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Several methods for predicting exhaust plume boundaries with a surrounding external
flow currently exists [1]. There are some experimental studies that have been performed to
predict plume behavior at different jet exit pressure ratios [2,3]. When the exit pressure ratio
increases then some numerical problems arise due to the solution techniques. In addition mesh
adaptation is needed because the shock and plume boundary is a thin layer. Therefore to
resolve such regions more accurately solution adaptive mesh generation is required. Present
method solves axisymmetric Euler equations by using finite volume technique on unstructured
triangular meshes. Solution adaptation has been employed considering Mach gradients.
Prediction of plume boundary fits very well with the experiment.

Introduction

Exhaust plume boundary prediction has many
applications in aerospace industry. In spacecrafts and
ballistic missiles the extent of the plume is an important
factor, since it may effect downlink communication. One
another important consideration is that infrared radiation
of plume increases at high altitudes just due to the
expansion of the plume. Because pressure decreases in
the order of a hundreds or sometimes a thousands. Also,
an understanding of the interaction between exhaust
plume and various vehicle components such as control
fins, necessitates exhaust plume prediction for aircrafts,
missiles and spacecrafts. An exhaust plume expansion
into a supersonic external freestream further complicates
the flow field. Because plume boundary behaves like a
curved rigid body so that it causes shock wave mostly a
curved shock not oblique. Therefore it’s strength is not
low. Very large gradients exists around these regions.

A review of available techniques revealed that
there are very few methods for the prediction of plume
characteristics especially by CFD [1,8] In the present
investigation a practical and accurate solution technique
[4] is applied to such problems,

Governing Flow Equations

The flow inside a duct and the flow around a
body of revolution possess axial symmetry at zero angle
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of attack because of the circular crossection of the body.
The coordinates are r ,0 , z where r is the radius to the
projection on the Xy plane, z is the distance above the xy
plane and 6 is the angle between the radius r and x
axis.

For an axisymmetric flow both the velocity
component v, and derivative with respect to © are set to

zero. The resulting axisymmetric equation in cylindrical
coordinate is
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where U is called solution vector and represents the

conserved quantities,. F and G are the Cartesian
components of the flux vector of these quantities. More
explicitly , they are defined as
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If the third term of equation(1) in space is expanded then
following form with a source term is obtained.
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Equation (4) is equivalent to the following 2D equation
in Cartesian coordinates.
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here o is “0” for two dimensional problems and “1” for
axisymmetric problems. In this form , the above
equations apply to a particular point in space. If one
wishes to apply them to entire region of the flow field,
one may integrate them over the whole control volume.
The differential formulation is converted to the integral
form by application of the Gauss’s theorem in the plane,
then following equation is obtained.

aﬁtjUdQ+§(de-de)+ajH*dQ=0 7

This is the equation to be solved throughout this study.

Numerical Solution Technique

The equation (7) is discretized in space by using
finite volume formulation. Artificial dissipation terms are
employed to damp oscillation due to the numerical
solution method. Multi-stage time discretization is used
in advancing time. First, the whole domain is subdivided
into a large number of small control volumes. When the
integral equation is applied to each control volume, it
results in a set of ordinary differential equations which
can be solved by marching in time [4,7].
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When the integral form of the Euler equations
are applied to a finite control volume ., one obtains

the following coupled ordinary differential equations

d Nedge
—a‘t‘(UKQK) + Z (FIAYI - GiAxi) +
1

®
o(HgQg ) =0
for each control volume around K, where Q, is the
control volume associated with the node K , U, is the

solution vector at node K , F, and G, are the Cartesian

components of the flux vector on face i of the control
volume, Nedge is the total number of edges which
surround the control volume, Ax;,Ay, are the

incremental distance of x and y along face i, see figure-1
. Hg is the additional terms at node K due to the

axisymmetry, hereafter H is used instead of H*. The
fluxes F, and G; are functions of flow variables at

neighboring points, and thus the system of equation is
coupled in space. Here the control volume is performed
in a similar way of the evaluation of the fluxes. Note that
for 2D cases a discrete control volume is defined as the
area around a point enclosed by edges of meshes as given
in figure-1.

F..G

FIGURE 1 - A finite control volume at node K

The sum of the flux terms refer to all external
sides of the control volume Q. . For the whole domain ,

control volumes associated with the nodes will overlap.
This , however doesn’t produce any difficulty since each
edge produce a positive flux contribution to one
neighbouring control volume, and a negative flux



contribution to other neighbouring control volume and
no contribution when it is internal to a control volume.

Since the nodal scheme involves the evaluation
of the fluxes across the edges of the triangular cells, the
most basic element of the mesh is seen to be the side,
rather than the triangular cell itself. Therefore the data
structure of the mesh, called as mesh connectivity, is
based on the sides

Artificial Dissipation

In the above form, the discretized equations
contain only first differences between flow variables thus
are non-dissipative. This means that background errors,
such as discretization or round-off errors , are not
damped and oscillations may be present in the steady
state solution. Also oscillations may be produced in
regions of large pressure gradients such as near shocks,
and will persist due to the non-dissipative nature of these
scheme. In order to eliminate these oscillations, artificial
dissipation terms are added to the equation (8).

The approach of Jameson et al [6,7] is adopted to
construct the dissipation function. This consists of a
blend of second and forth differences of the flow variables
u.

Time - Stepping

The system of ordinary differential equations (8)
represents an initial value problem which must be solved
in order to obtain the steady-state solution , that is until
the time derivatives all vanish. Since the cell area O for

each cell K is fixed, then the equation (8) may be
rewritten as

dU,

+ RUg)= 0 ®

where R is the residual. The integration in time to a
steady state solution is performed using a multi-stage
scheme. Since the time accuracy to a steady state solution
1s not important for a steady state solution, such schemes
are selected only for their properties of stability and
damping

A slightly different class of schemes can be
constructed by separating, within Ry itself, the
evaluation of the convective and dissipative operators. A
saving in computational effort and altering the properties
of the scheme may be achieved by omitting the re-
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evaluation of the dissipative operator at each stage. This
is known to modify stability region of the scheme, but
the steady-state accuracy and convergence characteristics
appear to be preserved. Such schemes are called hybrid
multi-stage time stepping schemes. For a ¢-stage scheme,
equation (9) takes the following

Uz = Ug
Uy = Uy - o, Aty Ry
(10)
Ut = Ux - o, At RYY
Ut = UL

This is a fully explicit scheme where At is discrete time
step and a,....a, are coefficients particular to the time

stepping schemes. n is the known time step. For a three-
stage scheme the coefficients are 0.8, 0.8 and 1. , for a
four-stage scheme they are 0.25,1./3.,0.5 and 1.0

Convergence Acceleration

An efficient Euler solver must be rapidly
convergent. The generally known methods for the
convergence acceleration are local time stepping, residual
averaging, adaptive remeshing, entalphy dumping and
multigrid algorithms. Local time stepping advances the
equation in time by taking the maximum permissible
time step at each cell in the mesh. Residual averaging
seeks to relieve the Courant-Fredrich-Lewy (CFL)
limitation on the time step by increasing stability.
Enthalpy damping uses a slight modification of the Euler
equation to provide additional damping in time.
Multigrid algorithms perform time steps on coarser
meshes to accelerate the solution on a fine mesh.
Adaptive remeshing algorithms increases the density of
the mesh in high gradient region while decreasing the
mesh density in low gradient region at subsequent time
steps. In the present study the first three methods are
employed in the solution algorithm.

Initial and Boundary Conditions

Freestream values are used as initial conditions
in the entire domain of interest. In the grid file boundary
edges are marked with different indexes corresponding to
different boundary conditions. Following numbers are



used together with boundary edges for different boundary
conditions.

1 inviscid wall, 5 far field (outflow)
2 isothermal wall, -5 far field (inflow)
3 adiabatic wall, -6 jet outflow (or inflow)

4 symmetry condition

For inviscid flow , the required boundary
condition at surfaces of object is flow tangency or no flow
normal to the boundary. This is easily implemented by
setting the convective fluxes to zero along all mesh edges

which coincide with the surface of object.

In the present calculations isothermal and
adiabatic wall conditions are not used. Along the
symmetry line normal velocities are set to zero and
gradients of the axial velocity are extrapolated from the
interior points connected to the boundary edge. At far
field vortex corrections are used if the object generates
lift and flow is subsonic. However this is not the case in
axisymmetric problems. If the flow is supersonic or
axisymmetric then nothing is done except the
extrapolation from interior points. This is accomplished
by adding half of the unknowns of the interior points to
the corresponding end-points of the boundary edge using
the information of grid connectivity at boundary edges

Adaptive Mesh Refinement

The mesh generation is the division of the
solution domain into discrete inter-connected points
called grid points. The grid points in the inner domain
are usually positioned so that they are concentrated in
regions where it is expected that there will be large
gradients ( such as near shock waves) and are relatively
sparse in regions where the solution is expected to vary
slowly. This leads to the adaptive grid generation
procedure in which the grid generator and flow solver
interacts. By using the solution and corresponding grid a
sensor value is obtained through which new spacing of
the previous grid is found [5]. After that grid generator is
activated to find new grid using new grid spacing values.

For Euler equations, some of the main flow
features of the solution can be shock waves, stagnation
points and vortices and any indicator should accurately
identify these flow characteristics. The method which has
been chosen to identify these important flowfield features
is a measure of the gradient of some dependent variable
Q . Several different physical criteria have been
proposed for Q ,in this study following combination is
assumed.

Q=ap+bp+tcu+dv+eM an
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where a, b, ¢, d and e are weighting factors for
corresponding flow parameters. The criteria which have
been tested are local Much number, density, pressure and
velocities. The criteria are written as the gradient of these
quantities in the stream direction. For Euler equations
following are used.

[u.VQ| and |VQ| (12)

where u is the velocity and Q is Mach number or

density or pressure or velocity.

Discussion of Results

In this study very high pressure ratio jet plume
coupled with a supersonic external stream is examined.
Figure-2 gives the typical flow structure of such
problems. Since the pressure ratio is very high sometimes
manipulations are needed to start a smooth solution.
Therefore pressure at the exit is steadily increased to the
final desired pressure. And then solution is proceeded
until the convergence is achieved. A coarse mesh is
generated as an initial mesh. It is given in Figure-3.
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FIGURE 2 - Typical Underexpanded Plume

Pressure ratios at the exit are increased steadily by
powers of 2 starting from 0 to 10 . At each step a hundred
iterations is performed as an initial condition to the next
step. After the last step pressure ratio is increased to
1500. With this ratio further five hundreds iterations are
performed so that required gradients of flow parameters
are developed. Then the solution and corresponding mesh
are feed to the mesh adaptation procedure.

In this part gradient of Mach number is used as
a mesh refinement criteria. This is most suitable
parameter for plume external freestream flow problems.
Because through the shock wave and plume boundary
Mach number is the most dominant parameter to be
considered. In the mesh adaptation, the density of mesh
is increased in high gradient regions while it is
decreased in low gradient regions [5] It is also possible
just to increase the mesh density. But to avoid
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FIGURE 4 - Adapted Mesh

unnecessary fine meshes, meshes are removed from the
low gradient parts of the flow. After the determination of
mesh spacing values mesh generation procedure is
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employed using new spacing values. With this new mesh
the above procedure is repeated three times. In the last
step of the final stage, number of iteration is increased to
three thousands. Figure-4 and 5 gives the adapted meshes
in detail.

As it is obvious from the meshes, there are
basically two high gradient regions; one is the shock
wave of the external freestream due to the plume shape,
and the other is plume boundary itself. Therefore meshes
are made very dense in these regions. The minimum size
of the mesh is determined by user’s intention. Since the
flow is supersonic and we are interested in the plume
boundary the solution domain is kept as much as small.
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FIGURE 5 - Adapted Mesh in Detail

Specific heat ratio is taken as 1.4 and jet exit
angle is 15 degrees. Freestream Mach number for the
first case is taken as 4. Mach contours are shown in
figure-6. The shock wave due to plume and plume
boundary is obvious. The shock wave is not oblique
around the nozzle exit but actually it is a bow shock
therefore stronger than oblique shock wave. If some
external components are to be used around the nozzle
location of this shock and strength of it must be taken
into account. Between the shock wave and plume
boundary Mach number first decreases and then increases



until to the plume boundary. After that it suddenly
increases to almost ten up to the Mach disc.

Macr Contours
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FIGURE 6 - Mach Contours for M., =4

Streamlines, which shows flow direction clearly,
are given in Figure-7. Jet plume behaves like a solid
boundary. Just after the shock wave flow deflects parallel
to the plume boundary and then it maintains same
direction. Flow overexpands to the freestream after
leaving the exit plane.

FIGURE 7 - Streamlines for M,. =4

The residual history plot for the last adaptation
stage is given in Figure-8. Residual is taken as the
maximum error of flow variables, in this case density,
scaled by local time steps between two iteration steps.
Steady pressure increase at each 100 iteration causes an
increase in the residual. When the pressure is increased
to 1500 at the jet exit, then it jumps suddenly from order
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two to five. And then it starts to converge. It seems that a
thousand iteration is enough for convergence to order
zero. After that it doesn’t converge furthermore.
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FIGURE 8 - Residual History for M. =4

Comparison of the plume boundary is done in
Figure-9 and 10. Computation almost fits with the
experiment [2]. There are very minor errors only. There
may be some errors in the extraction of the experimental
and computational data. It seems that plume shape
changes almost linearly for a very short distance. And
then starts to curve down as it goes downstream. When
the external freestream is five then computation
underpredicts but it is finite.
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FIGURE 9 - Comparison of Plume Shape, M.. =4

Finally some case studies are done for different
exit pressure ratios which are 1 and 10. Freestream and
jet exit Mach number are taken as 3. Initial coarse mesh
is used as the computational mesh. Figure 11 to 12 give



the Mach contours for these cases. The change of plume
shape and shock structure is clearly shown. Expansion of
the Mach numbers from exit to the Mach disc is
indicated. How the thickness of the shear layer changes is
observed.
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FIGURE 10 - Comparison of Plume Shape, M. =5
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FIGURE 11 - Mach Contours, P; /P, =1

Conclusions

An axisymmetric Euler solution technique was
used to predict the jet plume and freestream interaction.
Triangular meshes was used with suitable adaptation
techniques. It was observed that not only the plume
boundary was predicted but also the domain was solved
correctly. And the information that can be extracted is
more than one which calculates plume boundary only.
Accuracy depends on the initial mesh and adapted
meshes strongly. Therefore one should carefully attack to
the problem. If the upstream external shape of the nozzle
is not smooth then flow structure can be predicted by this
technique. However in such cases boundary layer would
be dominant therefore Navier-Stokes solution is required.
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The cost of this solution is found to be low for a
computational technique.

Mach Contours
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FIGURE 12 - Mach Contours, P; /P, = 10
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