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Abstract

This paper describes a two-dimensional
unsteady calculation method which applies to the
flow computation in two blade-rows, one being
fixed, the other moving. The Euler equations are
solved using the classical predictor-corrector
McCormack scheme. The program can be used in many
cases involving time-dependent phenomena ¢ mutual
influence of two blade-rows, distortion problems,
wake passage effects, aeroelasticity. First, the
computational program is described with a special
importance being given to the boundary-conditions.
Then, calculation examples are shown which allow
one to evaluate the potential of this method for a
detailed unsteady flow analysis.

I. Introduction

Generally speaking, in a turbomachine stage,
the fluid is viscous and the flow is three-
dimensional and unsteady. Thus such a flow is
governed by the Navier-Stokes equations.

The numerical prediction of such a flow
greatly depends on the available computers. The
increasing power and rapidity of computer makes
it possible to run more and more complicated
calculations and hence to help research in ways
which until recently were unthinkable.

One of these ways is the detailed study of
time-dependent phenomena. For the previous
mentioned reasons, few studies on this topie have
been carried out, especially for supersonic and
transonic flows. In their report, Erdos and
Alzner{1) describe a two-dimensional method for
the flow computation in a compressor stage. The
use of phase-lagged boundary-conditions makes it
possible to compute the flow over only one blade-
to-blade passage of each wheel. More recently,
Hodson(2) computed a wake-generated unsteady flow
in a turbine cascade.

In this paper, a two-dimensional unsteady
calculation method will be presented. It can be
used in several blade-to-blade passages of a
unique blade-row or in two blade-rows having
different angular speeds. Compressible inviscid
fluid flows are computed by solving the Euler
equations.

Several kinds of unsteady effects, such as
mutual influence of two blade-rows, circum=-
ferential inlet distortion, aeroelasticity can be
taken into account by suitable boundary-
conditions.

II. Description of the computation method

II.1. Outline

The computation method is actually derived
from time-marching codes solving the Euler
equations(3), (4),
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In order to take into account variations of
the stream surface radius and the channel height
(AVDR effect), the Euler equations are written in
the following way(3) :

Figure 1. Flow coordinates.
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These equations are discretized directly in
the physical plane (m,8) and then are solved by
the McCormack scheme(5),

Development and analysis of this numerical
method were initially achieved at ONERA by
Viviand and Veuillot(4),



I1.2. Computation domain and boundary-conditions

The choice of the computation domain where
the above equations will be solved, and the
choice of the boundary conditions depend on the
final solution to be obtained

.
.

In the special case where the solution is a
settled periodic one, a reduced computation
domain may be used : it will represent only one
blade-to-blade passage of each wheel(l), The
periodic unsteady flow will be achieved by
applying unsteady boundary conditions. Of course,
these conditions will be settled periodic ones. A
judicious use of phase-lag properties makes this
technique possible, and CPU memory and time needs
are very reasonable.

But, more generally, if transient flows have
to be computed, the above technique is no longer
applicable. In this case, the computation domain
must include the whole wheel (or all of the
wheels) -in the 3-D case, or all of the blade-to-

blade passages ~in the 2-D case. So, the
boundaries of such a domain are only the
following : blade~boundaries, upstream and
downstream boundaries in the 2-D case with the
addition of the hub and tip walls for the 3-D
case.
®

CPU memory and time requirements are, of

course, rather large, but such calculations can

be run on the existing powerful computers.

In this paper, the second way is chosen, and
the computation domain includes the Ny blade-to-
blade passages of the first wheel, and the Np of
the second one.

A first necessary condition is that the
circumferential extension of the domain be the
same for both the blade-rows, i.e. :

H

N1 x pitehq = Np x pitchp

N1, pitchy : blade-to~-blade passage number and
pitch of the first row
N2, pitechp : blade-to-blade passage number and

pitch of the second row.

all the blade-to-
the different

During the computation,

blade passages pass together

numeric scheme steps at each iteration. However,
+ Np separated
conditions

they are considered as n N1
domains and suitable boundary
applied to every domain (fig. 2).

are

i1l
l—-1|
!
Figure 2. Boundary definition
blade passage.

for a blade-to-
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For the most part, these conditions use
compatibility relations (4) and (6) written in the
local frame of reference where the unit normal
vector is inward. For a two-dimensional flow, four
relations are available.

1)

*
p(n+1) _ (pa)(n) vén+1) = p¥ - (pa)(n) v (C.R.
p(n+1) _ (az)(n) p(n+1) = p* - (az)(n)p* (C.R. 2)

(n+t1) _ % (C.R. 3)

Vt = Vt

*
p(n+1) . (pa)(n) vén+1) = p* + (pa)(n) v, (C.R. #)
where @
P s static pressure
P ¢ density
a : sound velocity
v ¢ velocity component (in the local frame)
Subscripts @
n : normal to the boundary
t ¢ tangential to the boundary
Superscripts @
(n), (n+1) : relative to the nth, n + 1th itera-

tion

* : value given by the numerical scheme.

According to the normal velocity sign and
modulus, 1 relations may be wused, and m
conditions must be imposed, with 1 + m = 4(6),

II.2.1. Upstream boundary (AA')
The upstream boundary is parallel to the

cascade front-line and the normal velocity is
subsonic. Then only (C.R. 1) is used, if this
boundary is the first blade-row one, and the

.
.

following conditions are imposed

- total pressure pj
~ total temperature Tj
~ tangential velocity V.

These conditions may be uniform (uniform inlet
flow) or non-uniform (distortion problem).

For the second row upstream boundary, the
same technique can be used and inlet conditions
are given by the first row outlet flow. However,
another method ~less expensive in computation
time-~ is used and will be described in section
II.2.6.

11.2.2. Upstream from the leading edge
boundaries (A;Bj, AiBji). Through these bound-
aries, the flow is circumferentially continuous.
Compatibility relations can be used, but in this
simple case, they are replaced by transferring
the results
Conditions on AjBj given by conditions on
Aj+1 Bi+1 after predictor step.
Conditions on A;Bj given by conditions on

Al.q1 Bi.1 after corrector step.

0f course, by using the spatial periodicity,
fictitious n+1th passage is the same as the first
one ; this fact gives the upper boundary Aﬁ Bg
and lower boundary A4 Bq conditions.



II.2.3. Blade boundaries (BC, B'C'). A slip
condition is applied, i.e., the velocity normal
to the blade must be zero. Hence, three relations
(C.R. 1, C.R. 2, C.R. 3) are available.

IT.2.4. Dowstream form the trailing edge

boundaries (C; Dj, Ci Di). At the beginning of
the computation, these boundaries can be any
boundaries whatscever. At each iteration, they
are moved and gradually become unsteady slip
lines.

Through these 1lines, some discontinuities
will appear, according to the Euler equations,
and are expected to be correctly given by this
technique.

In order to obtain the slip lines, a first
possibility is the following : the slip condition
(previously described) is applied to any point on
the line C; Dj, and to the same geometrical point

of Ci_y Di.{. However, both these points are not
located exactly on the slip line, and in general,
the static pressure has not the same value. So it
would be necessary to move the C; Dj (and Cj.q

D{_1) boundary up to the slip line.

As a matter of fact, a more efficient
treatment has been found : compatibility
equations are used on C; Dj and C{-1 D{-1 with
two additional conditions, namely equality of the
static pressure and equality of the veloecity
normal to the boundary. In this case, the normal
velocity is not quite zero if the boundary is not
the slip line and it allows us to define a "mesh
displacement velocity" which is used throughout

the computation to define a new mesh grid
downstream from the trailing edges at each time
step. Up to now, this treatment has been
satisfactory because the normal velocity

maintains a very low value from one iteration to
another.

On the other hand, flow discontinuities
through the slipstream continue down to the
downstream boundary. This is not a problem when a
single blade row 1is computed, but numerical
difficulties may occur when the first row wake
has to be introduced in the second row. As a
matter of fact, upstream boundary conditions may
be circumferentially non uniform, but they must
be continuocus. To avoid the problem caused by
discontinuity, a mixing process, replacing pure
discontinuities by strong local gradients, is
applied to the very last mesh points of the slip
line.

Because of its physical aspect, this
treatment has very little influence on the blade-
to-blade flow, and avoids numerical problems in
the second row flow computation.

(DD'). Down=-
the velocity
and in this

IT.2.5. Downstream boundary
stream from the computation domain,
normal to the boundary is subsonic,

case three compatibility equations are used,
namely C.R. 1, C.R. 2 and C.R. 3.

A fourth condition is needed :

It can be provided by a static pressure

condition, e.g., constant back pressure.
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But it is also possible to use a fourth
compatibility relation @
p(n+1) . (pa)(n) Vén+1) - p(n) . (pa)(a) vr(ln)

It is known as the "non reflecting boundary
condition" and is interesting when the previous
condition (constant back pressure) is considered
unsuitable. However, the final solution is linked
to the initial flow field, and sometimes some

minor difficulties may occur in the final
solution near the downstream boundary.
I1.2.6. Linkage of both the domains. When

the computation domain includes two wheels having
different angular speeds, the flow in each wheel
is computed within the relative frame of
reference of the wheel.

Let D4 be the upstream domain, and D2 the
downstream domain. In order to ensure flow
continuity between D1 and Dp, the linkage of Dy
and Dy has to be achieved on their common
boundary.

This 1linkage is carried out within the
computation and it does respect the numerical
scheme}

Just after the predictor step, flow
parameters computed on the upstream boundary of D2
are translated from the the Dy frame of reference
to the Dq frame, and are applied to the
downstream boundary of Di., During this process,
the relative displacement of D4 and Dy is taken
into account.

after the corrector step,
are transmitted

In a similar way,
the downstream conditions of Dj
onto the upstream boundary of Dp.

It is important to stress that this process
is in perfect agreement with the McCormack scheme,
since basically, the same technique is used on a
common mesh line of D4 or Do.

III. Periodic unsteady flows
Period and frequency

In this paper, the method is applied to the
flow calculation in a compressor stage and in a
turbine stage, with uniform inlet and outlet
conditions, in order to evaluate the effects of
the vicinity of both wheels.

Hence, the unsteady flow is created only by
the rotation (passage from one frame of reference
to another), and it is a settle periodic flow. As
the unsteady phenomenon frequencies are connected
only to the angular speeds and to the blade

numbers of wheels, we will say that these
unsteadiness causes are "internal" ones.
As a matter of fact,” if other "external®

causes exist (such as periodic rotating stall),
the frequencies of these phenomena will be
superposed onto the internal frequencies of the
machine. From a point of view other than the
aerodynamic one, aeroelasticity problems can be
classified as this second type.



Both of the following examples are cases of
"internal" unsteady effects, although the same
program may be used to compute cases of "external®
erfects{7), or "internal" effects with an inlet
distortion(8),

The aerodynamic frequency of the flow
parameters will now be emphasized in an example
of a compressor stage (rotor + stator).

The rotor has Np blades, and its angular
speed is w. The stator has Ng blades.

For the rotor in the relative frame of
reference the period and the frequency are given
by the stator. Their respective values are

. . fo] x Ns 1 on
r - 2m =g lwl x N
r s
Symmetrically, for the stator, in the
absolute frame :
. - lwl x N T
s 2n s °F YT x W
s r
Numerically, Np = 48, Ng = 60.

These blade numbers are not very realistic,
because manufacturers generally choose Np and Ng
such as HCF (Np, Ng) = 1 (H.C.F. : Highest Common

Factor). However, many important criteria
influence the choice of N, and Ng, e.g., criteria
involving aeroelastic features. Only from an

aerodynamic point of view, it is expected that
the flow fields will not be very different in
these two stages :

The first one with Nq = 49 Ng = 59
(HCF (Np Ns) = 1)
The second one with Nq = 48 Ng = 60
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Figure 3. Compressor mesh grid.
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In the second stage, a very high revolution
symmetry exists which thus drastically reduces
CPU memory and time and allows the computing of
the flow in a domain including only 4 blade-to-
blade passages for the rotor and 5 for the stator
(fig. 3). A upper and lower boundary condition,
the well known "spatial periodicity" condition is
used (currently being taken advantage of in
steady computations).

In a similar way, for the turbine stage, the
following blade-numbers are chosen :

Stator

: 30
Rotor :

50

Ns
Np

HCF (Ns, Np) = 10

IV. Presentation and analysis of the results

IV.1. Compressor stage

The cascades are relative to the tip section
of a single stage axial transonic compressor. For
these sections, the machine radius is constant
and the AVDR is equal to 1. ’

Upstream from the moving blade-row, the
relative inlet Mach number is about 1.22 and the
flow direction (relative to the axis) is about
60°, :

An overall view of both the cascades is
depicted on the mesh grid (fig. 3). For the first
blade-row, it has 70 x 15 x 4 4200 points, and
for the second one 50 x 15 X 5 = 3750 points.

The vertical mesh lines were chosen to
reduce the CPU memory requirements as well as to
simplify the boundary treatment between different-
channels.

The computations were run on the ONERA CRAY
1 computer. The maximum file length (MFL) is about
250.000 (about 1/6 of the computer's capacity). A
well-settled periodic flow field 1is obtained
after about one rotation of the rotor (1200 s,
6000 iterations). From this evaluation, it can be
seen that larger computations could be run : e.g.,
2-D computations with larger blade-numbers, 3-D

computations, or much more refined mesh grids if
necessary.
For this compressor stage, a preliminary

calculation was run with an angular speed giving
an axial inlet flow in the absolute frame of
reference. From the results, it was concluded that
the rotor and the stator are not very well
matched : the rotor outlet velocity is a bit too
low, and consequently the inlet stator angle is
too high. But viscous effects are not taken into
account. If they were, the rotor outlet velocity
would be higher in the core flow and the matching
would be better. Nevertheless, such a calculation
made on a domain including two cascades can give
some information about the matching of these
cascades which 1is usually achieved from a
velocity triangle analysis.

In order to avoid this matching problem, the
rotor angular speed was taken at a lower value,
and the results can be seen on fig. 4 showing the
isobaric 1lines (static pressure) of the flow
field -at a given time t-. As they are relative
to a static quantity, these lines are continuous
from a cascade to the other one.



Figure 4. Constant pressure 1lines (compressor
calculation). )

The unsteady effects seem very weak : first,
the influence of the stator on the rotor is
almost non existent. There is a likely reason for
this : this influence is of a potential type and
decreases quickly in the upstream direction. On
the other hand, the influence of the rotor on the
stator is different : some velocity gradients in
the downstream relative rotor field (due to the
non uniform intensity of the shock and to the
wakes) induced mainly variations of the inlet

stator angle.
1-1—P/P|0 [

Rotor

Stator (w = 0)

Figure 5. Constant pressure lines (turbine cal-
culation).

For this stator (not highly loaded), the
risk of separation is not very great. But in
highly loaded stators, unsteady separation may be
induced by these 1inlet angle variation. This
point corresponds to the second kind of
information given by such a calculation : it is
possible to achieve a better approximation of the

r
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Figure 6. Static pressure distribution on rotor
blade A (turbine calculation).
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unsteady behaviour of turbomachinery blades, and
it would be worthwhile to study how this model
relates to unsteady viscous effects, aero-
elasticity and acoustic problenms.

IV.2. Turbine stage

A similar computation was run
stage where the main characteristics

on a turbine

are :
- inlet axial flow Mach number s 0.22
- outlet stator flow angle s ~bYo
- inlet rotor flow angle : -35¢
- outlet rotor flow angle : +50°
- A.V.D.R (in the rotor only) : 0.70.

As for the compressor case, fig. 5 shows the
isobaric lines of the flow field at a given time
t. the potential influence of the rotor on the
stator is of the same importance as the
compressor one, but the influence of the stator
on the rotor flow field is very drastic. The
supersonic outlet stator flow gives very
important unsteady effects in the rotor, as shown
on fig. 6, where the static pressure distributions
over a rotor blade are plotted at several moments
of a period T. (T is the time required by a rotor
blade to cross over a stator pitch).

IV.3 Some remarks

concerning the calculation

cases presented

These cases were selected in order to check
the computation method. The main aims were :

- the evaluation of CPU memory and time,
~ the validation of boundary condtions (slip
streams, linkage of both the wheels).

Thus, the aim of the study was not to
compute a very realistic case, but rather to
prove that the method is able to compute unsteady
flows in cascades.

Moretheless, some improvements are ne-
cessary, e.g., downstream condition to avoid non-
uniformity of the flow field far from the
trailing edges of the second wheel.

V. Conclusion

Theoretical approach based on the analysis

of unsteady effects 1is an interesting step

towards the improvement of numerical prediction
in turbomachinery flows.
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In this paper, a computation method was
presented the originality of which is its ability
to compute a two-dimensional unsteady flow in
several rotating and non-rotating blade-rows.

Such a method could be very useful for
distortion, aeroelasticity or acoustic problens,
and could also be used to validate or to improve
the current approximations for the mutual
influence of two blade-rows.
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