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Abstract

The methodology is based on the solution of the full
potential equation in conservative form with the
combined boundary conditions, in which the no flux
condition is set on one part of the wing surface, and
the specified pressure distribution is set on another
part.The solution of this problem results in the
surface distribution of the normal velocity
determining. Then the wing shape is changed
according to this distribution. This process may be
repeated until convergence.

The trailing edge closure is provided by means of
specifying of the additional normal velocity
distribution on the surface. Such an approach allows
to control various shape parameters, thickness or
camber distribution, etc.

Full potential equation is solved using the finite-
difference method in the curvilinear airfoil and flap
surfaces-fitted coordinate system. The spatial
potential derivatives are approximated by central-
difference scheme in subsonic regions of the flow
and by upwind-difference scheme in supersonic
those, both schemes are of the second order of
accuracy. The system of finite-difference equations
is solved by Newton’s procedure, the linear system
being solved by the incomplete LU factorization
method and with acceleration by GMRES(K).

The results include different test design cases,
demonstrating the abilities of the current design
method.

In ion

Nowadays creation of up-to-date transonic
aerodynamic configurations requires applying
accurate enough and reliable numerical methods for
their design. First of all one may mention
optimization methods, full inverse and mixed inverse
methods.

Optimization methods couple conventional analysis
method with an optimization algorithm to modify
iteratively the geometry in order to minimize some
special function (for example, a drag) and are the
most perspective design methods. Unfortunately, a
successful use of these methods depend a lot upon
an accuracy of the flow analysis method applied,
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and it is most preferable to use for this purpose the
Reynolds-averaged Navier-Stokes equations, which
most perfectly take into account the physical
features of the flow. Procedure like this is
unavoidably very time-consuming, that's why
optimization methods are mostly effective at a final
design step. The full inverse method allows us to
find the geometry, corresponding to the special
velocity distribution, determined at the entire
surface. But this method may be applied in general
only for subsonic regimes, and it does not permits to
take into account geometrical restrictions. Mixed
inverse method allows design in a wide range of
regimes including transonic those, and permits to
take into account various geometrical restrictions,
what makes this method the most preferable one for
the preliminary design, but in order to use effectively
of this method, designer must have enough
experience and qualification when choosing a
special pressure distribution. The using mixed
inverse method for the preliminary design allows
applying more simple flow analysis methods, such
as full potential equations solution methodology or
method, based on the viscous-inviscid interaction
procedure.

In the present paper the mixed inverse method for
the design of the infinite swept wing for subsonic
and transonic flight regimes was realized. An
attempt was made to use this method for the design
of the infinite wing with flap for the same regimes.

Wing analysis method

Problem formulation

The calculation of a steady inviscid isentropical flow
around the wing with flap is accomplished by means
of the solution of the full potential equation in the
conservative form. This equation looks in the
Cartesian coordinate system as follows

(Po )y +(poy )y =0 (1

2538



where x and y are Cartesian coordinates, @ -
potential function and p- density, which may be
determined from the expression

e
p= {1 + Y—Z:—IMZ,(I - qz)}"1 @)

where M_ is the freestream Mach number, q - total
velocity and y - the ratio of specific heats. I n order
to simplify the boundary condition, stated on the

wing surface, the equation (1) is transformed to the

curvilinear airfoil and flap surfaces-fitted coordinate
system (fig.1). ,
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fig.1
In this coordinate system the equation has the form
U V
(&), (%) o
4 n .
Cartesian components of the velocity are connected
with its contravariant components and derivatives of

potential in the curvilinear system by the
expressions

(UV) =H"(uv)" =[H'HI" (9, ¢,)" @)

where

x& xn
H= - Jacobian, J=detH
yé yn

A A
E-'ITH]1 = ( ! 2) - metric coefficients matrix.
A, A,

The no flux condition is fixed on the wing and fiap
surfaces. It simply means that normal to surface

contravariant velocity components are equal to zero.

The Cutta-Zhukovsky condition is specified on the
trailing edges of the wing and flap.

The balance of the normai mass fluxes and the
preserving of potential discontinuity from the trailing
edge along the vortex sheet are fixed on the vortex
sheet. These conditions may be expressed as
follows

(pv")U = (pv“)L (5)
Py —0= APy

where A@q - potential discontinuity on the trailing

edge. Indexes “L” and “U” correspond to the lower
and upper vortex sheet surfaces accordingly.

The far field condition is fixed on the outer boundary
of the flow :

. T :
¢, = Xcosa + ysino —-—06 (6)
2n

where o is an attack angle

0 =’arctg(6yj , B= m

X
Grid generation

It is necessary to generate a grid, corresponding to
the airfoil and flap surfaces-fitted curvilinear
coordinate system for the solution of the full-
potential equations system. A grid, generated with
the help of a two-step procedure, is used in this
paper.

Grid over the main element. C-type grid is
generated around an airfoil without a fiap by
superimposing conformal transformation, used for

this purpose by Jameson and Caughey ™ over the
shear transformation. For this purpose airfoil contour
from the physical coordinate system (fig.1) is
mapped onto the upper half plane with the help of
conformal transformation (7).

w =z ; @

where z=x+iy, w=s+it Here the contouris
represented by a curve close to Os axis. The-
rectanguiar grid generated in the transformed plane
is displaced in accordance with the countour and
outer boundary shape (fig.2).
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And then, with the help of inverse transformation

z=w> (8)

it is mapped onto the initial xy-plane.

Modification of the grid in flap region. A rectangular
domain is selected near the flap. Domain - boundaries

are lines j=1, j=JF2 and lines i=IF 1, i=IF2, which are
chosen as far from the flap as coordinate lines
perturbations, induced by the flap presence, can
relax enough inside this domain (fig.3).
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Then coordinate lines connecting the leading and
the trailing edges of a flap with vertical rectangular
boundaries are constructed. Coordinate lines
smoothness and grid cell sizes continuity are taken
into the account. Now, in two rectangies obtained
below and above the flap the grid is generated with
the help of the solution of differential equations
system (9)

{gxx +§yy = 1(X, Y) (9)
Nt My = 2(x- y)

where (X, Y) - coordinates values in physical field;
(&,m) - their values in the computantional field,

where grid generation domains are rectangles. Flap
surface and rectangle boundaries nodes are used
as Dirichlet boundary conditions. After exchanging

(x,¥) and (&,7m) equations look like

9ok — 2912%;,:, + 911?;\11 =Q(& ) (10)

where

Q(ﬁ, n) = “‘922P1_ré - g 1P2i:1
-2 - - -2
9 =|r§| 1912 =0 =0T, ,02 =lrn]
= T
r=(xy)
Source members P1 ,P2 are determined from the

orthogonality control condition. After multiplying (10)
by T, and T, , and taking into account orthogonality

condition g,, = g,, = 0 we can find

T
& [~ A
)P2~

11 92

e Ton " T

P=-

)

The values of P, ,P, on the computational domains

boundaries are calculated with the use of boundary
conditions by expressions (11), and then these
boundary values are interpolated inside the
computational domains. System (10) is solved by
the finite-difference method with the use of
successive line over relaxation procedure (SLOR).
The flap region of the final grid is shown on the fig.4.

MAIN ELEMENT

FLAP i
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Finite-difference approximation

The finite volume methodology is used for the
numerical solution of the full potential equation. The
mass fluxes through the control volume boundaries
(fig.5) are expressed by the potential values in
points 1-9.

-1,j+1 ij+1 i+1,j+1
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i+1,j-1
fig.5

Flux (a) may be written as follows

_ ~U . -;A1(P§ +A2(pr|
Q@'&i)«“@“*if“71.“”
HE'] l+§,j

where

Pei 1, = Pty — @y
>
1 (13)
Pt = 4 (@it jor + Dijrr = Piagjor — Pyjoe)
2

In order to provide the stability of the finite-difference
scheme in supersonic domains, artificial viscosity is
included into equations. For axample, according to

Osher approach ) | the artificial viscosity is taken
into consideration as follows

Q(q,)-Q(q ,)
H’EJ I_EJ
=p 4 - (14)

1, L1
i+—,j i+—,] q
2 2 gy
2

when U>0, where

1,92q,

Q(g)=vIp(9)gd-p.q. ], V={o,q<q,

The scheme (14) provides first order of accuracy in
supersonic regions of the flow. In the current paper

the approach, described by Karas ® s used, which
provides second order of accuracy in supersonic
regions. In this case the expression for density looks
like

Q(q ,)-Q(q,)
H’EJ §+§,]
(14a)

1.
21 q .,
i+
2

where § , =24 , —q 5 ,atU>0. Finally finite-
i+§,j i—i,j 1-5,1
difference equation looks like

(.U (v
aﬁ(pT).  t a"(pT). =0

l+‘2‘,j l,]+2

5)

No flux condition on the surface is approximated -
with the use of the control volume, adjacent to the
surface (fig.6), and the corresponding finite-
difference equation is ,

1-(. U V
5@@3)«+53)J—° (16)
I+§,j |,;+§

The approximation of the vortex sheet equations is
similar. :

1,2 | i2 i+1,2
1 2 ; 3
A
b
1,14 ¢ 51i,1 a 6|i+11
YT Y

fig.6

Since the numerical procedure of the flow
calculation around the wing with flap has special
features and requires a presence of two coincident
coordinate lines (fig.7), the finite-difference ‘
approximation of the equations on these fines differs
from the common case. " '
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Difference equations for the points (i,JF),i=1,..,iF-1
are derived from the mass fluxes balance

5[ PY (ﬂ) {ﬂ) _
a&(J)1 3 e _1_0 A7)
2 2

—JF JF
H—2 i

and equations for the points (i,JF+1),i=1,..,IF-1 are
derived from the equality of potential on the
coincident coordinate lines

Qi sre1 = Qi e (18)

Solution of the equations system

The present non-linear system of finite-difference
equations is solved by the iterational method. The
linear system, constructed from the non-linear one
by means of finearization procedure, is solved at
every iteration. In terms of corrections to the
potential the linear system has the form

AC" =1"
q)m-l =q)n +Cn
" =—Ag" (19)

The corrections to the mass fluxes may be
expressed as follows

5U . o
Afjj ZA 3,C,+AT) 3Gy,
i+—,j H’Et.’ |+-2-,j

2
0) A (+) A +) A
+A% 3,C+AY 3G +A"D 5 .y
2 2 2

Coefficients A’ ’4 are obtained by means of
i1
2

linearization procedure applied to the mass balance

equation. Expressions for corrections to the other
fluxes have similar form. Finally, the linear equation
for the point (i) looks like

D, +D® C,_, +D¥ C,
+D{} C, w D Gy + (20)
+Df 60”. +DfY aci,,. =T,

I+1j

The terms including A®*), A©™) were not taken

into consideration because of their negligible effect
on convergence rate. The equation (20) is
constructed on 7-points stencil (fig.8). The linear
system is solved with the help of incomplete LU-

factorization method as it is described by Karas 3

According to this approach, matrix A, which is
similar to matrix A without taking into account
coefficients D”) and Dfsj), is approximately
presented as a product of lower and upper triangle
matrixes L and U. Let C{9 be the initial
approximation of the vector of corrections. The next

approximation C(” may be found in the form

C(o) +39. ., where 8

i’ ; is determined as follows

-2 i1 i |+)j i+2
j+1 T
j [ex T % o)
i1 ? L
fig.8
(1) forward sweep (fig.9)
L‘,? Sij +L<i.2j) Si1 +L(i3) Siju + o
+ L(lj) si+1,j+1 = pi,j
where p=r1-— ACO 5. temporary variable
(2) backward sweep
t,+ UL, A UDE 4
i+1, 11 (22)

(3) _
’*‘Ui,j i =Sy

(3) residual minimization
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Ui(J) and L(,} are coefficients of the triangle matrixes
Land U.

We have to assume s, v =S, ; = Sy ; = 0 to begin
the forward sweep. In order to fulfil the backward
sweep, it is necessary to determine the values t;

on the wing surface and on the vortex sheet. For the
node (i,1) on the wing surface and the adjacent node
(i,2) we define the system of two equations
according to (16) and (22). Similarly, for the node
(i,1) on the vortex sheet, the adjacent node (i,2) and
the according node on the contrary surface of the
sheet, the system of three equations is defined.
Let's introduce the trailing edge correction difference
Aty =tyg,, — tyg,; (ITE1and ITE2 are numbers
of trailing edge nodes ), which is preserved along
the vortex sheet. If t, |, where (k,1) are lower vortex
sheet nodes, may be excluded with the use of

A t;z, we may consider the systems for the nodes

on the surface and on the vortex sheet as a block-
tridiagonal system (3 x 3 blocks) for the unknown
three-components vectors
(t,)
A, :Lti’l J ,i=1,...,ITE2
tk,2

The right hand part of the system contains unknown
value At . The solution of the system

BA =3a+pb+p,6+p,d

where P, = Aty , P, = tre_11. Ps = breoirz:

a,b, ¢, d are known vectors, may be found as a -
linear combination of particular solutions obtained

when the right hand parts equals to vectors
ab,cd.

After three steps of the iteration had been
accomplished and the vector 6 was found, the
process of the linear system solution may be
completed or continued, depending on the residual
value. This approach allows to reduce the residual
on 2-3 orders after several iterations.

Figure 10 demonstrates the convergence history of

the described method for the non-linear system
solution compared with the SLOR and
SLOR+GMRES ) | when applied to the wing
without flap. Figure 10 shows the difference of

convergence rates of the described method for the
wing with and without flap.

NACA-0012 M=0.00 ALPHA=0.00

1g ( max residual )

SLOR (WING)

SLOR+GMRES (WING)

LU (WING & FLAP)

LU (WING)

fig.10

Flow analysis examples

Some test examples were accomplished by the
current method in order to demonstrate its
capabilities. The first test example (fig.11) shows the
pressure distribution on the Zhukovsky foil with

relative Cya = 15% at M=0, obtained by the

current method, compared with an exact solution.
The second example (fig.12) demonstrates the
difference between the solution for the transonic
regime, calculated by the current method with first
and second orders of accuracy in supersonic
regions, and the solution, calculated by the Euler
solver. It is evident, that not very intensive shocks
are approximated much more qualitative, when the
numerical scheme of the 2nd order of accuracy is
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applied. The last test example (fig.13) demonstrates
calculation of the flow around an infinite wing with
flap compared with the results obtained by the panel
solver.

Current Zhukovsky foll
+  Exact M =0.00
o = 4.00
Cy=0.48155
20 7 cp Cxw = 0.00000
-1.0
/“\‘ XIC
0.0
05 \\:No
1.0

fig.11
Current 1st order NACA-0012
— — =~ Cument 2nd order M =075
¢ + o Euler a =0.00
Cy =0.00
20 T cp Cxw = 0.00015
ok
* &
P
10t /
Lo
. XIc
0.0
0.5 1.0
1.0

fig.12

fig.13

Inverse problem

Specification of combined boundary conditions

In order to solve the design problem by the
described method it is necessary to specify
combined boundary conditions on the surface,
according to which the specified pressure
distribution is fixed on the part of the surface, fixed
by designer. Obtaining from the expression for Cp
speed sqared

2 . 2 (
q =1 (7—1)Mi 1+

y_—1
vMicp) "4
2

(24)

and taking into account that

q° =Uo, +Vo,

U= A,(pa + A2(p,1

V=A,0 g+ A3(pn

we find the derivative of the potential along the

surface as a boundary condition on the designed
part of the surface

1
2 _\‘72 2
(P§| =+ _A_ég___z (25)
w A1A3 "‘Az

where V is the normal velocity, determined in the
iterational process. The sign of the derivative is
defined depending on the direction of the velocity in
the corresponding point of the surface.

2544



Normal velocity surface distribution

When solving the system of the equations of
potential with the combined boundary conditions, the
no flux condition is not valid on the designed part of
the surface, and the distribution of the normal

contravariant velocity component \7 may be found
at every iteration from the expression

1 Gatn)

V, =—2———— (26)

where T, are residuals, calculated in the points of
the surface.

Wing shape correction

After the system with combined boundary conditions
has been solved, it is necessary to correct the wing
shape taking into account the calculated values of
normal velocities. The new local angle of the slope
of the surface must be equal to the angle between
the Ox axis and velocity vector in the current point
(fig.14). ,

Consiquently, the equation (27) must be valid.

(@G- -0 e
dx/, \dx/, dx/, u,

The analogue of this expression in the curvilinear
coordinate system looks like

)|
ey

The result of integration of the expression (28) along
the designed part of the wing surface is the new
shape of this part of the wing.

(28)

Trailing edge closure

Since not every pressure distribution corresponds to
the foil with the closed trailing edge, it is possible to
obtain the foil with too thick or, on the contrary,
crossed itself trailing edge as a result of the design
procedure. in such case it is necessary to apply the
trailing edge closure procedure, which slightly
changes the pressure distribution. But using any
geometrical transformation for this purpose, for

example, as described by Gally and Carlson &

CLos _ NEW

X
y —(y%" - y%?); | (29)

where C - chord (fig.15), resuits in a low
convergence rate of the design procedure.

fig.15

In the present paper another method is applied,

offered by Karas ‘¥, according to which the value of
the trailing edge deviation, corresponding to the =
current normal velocity distribution, is determined at
every iteration of the solution of the system with the
combined boundary conditions, and then the normal
velocity distribution is modified, so that the
corresponding trailing edge deviation is equal to
zero. This modification is fulfilled with the help of the
additional function of the normal velocity distribution,
which slightly changes the pressure distribution, for
example, corresponding to the transformation (29).

Design regimes

This approach allows us to use the normal velocity
distribution corrections both for the trailing edge ‘
closure procedure and for taking into account 'some
other geometrical restrictions. In particular, using
this methodology we can maintain thickness or
camber distributions chordwise, when designing only
one of two surfaces. Also by automatical adding a

small function ACL? to the specified Cp,

distribution we can easily maintain the specified Cy
during the design process. In order to use largely all |
these advances of the current approach, this method
has three design regimes:

(a) One surface (or its part). design mamtamung
thickness distribution and Cy;

(b) One surface (or its part) design maintaining
camber distribution and Cy;

(c) Both surfaces (or their parts) design without
geometrical restrictions maintaining Cy.

To maintain Cy is not a necessary condition, but has
large practical value. All these features make this
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design method flexible enough for an effective use
on the preliminary design step.

Design examples and discussion

A series of test design examples were accomplished
in order to demonstrate abilities of the design
method described.

First two examples (fig.16,17) demonstrate the
ability of design of one-element airfoils. The
geometry of the airfoil RAE-2822 was taken as an
initial geometry.

In the first design case (fig.16) a subcritical-airfoil
was designed.

cp RAE-2822 M=0.68 Cy=05

— == - |NITIAL
o ooo0o0vo SPECIFIED
DESIGNED (ALPHA=0.1, Cxw=0.00000)

(ALPHA=0.9, Cxw=0.00050)
r~o
, ~

'.r .

-1.0

1.0 """ .

0.10

0054

0.00

-0.05

fig.16

The analysis of the flow around the initial airfoil was
carried out under conditions M_ =0.68, Cy=0.5. At

this regime a supersonic region on the upper surface
of the foil appeared. The target pressure distribution
was fixed only on the upper surface and was
selected from the conditions of supersonic regions
absence and pressure gradient near the trailing
edge restriction

aCe <23® (30)
dx

in order to avoid a boundary layer separation. The
lower surface was used to maintain thickness
distribution. This design case shows the ability of the
current method to design a subsonic airfoil from a
transonic one.

cp RAE-2822 M=068 Cy=0.6

- — —— — INITIAL (ALPHA=1.4, Cxw=0.00140)
esooooo SPECIFIED
DESIGNED {(ALPHA=1.1, Cxw=0.00040)

-1.0 4+

-0.5

0.0
4 os \30

05

-0.10 4
fig.17
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,007 +
,006
ZE),-; ,005
,004 -
,003
,002 4
,001
0,000
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The second design case (fig.17) demonstrates the
ability of supercritical design.
The analysis of the flow around the initial airfoil was

carried out under conditions M_ =0.68, Cy=0.6. Now

not very strong shock appeared on the upper
surface, and the target pressure distribution was
also fixed only on the upper surface and was
selected from the conditions of pressure gradient
near the trailing edge restriction (30) and shocks
absence. The lower surface was used to maintain
thickness distribution. At this regime a supersonic
region takes place on the upper surface, but the
value of wave drag is essentially smaller. This fact is
confirmed by the plot of the designed airfoil wave
drag as a function of Mach number (fig.18),
cor;'npared with the same dependence for the initial
airfoil.

M=0.70 Cy=05

=~ — — INITIAL (ALPHA=-2.705, Cxw=0.00030)
© 000000 SPECIFIED
DESIGNED (ALPHA=-3.070, Cxw=0.00000)

A0

-0.10L

fig.19

Unfortunately, large pressure value on the trailing
edge does not allow us to enlarge a pressure
plateau on the upper surface and, consequently, to
design airfoils at harder conditions because of the
pressure gradient restriction. Diminishing pressure
on the trailing edge of the upper surface at the

boundary layer separation absence would allow us
to fix the target pressure distribution with longer
pressure plateau and shorter pressure gradient part.
As fig.13 shows, this problem may be partly solved
by means of a flap usage. The next design cases
demonstrate the ability of the design of airfoils with
flap for cruise flight regimes. A foil with flap, obtained
from the airfoil RAE-2822, was used as an initial
configuration. The relative chord lenght of the main
element was equal 0.88, of the flap - 0.15.

M=070 Cy=08
— e e INITIAL (ALPHA=-2.285, Cxw=0.00060)

© o o000 0 SPECIFIED
DESIGNED (ALPHA=2470, Cxw=0.00020)

i
I

fig.20

In the third design case (fig.19) the ability of
subsonic airfoil with flap desigh was demonstrated.
The analysis of the flow around the initial
configuration was carried out under conditions

M_ =0.70, Cy=0.5. Lower surface was used to

maintain thickness distribution, and on the upper
surface the target pressure distribution was fixed,
which was selected from the condition of subsonic
flow, and the pressure gradient near the trailing
edge of the main element was much smaller than in
preceding cases. This design case has the same
features as the first one, but a presence of flap
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allowed us to accomplish design at larger Mach
number.

The fourth design case (fig.20) demonstrates the
ability of transonic design without shocks for the
airfoil with flap. The flow analysis conditions were

M, =0.70, Cy=0.6. The lower surface was used to

maintain thickness distribution, and on the upper
surface the target pressure distribution was fixed,
which was selected from the condition of shock
absence, and pressure gradient near the trailing
edge of the main element, like in preceding case,
was small. A presence of a flap also allowed us to
design at larger Mach number.

M=075 Cy=0.5 y=22°

~— — — INITIAL (ALPHA=-2,325, Cxw=0.00025)
eo 00000 SPECIFIED
DESIGNED (ALPHA=-2.450, Cxw=0.00005)

I

fig.21

The fifth design case (fig.21) demonstrates the
ability of the design swept infinite wing. The flow
analysis conditions were M_=0.75, Cy=0.6, x=22°.
The design conditions are the same as for the fourth
design case.

The test design examples show that transonic
design with flap at the same design conditions may
give an advantage, for example, in Mach numbers,
and an important conclusion may be done: in a

course approximation it is possible to use flap for
cruise regimes, and investigations in this direction
may be continued.

Summary

In spite of a series of useful features of the current
method, one of its most remarkable disadvantages
is an absense of taking into consideration of a
viscous effects. That is why a subject of the nearest
future work on improval of this method will be
including viscous effects by means of using viscous-
inviscid interaction procedure. This will enlarge a
practical value of the method described.
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