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Flow around aerospace vehicles and missiles can be analyzed with both inviscid and viscous
numerical codes. These codes should have the capability of the computation of aerodynamic
characteristics of complex configurations at the subsonic, transonic and supersonic Mach number
ranges. However, there are some limitations and drawbacks of these methods. Coupling of inviscid
and viscous codes can overcome these drawbacks and limitations. A similar method was applied in
this study. An inviscid three dimensional panel code, NLRAERO was coupled with a viscous three
dimensional boundary layer code, BL3D. This coupling procedure was applied on a missile with wrap
around fins. Total drag coefficient, C,, was calculated and compared with different methods at

subsonic and supersonic Mach number ranges and the results are in well agreement.

INTRODUCTION

Analysis of flow around missile like geometries
can be analyzed with both inviscid and viscous numerical
codes. However, each of them has several advantages and
disadvantages. A numerical procedure in which inviscid
and viscous codes are coupled, has the advantages of each
code while the coupling procedure disables the drawbacks
of these codes.

A similar study will be performed in this paper,
to monitor the viscosity effects on the aerodynamic
stability derivatives for missile like geometries, especially
on the drag coefficient, C p- An inviscid panel code,

NLRAERO [2] is coupled with a viscous boundary layer
code, BL3D [7] Final code is tested for a missile
geometry. Brief information about these numerical codes
and about the coupling procedure will be given in the
following paragraphs. Test cases and results will be
explained in the final part of the paper.

INVISCID PANEL CODE, NLRAERO

General Features

Design and analysis methods of aerospace
vehicles and missiles require the computation of the
aerodynamic characteristics of complex configurations at

the subsonic, transonic and supersonic Mach number
ranges.

Panel methods have proven to serve the purpose
of analyzing the aerodynamics of the configurations quite
adequately for subsonic and supersonic flows. This in
spite of their inherent limitations requiring bodies to be
slender, wing, tail and canard surfaces to be thin and at
small angle of attack and side slip. The linearized
potential flow model is not applicable for transonic flows
and supersonic flows with strong shock waves. Another
restriction with the linear panel methods is, the flow has
to be attached to the surface of the configuration. This
means that separated and viscous flows can not be treated
with panel methods.

For computational analysis and design studies, a
new panel method was developed in the NLR laboratories
of the Netherlands. This code takes the theoretical
approach of reference [1] as the basis. However, this new
code has some extensions and new features; more general
geometry definition, new mathematical formulation of the
problem, new aerodynamic influence coefficients etc. All
these changes in the USSAERQ resulted with a new code,
NLRAERO [2]. In the following sections the
mathematical formulation and the computer code will be
briefly discussed.
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Description of the Method

Governing equation for the flows over objects in
which the velocity is slightly perturbed from the free

stream value, ie. =0 + ﬁqo , the differential equation
for the perturbation velocity ¢ can be linearized,

resulting into the linearized potential or Prandtl-Glauert
equation,

Bl oo+, +p., =0, )

is free stream Mach number,

@

where S =1-M2 M
U, is free stream velocity vector and ¢ is the

perturbation velocity. Equation (1) is elliptic for subsonic
flows and hyperbolic for supersonic flows that bring some
difficulties.

1t is furthermore assumed that, the x axis is
aligned with the body axis, rather than the free stream
direction, figure 1. This is a valid approximation within
the context of linearized potential theory provided that the
angle of attack and sideslip angle are small. This provides
that, the governing equation is independent of the
freestream direction. This has the advantage of
computation of aerodynamic characteristics of a
configuration at more than one angle of attack and/or
sideslip at relatively little extra expense [2].

y an

Figure 1 Coordinate System for NLRAERO.

Boundary Conditions

The boundary condition to be satisfied are;

o the flow is tangential to the surface of the
configuration, in other words normal velocity
is zero on the configuration;

=0, )

where 71 is the unit normal to the surface.
» the flow is unperturbed at infinity;

>0, €)

where ¢ is the perturbation velocity.

¢ Kutta condition is applied at the subsonic
trailing edges of lifting components.

Linearized theory also restricts the geometry that
will be solved with panel methods. Thin and mildly
cambered lifting components and pointed slender
nonlifting components can be solved according to this
assumption. The other point with linearized theory is that,
the boundary conditions and governing equations applied
to the wing segment reference plane, that is a plane
formed by the plane parallel to the x axis and passing
through the segment leading edge, instead of the wing
itself, figure 2. This is a valid approximation since, all the
terms in the equation must be in the same order.

Wing segment
reference plane

Zz
Z,
X

Figure 2 Wing Segment Reference Plane.

Method of Solution

Singularity distribution method is used to solve
the equation (1), subject to the boundary conditions
discussed in the previous paragraph. The velocity at any
point X¥,can be expressed as the sum of freestream

velocity, velocity induced by source and doublet
distributions on the wing segment reference plane(s) and
a source distribution on the surface of body like
components,

ii(%0) = U, +ii, (%) +it, (%) @)

where #, (550) is the velocity induced by the source

distribution and u, (J? ) is the velocity induced by the
doublet distribution.

Singularity distribution is fitted on the
configuration by small four sided surfaces, that is called
as “panel”. Singularity distributions are located on these
panels according to the type of panel. Present method
utilizes the constant strength source singularities to
represent the body like components. Constant strength
source singularities and linearly varying doublet
singularities are used for wing like components.

Geometry and Paneling Scheme

Different paneling schemes are applied for body
and wing like components of the configuration. Body like
components of the configuration, which may have an
arbitrary cross section, are first divided into segments by
transverse planes where x = constant. Body nose, central
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part or tail cone may be possible examples of body
segment. Then, each body segment is subdivided into
rings by transverse planes at constant x values. The
number of panels per ring may vary from segment to
segment, figure 3.

Ring lines

Body segments

Wing segments

04
X

Figure 3 Paneling Scheme.

Wing like components of the configuration are
first divided into segments by planes parallel to x axis.
Each wing segment may be assumed as a wing segment
reference plane as mentioned in the previous paragraphs.
Then, each segment is subdivided into streamwise strips,
that have same number of panels per strip.

Geometry and paneling input requires the
specification of data per segment. Values of the panel
coordinates are calculated by interpolation. Preparation of
input data is hard work and it effects all the solution
scheme. Insufficient or incorrect paneled configurations
may result with unsatisfactory solutions, although the
paneling is right.

Collocation Technique

Next step in the solution procedure is to
determine that, where source and doublet singularities
will be located on the panels. Collocation technique is
used to determine these points. In this technique centroid
of the panels are chosen as the collocation point for body
like panels. The Kutta condition directly effects the place
of collocation point for wing like components. In case of a
subsonic trailing edge, the Kutta condition implies a zero
bound vorticity at the trailing edge, while at a supersonic
trailing edge a nonzero bound vorticity component is
allowed. In this latter case the number of unknown
parameters is increased by on, requiring one extra
collocation point per strip. The application of boundary
conditions, discussed in the previous paragraph. to these
collocation points leads to a square system of linear
equations for the unknown parameters in the body source
and wing doublet distribution.

Solution Method

It is now possible to write the induced velocity as
the sum of the contributions due to the source and doublet
distribution,

i(%,) =0, +§ 0,dy, +
i=1

Nw NWT _
Y X,d, + 2q,b, )
i=1 i=1

where (;,i =1, NB are the unknown source distribution
parameters on the body like components, X,/ =1 NW¥

are the unknown doublet distribution on the lifting
components and Gu,»i=1, NWT are the known source

distribution parameters on the lifting values, that are
determined by using the boundary conditions. The terms,

a,,a, and b,, are the acrodynamic influence
coefficients, that depend on geometry conditions. Hence,

symmetry properties must be used to reduce the operation
number in calculations

Resulting system is a set of linear equations, that
have NB+ NW equations and NB+ NW unknowns. This
system of equations is solved by a block Jacobi iteration
method using the residual correction. Iteration number is
about 20-30 for subsonic Mach numbers, while in
supersonic Mach numbers it is less than 20.

Pressure distribution, forces and moments

The final step in the solution procedure is
determination of pressure. Different expressions are used
for body and wing like components. Bernoulli’s isentropic
expression is used for body like components,

4
-1

pUs ] y-1 L fla*
p—pco+ }MZ 1- 2 Moo Ui_l -1 > (6)

)

where p, is freestream pressure, p, is freestream
density and y is the ratio of specific heats. Expansion of

equation (6) for small perturbations leads to the linear
expression for the pressure on wing like components,

p

pzpo(v‘pono—;- (7)

Then the aerodynamic forces can be found using,

2164



F= “;‘pw U2 sj,j ¢ i, dS - Sj' [e,ipds — ®

body
and the moments can be found by,

i = —%pwU;S”cpfxﬁwds- [fe,7xiids (9

wing Sbmy

where ¢, is pressure coefficient, 7 is the vector pointing

from the moment reference point to the any point on the
configuration and n, .7, are the unit normal vectors to

body and wing surfaces respectively

VISCOUS BOUNDARY LAYER CODE, BL3D

Boundary layer methods are in advantage in cost
efficiency. but have a limited predictive capability against
the Navier -Stokes solution methods. However, as its
speed is considered, they are essential in any typical
design environment. There exist many different methods
dealing with three-dimensional boundary layers, which
use either the global (integral methods) or local (finite-
difference methods) equation set. Some of these are the
ones regarded by Bradshaw [3], Smith [4], Michel et al
[5], Cebeci and Chang [6], and Van Dalsem and Steger

[71

In the present study the boundary layer solution
code BL3D is applied to the solution of the studied cases,
where the surface pressure required is provided by
NLRAERO. The finite-difference sotution algorithm [7] is
used, and the integration of the boundary layer equations
are carried out using the Van Dalsem-Steger [7] finite-
difference time-relaxation algorithm. As the turbulence
model is considered, the Cebeci-Smith Method is applied
in this study.

Governing Equations

For the Boundary Layer Equations a simple
coordinate transformation from the Cartesian coordinates
(».5.z) to general curvilinear coordinates &x,z),
n(x.y.z) and ¢(x,z)is used. The surface curvature is

neglected 'in the unsteady compressible boundary-layer
equations, so the three dimensional equations for a perfect
gas can be written as;

X-momentum equation,

PU, +p(qu +Vu, +Wu¢) =

“ﬂ(p5§t+p;é;)+(w,777y)”77y, (10)

z-momentum equation,

o +p(Uw5 +Vw, + ng) =

= —,B(p;é + p;é’z) +(ﬂwnny)ﬂ Mys 1n
perfect gas relation,
p=pT, (12)

energy equation ( // = total enthalpy ),
H, + p(UH, +VH, +WH,) =

u Pr-1,, ,
{E{H""ﬁ 2 (u +w )ﬂ”y U/ (13)
7

and continuity equation,

pr+(pu) & +(pu), e + () S +
(pv)” My +

(%) & +(ow), 1. +(ow), ¢ =0. (14)
In these equations U,V and Ware unscaled
contravariant velocities,
U & o U+ oW
Vi=|m +nu+my+nw], (15)
w G o U+ W
and
B= ( pz) (16)
pu

The Cartesian # and w -velocities are parallel to
the body, and Cartesian coordinates x and y are non-

dimensionalized by the free-stream velocity and a
characteristic length, respectively. Also the vand y
variables are non-dimensionalized by the same values
divided by \/f{—e: . Density, pressure, temperature and
viscosity are non-dimensionalized by their free-stream
values. For turbulent flows, the molecular and eddy-
viscosities are summed up to find the viscosity coefficient
u.

NumericalyAlgorithm

There is no need for complex space-marching
patterns, since a time-like algorithm is-used. Moreover
the boundary layer equations are weakly coupled, as the
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pressure gradient forcing terms in the momentum
equations are treated as given functions. Therefore these
can be solved sequentially at each time step. As a result, a
semi-implicit algorithm can be used at each time or
iterative step, yet only scalar-like uncoupled equations are
solved. Implicit second-order accurate central-difference
operators in the direction normal to the body m, and flow
dependent second-order accurate operators in the other
two directions £ and ¢ are used in the approximation of

the spatial derivatives in the momentum and energy
equations.

The time-accurate algorithm, using conventional
operators in terms of the shift operator E;'u; =u,, is

written as;

Ve =(1—Eg‘)’/A§, (17)
Ag= (Eg’ - 1)/A§, (18)
5 = (Eg‘ - Eg‘)/(zAg), (19)
5 =( . —Eﬁ)/(mg) (20)

and the second order accurate upwind operator

Gb, = (a ;{“IJWF _ZE;} ¥

HLE)

where o is the convective coefficient.

The semi-implicit scheme

Update u at the new time step from the x-
momentum equation,

pvrunﬂ +
p((?é}u"” +V6,]u"” + Vf’ggu) =

~ﬂ(§x5¢p+§x5¢p)+ 7,6, (/mygu"”) . @)
where V,5 and & are the first-order backward-
difference, second-order central-difference and second-
order mid-point central-difference operators, respectively.
And U5 denotes the second-order accurate upwind-
difference operator. By inverting scalar-tridiagonal

matrices in7, this system of equations can be easily
solved. In the same way, wis updated from the z-
momentum equation,

oV, w +p()é:§w"+l + pVS,w! +pl/f/5}w

=-B(£6:p+C.5,p)+ n,5, (/mygwm), (23)
and H is updated from the energy equation,

pvt Hn+l +
p((jgéH"+l +VE,H™ + W&{H) =

N ﬁ o prn+l
”yéy[Pr {”ysﬂH " }]+

—| u |Pr—-1 = n+l
’lvay[ﬁ{ ) nyé‘,](uznth) H7

or, a constant total enthalpy assumption, for many steady-
state cases, can replace this partial-differential equation.

(24)

Then, obtain the density p= p/T and integrate

the continuity equation for v using the updated values of
u,wand p;

-1

v ()" =~ ”f” (4+B+O)™, @9
where
4= g6, (pu) + 0.8, (ou) +¢.8,(v).  26)
B=.§z§§(pw)+ n.6,(pw)+$.8:(ow), @27
and
C=V,p. (28)
The Turbulence Model

The Cebeci-Smith [CS | Model (1974)

The Cebeci-Smith (1974) turbulence model is a
two-layer algebraic eddy-viscosity model. It uses a
Prandtl-van Driest formulation for the inmer and a
Clauser formulation together with  Klebanoff’s
intermittency function for the outer region.

The eddy-viscosity is described by

*
v, fory <y 29)

Ut =
v, fory >y
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*
where y  is the smallest value of y at which the eddy-

viscosity values from the innmer and outer region are
identical.

In the inner region, the eddy-viscosity is taken as

) 22
e EECH

where Au/dy and Aw/J are the components of the

velocity-gradient vector, y is the normal distance and
x =041 is the Karman’s constant. The near-wall
damping D is given as;

(30)

D=1-¢"/4" 31
where 4”7 =26 and y™ is given by
N PuyiTwl¥

Ll i) o)

Hy
The subscript w denotes values to be taken at walls.

For the outer layer, Clauser’s formulation
together with Klebanoff’s intermittency function is used

*
Up = kqeé‘i FKleb s (33)

where 5i* is the incompressible (total) boundary layer
displacement thickness

x 85 ¢
51 = Io[l‘;:}dy>

boundary

(34)

0 being the layer  thickness and

72, . .
q= (uz + w2) is the magnitude of the mean velocity.

Although varying slightly in the low-momentum-
Reynolds-number range, the Clauser parameter k is
generally taken to be a constant, & = 00168, and the
Klebanoff’s intermittency function is,

1

EEE— (35)
1+55(y/6)°

R Kileb =

Finally, the eddy-viscosity distribution is found
from

v, = min(vy, U,) . (36)

COUPLING PROCEDURE

Direct way of coupling procedure is chosen for
this study. Pressure values obtained from the NLRAERO
are input to the BL3D by some modifications. Where the
body and the fins are all separated. This means that the
BL3D code must run five times to solve a missile like
geometry with four fins. Boundary layer thickness and
skin friction values are calculated in this viscous code,
according to the pressure values. Skin friction values are
checked with the experimental data in that step. If the
values are accurate enough the procedure ends and
viscous drag coefficient is calculated by integrating the
skin friction values over the body surface. If not, the
distributions of the boundary layer thickness are added to
the original geometry at each point. This modified
geometry is the new input of the panel code NLRAERO.
New values of pressure are calculated and fed back to the
boundary layer code BL3D. This iterative procedure stops
if the calculated values have converged or close enough to
the experimental values. Addition of boundary layer
thickness to the original geometry was not performed in
this study. Instead, only pressure values obtained from
NLRAERO were fed to BL3D code and results are taken.

RESULTS

The test case is a missile geometry [8]
Geometric details of the missile can be shown in Figure 4.

3:1 Tangent
Ogive Nese T

D=11.43 mm
C

| b |

L=228.6 mm
0.733 D

Aft View

Figure 4 Geometry of the Test Case I, [8].

In order to check the results of NLRAERO for
the test case, pressure distribution results for the body
without the fins, was compared with an unstructured
mesh based, Navier-Stokes, Euler code, NSC2KE [11].
For this case, a mesh was generated, which is given in
figure 5 and 6, where L is the total body length.

Figure 5 Enlarged View of NSC2KE Grid.
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Figure 6 Grid of the Test Case for the NSC2KE Code.

The pressure values obtained with NLRAERO
and NSC2KE . along the x axis of the configuration for a
subsonic Mach number, A =0.5, are given in figure 7,
and for a supersonic Mach number, A = 2.0, are given
in figure 8.

M =

0.2 ach 0.5

eee60 NLRAERO
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Figure 7 Body Alone Surface Pressure Values at

M=05.
0.3 Mach = 2.0
0.2 Ry oo-so0 NLRAERO
NSC2KE
Cp 00
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_O} 4331333 Y2 33305 530 Va3 RIS IR S A bt a1
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Figure 8 Body Alone Surface Pressure Values at
M=20.

It can be said that pressure values calculated by
the panel code, NLRAERO are quite good in subsonic and
supersonic Mach numbers. However, there is a slight
difference between the values of these codes at supersonic
speeds especially at the rear end of the body.

The grid produced to be used in BL3D code is
shown in figure 9. Here the growth of the boundary layer
is taken into account. Although, it is not a very complex
grid, compared to Navier-Stokes and Euler grids, is
enough to obtain good results. Figure 9 shows only the
grid at one angle around the body in the normal direction
to the surface, where S designates the surface distance

along the body. A similar grid is produced for the fins,
that was placed at the clustered region at the back of the
grid.

05+

Q3

Y {em)

VAN

AV LN

Figure 9 Boundary Layer Grid of the Test Case.

Then the pressure distribution is taken as an
input of the BL3D code and boundary layer parameters
are calculated. Skin friction coefficient, C, distribution

for two Mach numbers, M =0.5 and M =20 are
shown in figure 10.

0.003

T

0.002 By

Cf

0.001 _ Body Alone
Mach = 0.5
oeo90 Mach = 2.0
0.000 TN PRSP YRR TR P fiaasas )
0.0 5.0 10.0 15.0 20.0 25.0
X (em)

Figure 10 C, Distribution for the Body Alone.

The BL3D code is only able to calculate the
viscous drag by integrating the skin friction drag along
the body. Therefore, in order to find the total drag, the
pressure or wave and base drag values are taken from the
MISSILE DATCOM [9].

A comparison of the viscous drag variation with
the Mach number, calculated by MISSILE DATCOM and
BL3D for the body alone configuration, is shown in figure
11. It can be easily said that, viscous drag coefficients
calculated with BL3D are in well agreement with the
MISSILE DATCOM results.
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Figure 11 Body Alone Viscous and Total Drag
Coefficients.

For the whole missile, i.e. body and fins,
variation of the total drag coefficient, Cj;, at zero angle of

attack, with the Mach number, was obtained from five
different sources. Which were the MISSILE DATCOM
code, the vortex lattice panel code, VORLAX {10], and
the EAGLE code obtained from reference [8], and the
result of this study in which the 3-D panel code
NLRAERO are coupled with the 3-D boundary layer code,
BL3D. Result of the NLRAERO code alone is also shown
in figure 12 to give an idea about the pressure drag.

[
Totol Drag Coef.
0.6 / e DATCOM
/ annas BL3ID
eeoe0 VORLAX
eeeaa NLRAERO
saaean FAGLE
CdosF
02
0.0 L oo b
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Mach

Figure 12 Drag Coefficient of Test Case 1.

It can be said that calculations of BL3D and
NLRAERQ are in agreement with the results of MISSILE
DATCOM. This indicates that, coupling procedure is
successful and results are very accurate when compared

with the experimental values. The drag coefficient
calculated with NLRAERO only is very small although
the general trend is similar to the total drag coefficient.
However, by coupling procedure results are improved,
that is the aim of this study.

CONCLUSIONS

An inviscid panel code, NLRAERO was coupled
with a viscous boundary layer code BL3D. Skin friction
drag calculated with BL3D and total drag was compared
with the other numerical results. A wrap around finned
missile geometry was chosen as the test case and the flow

around it was solved at zero angle of attack, a=0°.
Results of this case were in well agreement when
compared with the results of other codes.

Another case, the flow around the prolate

spheroid at « = 10° was attempted to be solved. However,
the BL3D code was not able to solve the flow in the
pressure specified mode, since the flow separates on the
body. To overcome this difficulty the skin friction
specified case must be solved, which was not in the scope
of this study. Thus, there is a difficulty in analyzing the
separated flows with inviscid viscous coupling. But, if
there is no separation, the results are very well when
compared to other methods.
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