserva-
tive than if the values of Cy, from figure 5 are used. The
fibre angle at which the mode of instability changes from
divergence to flutter is altered by only a few degrees, and
again the trend is the same. Although the magnitude of
the dynamic pressure is quite different for the two cases
the shape of the curve is similar. For the unswept wing,
divergence occurs over an even greater range of fibre an-
gle.

Taper Ratio

Further refinement of the model is obtained when the
wing is tapered. As shown in table 2, allowing the wing
to be tapered slows down convergence and necessitates
the use of more nodes. Results are shown in figure 7
which demonstrate the effects of a tapered plan—form of
aspect ratio 10 with the lift curve slope calculated from
LINAIR.
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As the taper ratio is reduced, the flutter boundary
is raised considerably due to a combination of improved
aerodynamic loading for the tapered wings, and the re-
duction of the chord at the tip. This reduces the loads
at the tip and thus raises the flutter speed. With the
wing swept back 30° divergence has been eliminated for
all values of 9.

For trend studies such refinement may not be needed,
but the method does have the capability to handle some
fairly sophisticated details.

Aeroelastic Tailoring

Having considered some general trends with a fairly
standard form of tailoring, some more interesting lam-
inates are examined. Instead of just varying the two
outermost plies together, treating them as a group, the
outer laminae are varied separately, in both symmetric
and non-symmetric layups.

Table 3

Structural Material: AS/3501 Graphite Epoxy
Number of Layers: 24

e=-034

me = 1.0

Xoa = 0.2

ro = 0.538

Aspect Ratio = 14

Cla = 5.0

a.c. =0.25

p=11.1

Inertial

Aerodynamic

For the remaining results, the configuration used was
an untapered wing of aspect ratio fourteen with a con-
stant lift curve slope, as shown in table 3. Results are
presented for several sweep angles, 0° and 10° which show
the occurence of divergence, and 30° which is typical of all
the moderately swept wings. These configurations were
chosen to represent the high aspect ratio wings that may
be used for future transport aircraft. The wing was not
tapered and the lift curve slope was constant along the
span, so the results are conservative. However, the trends
shown could be expected to be unchanged if a more de-
tailed aerodynamic model was chosen.

Symmetric Laminates

Twenty-four plies are used in all configurations, and
the laminate code is,
[01 s 02; 03) 07 ;45) 01 ;451 0) :F45]S (35)
In the previous section the tailoring was achieved by ori-
enting plies #; and 6, at the reference angle, and the
results were not surprising, showing the optimum fibre
angle to be around —45° for cases when divergence was
not a problem, and 45° when divergence was indicated.
In order to see if any improvement could be obtained,
and also to see if there were any laminates that should
be avoided, some alternate patterns were tried.

Some improvement was seen when 6, was the re-
verse of 0;, and this was due to the elimination of
bending-torsion coupling. Figures 8a,b show the aerce-
lastic boundary and dimensionless modulus parameters
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Figure 8b. Dimensionless modulus parameters
for:

92 = —91.

for this layup. Comparison of the 10° curve with that
shown in figure 4 shows that divergence has been pre-
vented, and the flutter boundary has been raised by about
10% when the plies are laid up at 45°. Divergence is pre-
vented in this cases because the coupling parameter ¢ is
close to zero.

Further improvement was found when the third lam-
ina was also varied, and figure 9a shows the stability
boundary for this case with 8; = 0, and 83 = —8;. There
is considerable improvement due to the increase in tor-
sional stiffness, the maximum value of R is raised by
about 30%, but since the laminate is no longer balanced
there is some bending-torsion coupling. The increase in
R raises the maximum flutter speed by 27% for the 30°
swept wing, and by 22% for the unswept case. Since there
is strong coupling, divergence reappears for the unswept
case when ¢ is negative.

Clearly this trend could be continued, ending with a
laminate consisting of only +45° laminae. This would,
however, result in a wing that is very weak in bend-
ing which would not meet strength requirements. Thus
the designer must reach a balance between the necessary
bending stiffness and the aeroelastic constraints.
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Figure 9b. Dimensionless modulus parameters
for:
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General Laminates

Symmetric laminates have a number of advantages
over general, or non-symmetric, laminates. Firstly there
is no warping of the laminate, and secondly they are eas-
ier to analyse, and offer fewer design decisions. How-
ever, general laminates should not be ignored simply be-
cause they complicate the problem; indeed, they give
the designer the fullest benefit of an anisotropic mate-
rial. Warping may be most problematical if flat panels
are needed, since the warping may put initial stress in
the Jaminate. If, however, the panel needs to be curved,
such as may be the case for an aircraft wing, then using
a non-symmetric laminate may offer the means to such
curvature.

A number of non-symmetric laminates were exam-
ined, all having the following laminate code,

(61, 92,0,0, F45,0, ¥45,0, F45,

36
+ 45,0,+45,0, £45,0,0, 025, 024)7 (36)

For general laminates two additional moduli, ¥; and ¢,
are needed to define the structural behaviour of the wing.
A laminate that has a ply at angle § below the mid-
plane and one with the same angle, positive or negative,
at the same distance above the mid—plane, is said to be
balanced, and has B;; = ¢; =0.
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Pigure 10a. Aeroelastic boundary for balanced
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Figure 10c. Dimensionless modulus parameters
¥1 and ¢

Figures 10a,b,c show the stability boundary and
modulus curves for a balanced non-symmetric laminate,
which is obtained by setting

01 = 02 = -0 023 = 034 =6 (37)

There is also little bending torsion coupling, ¢ = 0, but
there is strong extension-bending coupling.
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Figure 11a. Aeroelastic boundary for unbalanced
general laminate:
0‘ = 0+10°, 03 = 9—'10., 023 =
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Pigure 11c. Dimensionless modulus parameters

%1 and ¢

R and ¢ are almost the same as in figure 8b, but the
flutter maximum is lowered by about 7%. The results
are still better than the reference laminate, but there is
a penalty for having extension-torsion coupling.

The next laminate examined had the following layup,

01 = 9 + 10°, 02 =8 10°, 023 = ‘—0, 024 = 0 (38)
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Figure 12c. Dimensionless modulus parameters
1 and ¥y

which had the effect of eliminating ¢ and ¢5, but allow-
ing extension-bending coupling. The effect on the flutter
boundary was to improve it to the point where the max-
imum flutter pressure was about the same as that of the
symmetric laminate shown in figure 8a, and better than
the balanced laminate of figure 10a.

As a final example, a completely general laminate
was examined for which all three coupling parameters
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were non-gero. The laminate used is described by equa-
tion (39):

0, = 93 =0 + 10., 923 = 024 = (39)
and the results are shown in figure 12. Since ¢ is no
longer zero, the 10° swept wing is again prone to diver-
gence, and the maximum flutter pressures are almost the
same as those for the reference laminate. Again there is
some penalty for allowing coupling, but it need not pre-
vent completely general laminates from being considered.
The penalty for this case is partly due to the extensional
coupling, and partly due to the reappearance of bending-
torsion coupling.

Conclusions

The aim of this analysis was to examine the useful-
ness of the integrating matrix method for the study of
the aeroelastic stability for fairly arbitrary geometries,
and to examine the possibilities of using general, non—
symmetric, laminates.

When using the integrating matrix method it is pos-
sible to analyse the aeroelastic behaviour of wings in some
detail. Although there is some penalty in terms of com-
putational time needed, tapered geometries present no
difficulty. The aerodynamic characteristics of the prob-
lem can also be improved by calculating the lift curve
slope from a Weissinger type method. This again adds
time to the analysis, but indicates that the method may
be suitable for quite detailed designs.

Most studies in aeroelastic tailoring have considered
only symmetric laminates, but it is of interest to see what
effect the use of a general laminate has. Non-symmetric
laminates introduce two additional coupling parameters
to the problem, and three general laminates were exam-
ined to reflect the contribution of each of these on the
stability. Extension-torsion coupling, ¢¥,, caused some
degradation of the flutter boundary; extension-bending
coupling, ¥, was not as damaging as ¥, and gave a flut-
ter boundary that was as good as the best symmetric
laminate with the same torsion-bending stiffness ratio.
When both ¢; and s were present, the performance of
the wing was degraded to that of the symmetric reference
laminate.

It was only possible to examine a limited number of
laminates, and if general laminates are to be used there
are even more permutations to add to the designers prob-
lem. However, this preliminary investigation shows that
there need not be a severe penalty for making use of a
general laminate, and this is a topic worthy of further
research,
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