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ABSTRACT

A constrained optimization method for lifting surfaces
configurations has been developed. The method consists
of a 3D vortex lattice method coupled to a numeric
function optimizer algorithm. It has been applied in a
case study for induced drag reduction of a medium range
transport aircraft in cruise conditions, by suitable shaping
of spanwise wing local incidence distribution (torsion).
Design constraints for trimmed cruise flight and stall
inception safety have been introduced progressively,
generating different constraint severity level optimization
cases. The method was successful in producing optimum
configurations wich respected the required constraints for
each case. Also, the results enabled to stablish the relative
merits of each constraint adopted, indicating that the
method have been able to follow known, phisically
correct trends.

List of Symbols

X,¥,2 Reference coordinate system (Fig. 4)

g Gravity acceleration (9.81 m/s?);

m Aicraft mass (kg),

p Air density (kg/m’);

Us Freestream flow velocity (m/s);

M Mach number;

b Wing span (m),;

mac  Mean acrodynamic chord (m);

c(y) Spanwise chord distribution (m);

Vs Stall inception spanwise coordinate;

Vsafe Stall safety limit spanwise coordinate;

S Reference area (projected wing area - m%);
CG Center of gravity,

o Aircraft angle of attack (degrees);

A Wing tip local incidence angle (degrees);
Wo Wing break local incidence angle (degrees);
iy Horizontal stabilizer incidence angle (deg);

L lift force (N);

Di induced drag force (N);

C Lift coefficient;

Co; Induced drag coefficient;
M Pitching moment coefficient;

Iy) =~ Spanwise adimensional lift distribution;
cly) Spanwise lift coefficient distribution;
c(y)  Spanwise basic lift coefficient distribution;
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c(y) Spanwise additional lift coefficient distrib.;
{X;}  Optimization decision variables set;
F({X;}) Optimization objective function;

{G;} Constraint functions set;

[AIC}] Aerodynamic influence coefficient matrix;
[RHS] Contour conditions vector;

19 Vortex intensity vector.

Subscripts

max  maximum;

opt optimum;

cruise cruise condition reference.

Introduction

In general engineering practice, two basic distinct
problems are usual: analisys and design. In the field of
aircraft aerodynamics, this distinction is of special
importance: the objective of analisys is to evaluate the
aerodynamic characteristics of a given configuration.
Conversely, the design process searches for the
configuration wich is aerodynamically best suited for an
specific mission and, at the same time, respects the
constraints imposed by other design needs (structure,
weight, operational feasability, etc.).

In aircraft design, the use of any “traditional” standard or
configuration does not necessarily brings good results
promptly. Currently, constant design research has become
the key for survival within the constantly changing
acronautical market. On the other hand, aircraft design
optimization is an specially complicated task, due to the
immense number of design variables and constraints
involved.

The last three decades brougth a quantum leap in
acrodynamic analisys methods, due to the crescent
availability of computer power. In spite of that,
computational design methods did not present such
growth. As a result, until recent years, powerful and
sofisticated computational analisys methods, capable of
treating large numbers of design variables, have been
used in “manual, cut and try” design methodologies.
Within that context, recent advances” have been made in
order to develop viable computational design tools, able
to control design variables and constraints in search for

2549



optimum  configurations, - given  conditions and
background imposed by previous experience.

Based on these facts, a constrained direct optimization
method for the geometry of aircraft lifting surfaces has
been formulated, based on a three dimensional vortex
lattice analisys method coupled to a numerical
multivariable function optimizer. Tests and validations
have been performed around the problem of induced drag
minimization for a medium range transport aicraft, in
cruise condition, by applying suitable wing torsion. The
effects of different design constraints on induced drag
have been evaluated.

Description of the Method

Constrained direct optimization is one of the current
basic trends” in computational design methods. The
technique is based in coupling a desired analisys method
to a numerical multivariable function optimizer routine.
The optimizer is able to use the analisys method as a
multivariable function evaluator, in wich a chosen
objective aerodynamic characteristic F (for example,
induced drag) is dependent of a given set of decision
variables {X;} (for example, geometric characteristics).
The routine is then able to numerically search for the set
of decision variables values {X},: wich returns the
minimum (or maximum) value of the objective
aerodynamic characteristic chosen F({Xi},), in an
iterative process of analisys and evaluation (Figure 1).
The final set of decision variables must be constrained to
a certain domain, to ensure that the final result is feasible
for the mission in mind.

In this work, a vortex lattice method was chosen to
perform aerodynamic analisys and has been coupled to an
extensively tested function minimization method®, Both
methods are described below.

In comparision to the so called “inverse design” methods,
direct optimization is a more general approach, once no
“desired optimum” must be prescribed to be reached.
Such desired optimum is a natural result of the variable
set search. One of the disavantages of the method is its
larger computer cost (run time) reached if too many
decision variables are desired and/or the analisys method
consumes too much processing time, as it is the case of
highly discretized and detailed CFD models. In spite of
that, a future growth of direct optimization usage can be
previewed along the current growth in computer power
availability.

Vortex Lattice Analisys Method: VORLAT algorithm.

The vortex lattice analisys method® is a numerical
solution of the lifting surface theory equations® for
inviscid potential flow. The real lifting surfaces are
aproximated by a set of trapezoidal planar elements, with
no thickness taken into account (Figure 1). Through
Green’s third identity, the Laplace’s equation wich
represents the potential flow around the lifting surfaces
can be expressed as a combination of singularities over
the planar surfaces. In this case, the trapezoidal planar
elements model is discretized in rectangular panels, each
of them associated with a rectangular vortex ring of
unknown intensity. The vortex trailing wake shed from
the surfaces is modelled by horseshoe shaped semi-
infinite vortices (in the plane of the elements), whose
intensities satisfy the Kutta condition at the trailing edge.
As a numerical solution of the integral equation resultant
from the singularities (vortices)  distribution
representation, mutual influence between the vortex
panels is evaluated. This evaluation, associated with the
contour condition of no flow penetration on
representative control points on the panels, gives rise to a
linear sistem of equations of the form:

[AIC][K ] = [RHS] o,

in wich [K;] is the solution vector for the vortex rings
intensities. The aplication of the Kutta-Joukowski law to
each vortex ring segment normal to the flow and the sum
of the whole vortex rings effects gives total lift and
induced drag forces, as well as total pitching moment and
spanwise lift distributions.

In this approach, small angle chordwise camber and
spanwise local incidence distributions can be taken into
account by a simple linear contour conditions
modification, wich affect the [RHS] vector. Also, a
Prandtl-Glauert linear correction for compressibility®® in
subsonic flight has been implemented. The resulting
VORLAT algorithm has been- extensively validated by
comparision with classic lifting surface solutions®, and
its convergence with crescent panel discretization was
satisfatory®,

The Vortex Lattice method (VLM), although less
sophisticated than higher order panel methods, is capable
of great prediction accuracy for global forces and lift
distributions of free lifting surfaces. It is very adequate
for preliminary design needs and has low computational
cost, reasons that make it ideal for a first implementation
of a usable iterative optimization method.

Iterative Optimization Method: CONMIN algorithm.

An already validated numerical function minimization
algorithm has been used. The CONMIN algorithm has
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been implemented by G. N. Vanderplaats® in 1973. It is
based on a gradient search method and has special
features in order to identify and avoid local minimum
values of the objective function F({X;}), ensuring that an
absolute minimum {X;},; can be found. The algorithm
settings can be adjusted for each aplication need, based
on the function linearity degree and final result precision
level desired. The number of decision variables to wich
the method can be applied is limited only by the computer
power available.

Constraint limits to the minimization search can be
stablished in two ways. The first one is with side
constraints, wich define the range of values a certain
decision variable X; can have. The second option is by
applying inequality constraints that define a certain
dominium range within the variables range by the
imposition of inequations involving user-defined
functions G;. This inequations are of the form:

G<0 @

The algorithm has been adopted due to its validated
robustness for different applications and its availability.
Any attempts of modification or deep interpretation of the
gradient search method itself have been considered
beyond the scope of this work. For further considerations
on the method, the correspondent NASA technical
memorandum® is recommended.

Optimization Method: VORLAT/CONMIN system.

The coupling between the VORLAT analisys algorithm
and the CONMIN function optimizer has been made by
common memory sharing between the variables involved
and a simple interface routine able to translate the data
between both algorithms (Figure 1). The CONMIN
algorithm control variables and tolerances have been
adjusted with basic first running tests®, in wich the
optimization iterative cycle has been started with
different arbitrary initial values for the decision variables
set {Xi}. The adjustment process enabled a final results
precision up to 10 the values of the decision variables.

Description of the Optimization Cases:;
Induced Drag Reduction.

As mentioned above, the resulting VORLAT/CONMIN
optimization method has been applied to induced drag
minimization of aircraft lifting surfaces. The design case
of induced drag reduction for a medium range transport
airplane in cruise regime was chosen. The basic
configuration chosen to be optimized is shown in Figure
3. It is important to remmember that the method is
general, and that this problem in particular was taken as
a first study.

Geometric Optimization Variables

The choice of the geometrical characteristics to be
optimized on the configuration has been based on three
criteria;

- Reduction of induced drag for a given Cy is essentially
achieved by lift distribution shaping. One way to
accomplish that is by suitable spanwise local incidence
distribution, or “wing torsion”.

- Other major geometric characteristics (ex.: chord
relations, aspect ratio, wing sweep angle) for the chosen
configuration in particular have already been defined
(“frozen™) due to other design constraints (wave drag,
required structure, etc.).

- During VLM analisys, spanwise local incidences are
considered in the [RHS] vector. The [AIC] matrix is
defined by other geometric features of the configuration
and its decomposition demands relatively large
processing time, during the solution procedure. If local
wing incidences are chosen as the decision variables, the
[AIC] matrix needs to be calculated only during the first
iteration, making the optimization process faster. As a
result, an earlier deeper insight on the method as a whole
could be enabled.

From these criteria, the geometric decision variables
chosen are shown in Figure 4 and are described as
follows:

(a) o (Alpha): aircraft angle of attack, measured between
wing root and freestream velocity U.

(b) wy: local wing incidence angle at the wing tip,
relative to wing root. :

(¢©) w; local wing incidence angle at the wing
discontinuity, relative to wing root.

(d) iy: horizontal stabilizer incidence angle, relative to
wing root.

(NOTE: local incidences are measured from the the zero
lift line of the local surface airfoil)

For the local incidence angle distributions, VORLAT
considers linear variation along the span of each
trapezoidal element. Figure 5 shows the vortex lattice
model of the configuration. No attempt has been made to
model the fuselage effects by any methods in this
preliminary work.

Constraints Definition

The condition of an aircraft in cruise is characterized by
its null translational and rotational aceleration. Given
that conditions, the following can be written:
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From Egs. (3) it can be stablished that for a tipical
operational aircraft weight, a tipical cruise Cy must be
sustained. Also, the cruise moment coefficient around the
CG must be zero. These two conditions are the first two
design constraints to be imposed during the optimization.
They are also the reason to choose both o and iy, as
decision variables.

In this work, another constraint of interest has been
envisaged, to evaluate the ability of the method to follow
known trends. It can be required from the method that
the final optimized configuration also assures a safe stall
inception. To evaluate the trend of stall progression, the
classical method® of extrapolation of the spanwise lift
coefficient distribution c(y) to Crn. has been used. In
that method, the ¢(y) distribution is assumed to have a
linear relation wit C;, even near the stall angle of attack,
of the form:

CI(Y) = c,,,(y) +Ce, (y) @)

From that point it can also be stated that the stall
spanwise starting point is that for wich the local Lift
coefficient c(y) first reaches the local maximum profile
lift coefficient Cipma(y). From this statement and Eq. (4),
the following can be written:

Crrn =mm(%@) )

The spanwise stall station y, can be estimated as that for
wich the minimum in Eq. (5) occurs. Although seemingly
crude, this estimation of y, can be very precise for high
aspect ratio surfaces®, using the linear results from
VORLAT, and is sufficient within the scope of this work.

A tipical preliminary stall safety constraint is to limit y,
to a certain semi-span range inboard from a defined safe
position e, to ensure that stall separation regions do not
spoil the ailerons region and eventually cause loss of roll
control during slow speed manouvering. This constraint
could be written as:

y: < Ysafe (6)

The three constraints described above had to be
represented by inequations involving the G; functions
described above. The three constraints then have been
defined by:

G1 = CL(cruise) - CL <0 (73)

Gz =0- CM(CG) <0 (7b)
Gs = Yaae - ¥s <0 (70)

From inequation (7a) it can be seen that Cy, values greater
than Crinie) are allowed, what could represent a
possibility outside the constraint requirement (Cp =
Cl(eruisey)- The logic for this inequation adoption is that, if
the method is searching for minimum Cyy;, it will search
for the minimum Cp possible within the constraint
boundaries, that is, Ci = Cienise That is a natural
consequence, once Cp; is proportional to (CL)Z. The same
logic can be followed for inequation (7b), wich ensures
CM(CG) =0.

For the configuration under study, the following values
were used:

CL(cmise) =0.3 (8)
Veofe = 0.63 b/2

M(cmise) =0.6

The value for ysafe was taken as the spanwise position of
the inboard end of the aileron (Figure 3). The Cipmady)
local maximum airfoil lift coefficient distribution
estimation (based on information from theoriginal
configuration designer) can be given by:

0 < YA(b/2) < 0.382 => Cipmax(y) = 1.6 + 0.5236y/(b/2);  (9.a)
0.382 < y/(b/2) < 1 = Cipmax(y) = 1.8 (9.b)

Definition of Optimization Cases

Once the method has been implemented and tested, it has
not been considered of interest to introduce all variables
and constraints described above at once. Intermediary
optimization cases have been defined by progressive
introduction of variables and constraints, so that the
relative effects of each one of them on the final optimized
result could be appreciated.

For the optimization variables, it has been first
considered that a continuous local incidence distribution
could be adopted along the whole semi-span; in this case,
w; would always be proportional to w;. The other option
was to consider the possibility of a w, angle independent
of w; and defining, in general, a local incidence
distribution discontinuity at the wing break (Figure 3).

For the optimization constraints, the alternatives of
trimmed (Cyycey = 0) and not trimmed final results have
been considered of interest in evaluating the influence of
trimming on minimum induced drag. Also, the influence
of the adoption of the stall safety constraint (or not) has
been considered of interest, once both stall inception
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spanwise location and induced drag are directly
dependent on the lift distribution shape.

Table 1 sinthetizes all intermediary cases devised for
optimization, given diferent levels of variables and
constraints adoption. The designation suffixes 1 and 2
correspond to the continuous local incidence distribution
(w, dependent of w;) and to independent w; and w, local
angles, respectively (Figure 4).

It is important to note that the decision variables o and i,
are independent in all optimization cases, except for the
value ip, = 0 for the not trimmed cases.

Results

The final optimization results for both geometric decision
variables and aecrodynamic coefficients is presented in
Table 2, for all optimization cases stablished above.

Figure 6 shows the resulting optimized local incidence
angle for the main wing for all the cases with continuous
local incidence (suffix 1). Figure 7 shows the same
distributions for the other cases, with w, and w, as
independent variables (suffix 2).

Figure 8 presents an overall comparision of minimum Cp;
values obtained for each optimization case. Figure 9
brings a percentual comparision in terms of minimum Cp;
variations among the results, in relation to the minimum
value obtained (case C-2).

Analisys of the Results

One first observation that can be made from the results
(Table 2) is that all design constraints imposed are
satisfied for every optimization case performed. It is
secondly observed that the less intense minimum Cp;
among all cases was obtained for the case C-2. That has
been expected, once this case does not satisfy the
trimming and stall constraints and it is also free to
manipulate both w; and w, independently. In spite of
that, the minimum wusefi/ Cp; was obtained for CT-2,
wich guarantees cruise trimming and presents a 5.39%
greater Cp; relative to the not trimmed case C-2 (Figure
9).

Effects of stall safety constraint

It is observed that the stall constraints were satisfied at
their limits, or y; = y,,s.. From Figure 6 it can be promptly
noted that the introduction of the stall safety constraint
causes a strong negative wingtip incidence w; for the
cases with continuos variation of local incidence angle.
This can be explained by the need, imposed by the

constraint, to diminish wingtip c(y) intensities in relation
to inner stations of the wing, to move the stall inception
point inboard. The same trend can be observed in Figure
7 for the other cases (w; independent of w,), but here the
cAy) redistribution can be made with a more equilibrate
final result, by also increasing w, Figures 8 and 9
indicate that both solutions increase Cp; significantly in
relation to the minimum value obtained, although
independent w; and w, angles caused less than half the
increase observed with continuous distributions (17.1%
against 43.1%).

Effects of the trimmed flight constraint

Figure 10 presents a Cp; percentual comparision between
trimmed and not trimmed cases. From the data obtained
it can be concluded that for the cases without stall safety
constraint, the Cp; contribution due to trimming is 5.4%
the value for the not trimmed condition.

On the other hand, when the stall constraint is
introduced, the contribution is less significative. This is
caused by the tendency to wingtip negative incidences in
these cases (Figures 6 and 7). This effect, on a swept
wing, reduces the zero lift moment coeficient negative
intensity (“flying wing” effect), reducing the horizontal
tail load and its contribution to induced drag.

Spanwise lift and lift coefficient distributions

Figure 11 shows adimensional lift distributions in the
form /(y) = c{y)c(y)/(C. MAC), for Cr. = C(eruise)- Figure
12 presents the respective c(y) distributions, for M= 0
and C;, = Cpmax. Both graph sets are shown only for the
trimmed cruise cases, wich are the ones of real practical
interest.

From Figure 11 it can be observed that cases CT-1 and
CT-2 are those whose lift distributions closer resemble an
elliptical lift distribution, wich gives minimum Cp;. This
explains why these two cases offer less cruise Cp; among
the trimming constraint cases. Also, it can be observed
that the extra degree of freedom obtained with an
independent w, variation gives CT-2 a slightly better
(closer to elliptical) lift distribution than CT-1. In spite of
that, the differences are small enough to make Cp; only
0.016% greater for CT-1.

Also from Figure 11, it can be noted the intense /(y)
deformation caused by the stall safety constraint in cases
CTS-1 and CTS-2, causing the large increases observed
in Cp;. In addition, the greatest distribution deformation
for case CTS-1 is evident, explaining its largest induced
drag (Figure 8).

Figure 12 clearly shows the stall constraint effect on ci(y)
distributions. Maximum c(y) values for cases CST-1 and
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CTS-2 occur at y stations much far from the wing tip
than cases CT-1 and CT-2, causing the stail inception
point to move inboard. It is evident that both the
unrestricted stall cases would cause stall separation just
over the aileron region, at a spanwise station of about
y/(b/2) = 0.76.

Conclusion

From the results obtained it could be noted the
optimization method proposed was able to give adequate
results that were accurate within the limiting hipothesis
of the analisys method chosen.

For the induced drag reduction problem, proposed for a
medium range transport aircraft, it could be observed that
the progressive introduction of more restrictive design
constraints (namely trimmed cruise flight and stall safety
condition) caused sistematic increases on the minimum
induced drag Cp; obtained for each optimization case.
Also, the adoption of a greater number of independent
decision variables (increase in degrees of freedom) caused
the expected trend of improving the optimum point,
reducing the induced drag. For this case study in induced
drag reduction, the following items summarize the
conclusions reached:

(1) The greatest increases observed in optimum Cpy;
occurred when the stall safety constraint of limiting
spanwise position of stall inception point has been
introduced. Due to the pronounced wing sweep wich
tends to determine high local lift coefficients near the
wing tip (Figure 12), intense variations in local wing
incidence (wing torsion) have been introduced by the
optimization method to satisfy the constraint. These
intense variations also caused excessive local lift
distribution deformation (Figure 11) and the consequent
high induced drag.

(2) The optimization process allowed the visualization of
the relative magnitude in Cp; increase caused by flight
trimming. This kind of notion is important as a base for
new configurations studies made to reduce trim drag
(three surface aircraft, for example).

(3) Although the adoption of independent local incidence
w, (Figure 4) tends to reduce optimum induced drag, this
reduction was only significative when the stall constraint
was adopted. For free stall inception position, minimum
induced drag obtained for independent w; and w, was
only 0.016% lower than that for continuous spanwise
torsion.

The main merits of the constrained direct optimization
method experimented in this case study can be
summarized as follows:

(4) The optimization process is automatic, making people
involved in design free to analise the whole. The final
results can give a faster and deeper insight on the most
important aspects of the problem, once less important
variables and relations are registered in algorithm form.

(5) The study has been able to give design constraint
“sensibility”, as in predicting the relative induced drag
increase caused by trimming or in defining the relative
merits in the adoption of more degrees of freedom. For
example, the small difference observed in minimum
induced drag between cases that used or not w, as an
independent variable could affect future decisions for the
aircraft manufacture process and/or structural design.

(5) The great mimimum induced drag increases obtained
with the stall constraint demonstrated that the method is
able to predict real, known trends. This is true because it
is known that it is inviable to adopt wing torsion to limit
spanwise stall position on a wing with pronouced sweep,
being more interesting to control stall inception by other
means (mainly by local airfoil maximum lift
manipulation). From this result it can be extrapolated
that, within the limits of the analisys method hipothesis,
less known trends could be explored through
computational optimization.
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Local Incidence angle (deg

Local incidence angle (deg

-3

Not trimmed Trimmed (Cwcg) =0)
C-1 C-2 CT-1 CT-2
Optimized Variables:
o _{degrees) 3.0391 2.5861 3.4248 2.9645
w; (degrees) 0.6749 0.6801 0.0837 0.0993
w,_(degrees) 0.2578 () 1.0972 0.0320 () 0.8822
in_(degrees) 0.0 (" 0.0(") -3.2635 -2.8079
Aerodynamic Coefficients, Optimized
10° Cyy 3.9051 3.8896 4.1155 4.0991
0.3000 0.3000 0.3000 0.3000
-0.0631 -0.0630 0.0000 0.0000
Védo ndo trimado Véo trimado
........ CS-1 CS-2 CTS-1 CTS-2
Optimized Variables:
o_(degrees) 6.0564 1.7132 6.1044 2.0612
w; (degrees) -6.9248 -2.1858 -6.9232 -2.4412
w_(degrees) -2.6453 (1) 3.7378 -2.6447 (1) 3.3956
in_{degrees) 0.0(" 0.0(") -5.1226 -1.6188
Aerodynamic Coefficients, Optimized
10" Cpi 5.5334 4.4279 5.5667 4.5539
C. 0.3000 0.3000 0.3000 0.3000
Cwmice) -0.0194 -0.0464 0.0000 0.0000
Ystall 0.6300 0.6300 0.6300 0.6300
Table 2 - Final optimization results.
Not stall Stall constrained
constrained

Not trimmed C-1 CSs41

el G- cases C-2 CS-2

e Trimmed CT-1 CTS-1

34— CT8A1 Cases CT-2 CTS-2

Table 1 - Optimization cases.
(Suffix 1 = w; = kw, ; Suffix 2 = Independent w, and w;)
wi

yibi2)

Figure 6 - Optimum local incidence,
continuous distribution (w, = k wy)

02

)
il Jue CT-2
-A—CS82
w3 CT8-2

04 08

yibi2)

Figure 7 - Optimum locatl incidence angles distribution,

independent w, and w..
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