

EU-Japan Collaborative Research Project in Aeronautics

VSION

<u>Validation of Integrated Safety-enhanced</u> <u>Intelligent flight cON</u>trol

Yoko Watanabe ONERA/DTIS-Toulouse

Basic Information

Acronym :	VISION		
Full name :	Validation of Integrated Safety-enhanced Intelligent flight cONtrol		
Starting date :	01/03/2016		
Duration :	36 months		
Budget :	1.8 M€ (EC) + 1.8 M€ (NEDO)		
Grant no :	(EU) EU-H2020 GA-690811 (JP) NEDO GA-628001		
EC call ID :	H2020-MG-2015_SingleStage-A MG-1.8-2015 International cooperation in aeronautics with Japan		
Keywords :	FCS Flight control system, Aircraft Avionics, Systems & Equipment AVS, Aeronautics and International cooperation		
Project officers :	(EU) Mr. Miguel Marti Vidal (EC/INEA /Transport Research Unit) (JP) Mr. Hiroyuki Hirabayashi (NEDO)		
Coordinators :	(EU) Dr. Yoko Watanabe (ONERA /Dept. of Information Processing and Systems) (JP) Prof. Shinji Suzuki (the University of Tokyo /School of Aeronautics and Astronautics)		

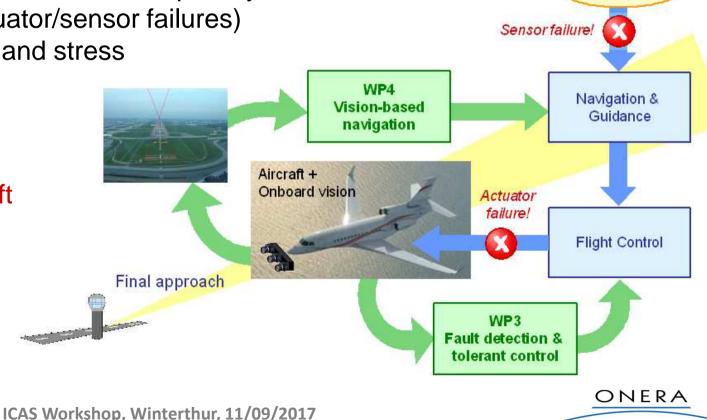
Consortium

EU Participants ONERA FR 1 Dept. of Information Processing and Systems 2 **University of Exeter** UK College of Engineering Mathematics and **Physical Sciences** 3 **University of Bristol** UK Department of Aerospace Engineering SZTAKI HU 4 Systems and Control Laboratory **Unmanned Solutions** 5 ES **1** 6 **Dassault Aviation** FR Flight dynamics department

Japan Participants				
7	University of Tokyo Dept. of Aeronautics and Astronautics	JP ●		
8	JAXA Aeronautical Technology Directorate	JP ●		
9	RICOH Co. Ltd. Photonics R&D Center	JP ●		
10	Mitsubishi Space Software Co. Ltd.	JP ●		
11	ENRI Dept. of Air Traffic Management	JP		

VISION Global objective

GNSS or ILS


THE FRENCH AEROSPACE LAB

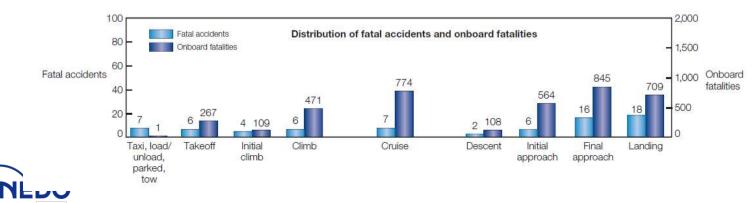
Global objective

Investigation, development and validation of "smarter" aircraft Guidance, Navigation and Control (GN&C) solutions to automatically detect and overcome some critical flight situations

- Increase tolerance of the aircraft auto-pilot system to flight anomalies (actuator/sensor failures)
- Reduce the pilot's task and stress in difficult situations

Contribute to the aircraft accident rate reduction

Motivation


- More than half of the commercial aircraft fatal accidents occurred during near-ground operations (take-off, final approach, landing).
- Enhancing airplane flight safety during such critical operation phases is an important key to the accident rate reduction.

Percentage of fatal accidents and onboard fatalities

Note: Percentages may not sum precisely due to numerical rounding.

Europear

Motivation

Two accident types

1) Accidents due to flight control performance failure

← Loss of aircraft controls due to bad weather, mechanical failures, etc.

ex.) AF447 (Rio-Paris) crash in June 2009 (228 fatalities)

- Airspeed indicator error due to Pitot tube icing
- Pilot's incorrect reaction resulted in aerodynamic stall

2) Accidents due to **navigation and guidance** performance failure

← Lack of visibility, pilot's situational awareness

ex.) OZ162 (Seoul-Hiroshima) crash landing in April 2015 (27 minor injuries)

- Manual approach guidance with GNSS navigation data
- Bad visibility condition with rain

<u>Needs to imorove robustness and self-</u> adaptabilty of the current aircraft flight system to **both** types of failures

Onboard vision sensors

 Effective tool to increase the pilot's situational awareness during near- or on-ground aircraft operation

> ex.) Wing-tip cameras for on-ground anti-collision Fin-tip and belly cameras for taxi-aid on A380

- Used for cockpit display only Not used in the flight GN&C system
- Significant potential of 3D Lidar and IR camera in degraded visibility condition (night, fog, etc.)

Technical Objectives

Recovery from flight anomaly during the final approach phase

- 1) Flight control performance recovery
 - Actuator failure (jamming, authority deterioration)
 - Sensor failure (loss of airspeed data)
- 2) Navigation and guidance performance recovery
 - Sensor failure (lack of SBAS, lack of ILS)
 - Obstruction (object/aircraft on a runway, air traffic cut-in on the final path)

Smarter GN&C technologies

- 1) Fault Detection and Diagnostic / Fault Tolerant Control (FDD/FTC)
- 2) Vision-based control surface monitoring system
- 3) Vision-aided local precision navigation system
- 4) Vision-based obstacle detection and missed approach guidance

Background

EU-FP7 ADDSAFE (2009-2012) / **RECONFIGURE** (2013-2016)

- Integrated FDD/FTC solutions
- Validations through pilot-in-the-loop simulations with real flight avionics
- Airbus's participation to define real and wide-covered fault scenarios

 METI-SJAC Autonomous Flight Control and Guidance for Civil Aircraft (2002 -2003) / Intelligent Fault Tolerant Flight Control for Civil Aircraft (2009-2010)

- Integrated FDD/FTC solutions
- Flight validation on JAXA MuPAL-alpha aircraft

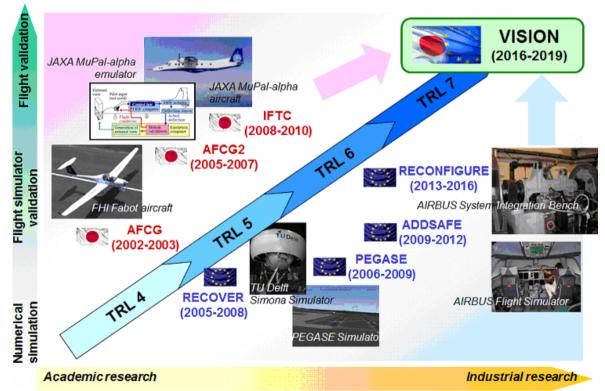
onera.fr/h2020 vision

Background

Vision-based guidance and navigation

- Vision-based runway (helipad) detection and relative navigation
- Automatic landing guidance
- Evaluation through simulations with synthetic images

- Visible / IR cameras and 3D Lidar systems for runway and obstacle detection during the taxi phase in all conditions
- Cockpit display only
- METI-SJAC Autonomous Flight Control and Guidance for Civil Aircraft (2005-2007)
 - Online flight trajectory optimization and collision avoidance guidance
 - Flight validation on FHI FABOT RPA

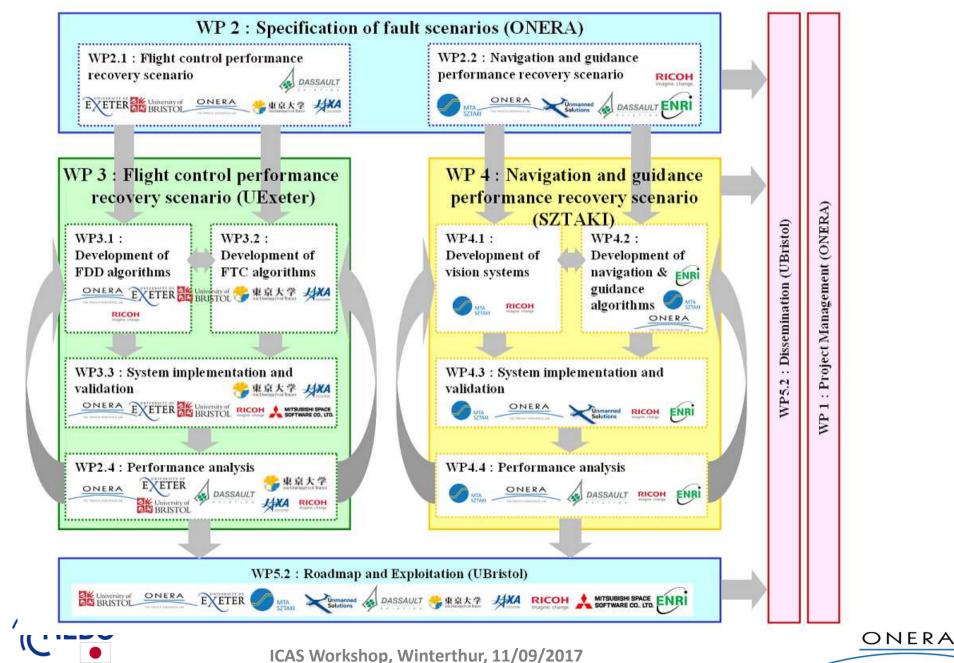


Project Aims

- To capitalize on both Europe and Japan's complementary research activities and experiences, as well as their industrial strengths
- To propose operation-oriented integrated GN&C solutions for each of the scenarios
- To mature the TRL of the proposed GN&C solutions by performing flight validations on real aircraft platforms
- To promote the collaboration between EU – Japan researchers and students

EU-Japan Mutual Contribution

Europear Commiss



Organization

uropear

THE FRENCH AEROSPACE LAB

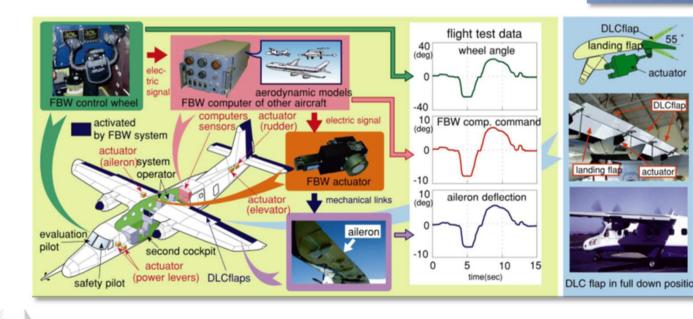
WP3: FDD/FTC controller designs

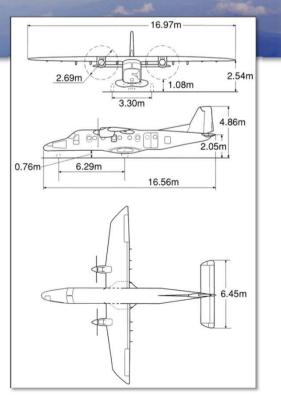
Development of advanced FDD/FTC controllers

- Sliding-mode **FDD/FTC (Fault Tolerant Control)** controller design for aileron & rudder actuator failure (loss of efficiency)
- Structured H-infinity FDD/FTC controller design
 BRISTOL for aileron & rudder actuator failure (saturation, constant bias)
 - Adaptive gain-scheduled **FTC** controller with online parameter estimation for **FDD (Fault Detection and Diagnostic)** for elevartor actuator failure (loss of efficiency) / sensor failure (loss of airspeed)

Neural Network-based simple adaptive **FTC** controller design for actuator failures and CG shift

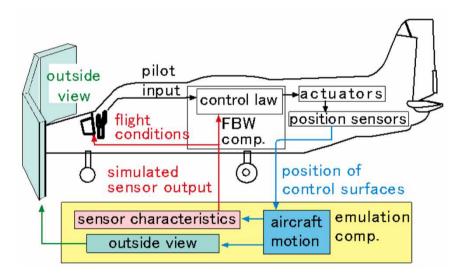
Implementation and in-flight validation on real aircraft for raising TRL of those techniques


WP3: Flight experimental platform

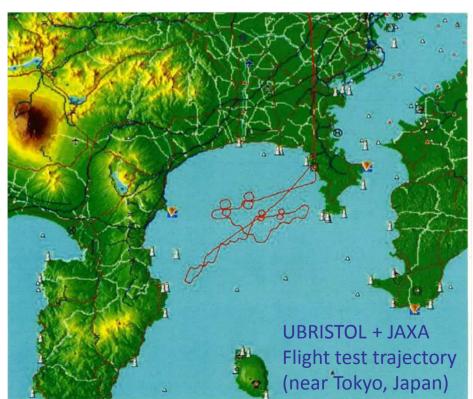


• Dornier Do228-200

- Experimental Fly-By-Wire system
- Hardware-in-the-Loop Simulation (HILS) setup
- First operation at Chofu airfield in Tokyo, Japan



WP3: Flight test campaigns

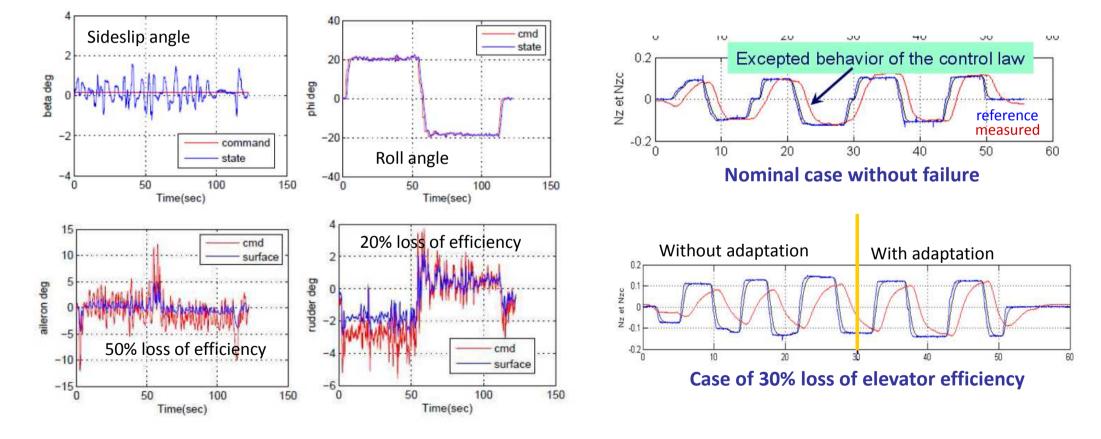


✤ First flight test campaigns (12/2016 – 03/2017)

- 3 EU partners had 2-weeks flight test sessions at JAXA
- C-code implementation and HIL simulation validation
- Preliminary flight tests (fault-free cases)
- 4 scientific EU-Japan joint publications

Hardware-In-The-Loop Simulation (HILS)

WP3: Flight test campaigns



Example of test results

NEDO

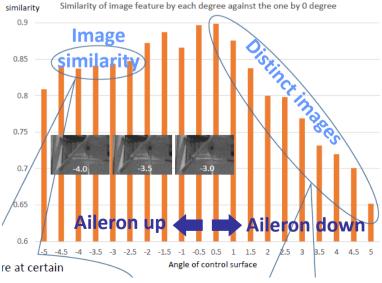
iropear

 UNEXE: Flight test with emulated aileron & rudder actuator faults ONERA: HILS test with emulated elevator actuator fault

WP3: Vision-based control surface monitoring w3.onera.fr/h2020 vision

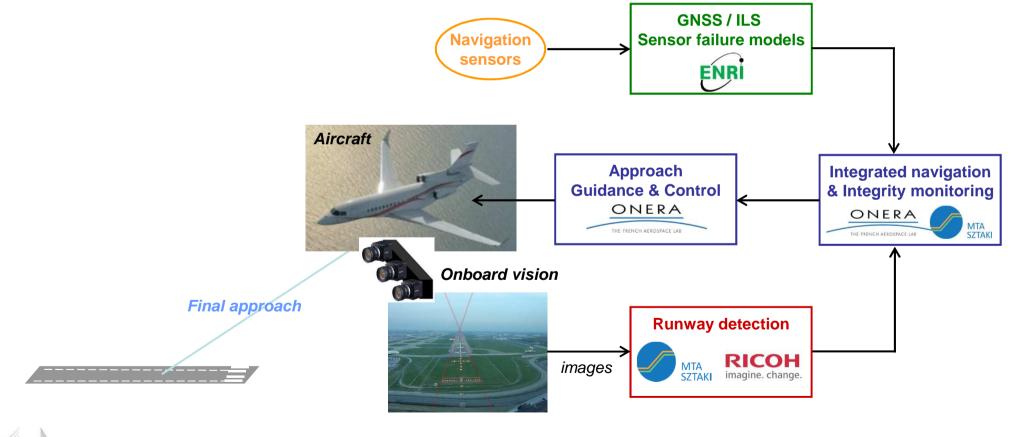
Aileron deflection angle detection by onboard camera RICOH ** imagine. change. to assist pilots and/or FDD/FTC controller

- On-ground test with a camera installed on JAXA MuPAL-alpha aircraft
- Preliminary results of image processing


(a) Input image

(b) Detected control surface

(c) Extracted features (line segment feature)



WP4: Onboard vision-based navigation 15 00 vision

- Development of integrated Vision/ILS, Vision/GNSS navigation system for cases of sensor failure
 - In-flight validation on real aircraft

ONERA

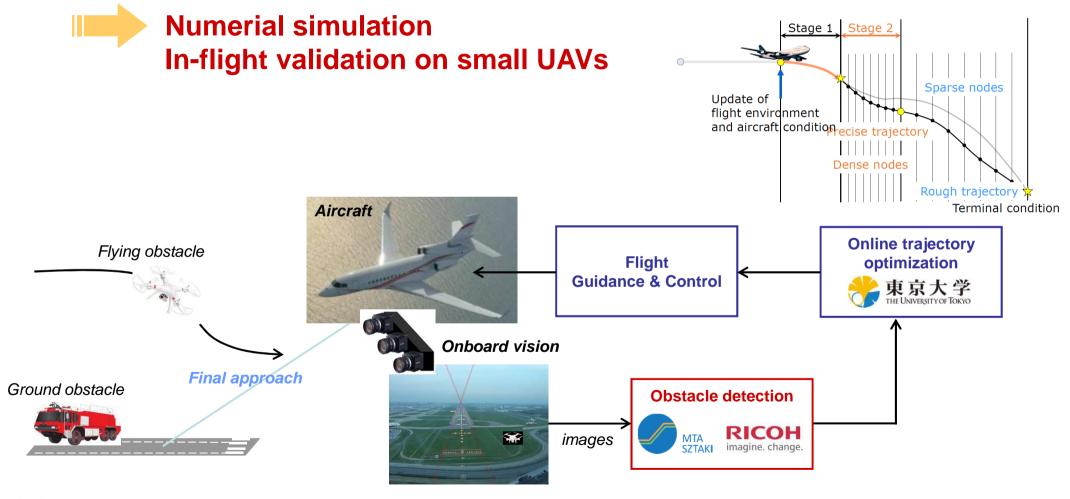
THE FRENCH AEROSPACE LAB

WP4: Flight experiment platform

Unmanned « K50-Advanced » UAV platform

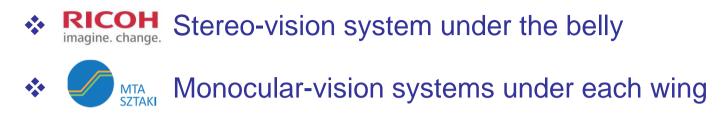
- Manufactured within the project
- High payload capacity (100L, 20kg)
- ONERA flight avionics
 - GPS RTK (dual antennas)
 - AHRS (Attitude & Heading Reference System)
 - Pressure sensors
 - Inclinometers

• First flight expected in Oct. 2018


Dimensions		Weights		
Wingspan	4.00 m	Max Take-off Weight	50 kg	
Length	3.09 m	Max Zero-fuel weight	30 kg	
Typical Speeds at 150	00m ISA and 50 kg	Useful load	20 kg	
Dash Speed	142 km/h	Take-off at 0m ISA and Flap 0 ^o		
Loiter Speed	72 km/h	Take-off distance	90 m	
Stall Speed Flap 0 ^o	65 km/h	Take-off rotation speed	79 km/h	
Endurance	5 hours			

WP4: Obstacle detection & avoidance

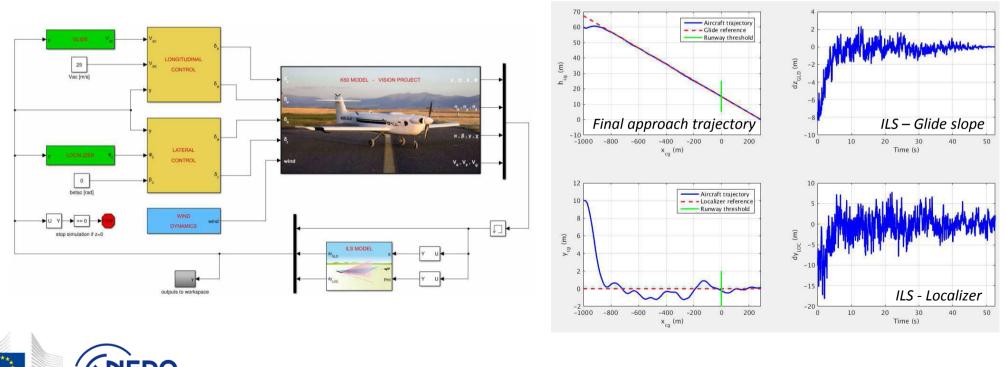
Development of vision-based obstacle detection and trajectory modification/go-around decision for collision avoidance



ONERA THE FRENCH AEROSPACE LAB

WP4: Onboard vision system

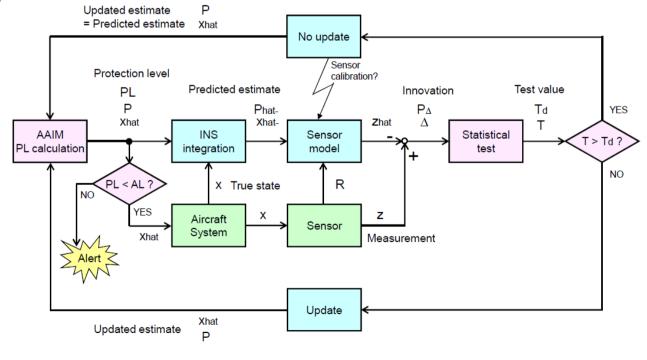
- First camera installation on K50 and calibration test
- Preliminary flight tests for image recording
- Preliminary validation of image processor for runway marker detection



WP4: K50 flight controller

Approach guidance & flight controller design

- ILS-based approach guidance and basic flight controller design
- Nonlinear simulation framework
- Refinement of the aircraft dynamic model by flight test data and re-adjustment of the flight controller (early 2018)


WP4: Integrated navigation

Integrated Vision/GNSS, Vision/ILS navigation systems with Integrity monitoring function

- Multi-sensor fusion by Error-State Kalman Filter (ESKF) with time-delayed measurements
- Tight integration of GNSS / INS / Vision
- Integrity monitoring function by AAIM (Aircraft Autonomous Integrity Monitoring) algorithms

System development and Flight test campaigns continue ...

- Further flight test campaigns planned to start early 2018 at JAXA for FDD/FTC algorithms validation
- First flight test campaign of K50 with the vision systems onboard planned in early 2018

Analysis of indurstial operational relevance

- Participation of Dassault aviation
- Invitation of EU and Japan external experts (Airbus, Mitsubishi HI, EASA, etc.) to the progress meetings

Dissemination

- EU-Japan joint publication on the validation results
- EU-Japan co-organization of special session in international conferences
- Organization of final international workshop at the end of the project

Thank you!

