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Abstract

In this paper numerical simulation of compressible
free shear layers in open domain is performed. For-
ced ‘temporally-growing mixing-layers are studied.
Details of vortex roll-up, pairing and nutation pro-
cesses are presented. The effect of intrinsic compres-
sibility on the evolution of the large scale vortical
structures which develop from primary instability
is identified and discussed. As the compressibility
parameter we use the convective Mach number M,
defined as the ratio of the velocity difference to the
sum of the free stream sound speeds. An explanation
of the compressibility stabilizing effect follows from
the analysis of the (inviscid) equation which descri-
bes the rate of change of the vorticity. The relative
magnitude of the term which represents the change
due to the compression of fluid elements, and which
causes an opposite concentration with respect to the

- advection (incompressible) mechanism, is evaluated
and discussed. The effect of the baroclinic term due
to the unequal free stream mean temperature is also
illustrated. '

Introduction

A massive attention has been recently paid to the
study of the compressibility effects in the plane
mixing-layer, the prototype of free-shear flows. It is
a particularly attractive area of study either for the-
oretical investigations on the interactions between
characteristic dynamical events with coherent hi-
story over substantial times (the so-called organized
or coherent structures), or for practical development
of propulsion systems based on supersonic combu-
stion. A number of laboratory experiments and nu-
merical simulations have showed a strong reduction
in the mixing-layer growth rate d6/dz (where § is
a convenable measure of mixing-layer width and z
1s the streamwise coordinate) as the Mach number
is increased. Consequently the mixing capability of
the shear layer is strongly reduced. Brown and Ro-
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shko (1) noted that while the density ratio of the
two streams had a noticeable effect on the spreading
rate of the mixing layer, it was not enough to explain
the slow spreading rate of supersonic mixing layers.
Papamoschou and Roshko (2) showed that this com-
pressibility effect could be parameterized in terms of
a single Mach number, the Convective Mach Num-
ber M, defined by M. = (U; — Us)/(a; + a3) where
U, and U, are the free stream velocities and a;, a
are the free stream sound speeds.

Recent experiments (3), stability analyses (4) and
numerical simulations (3:6:7:3) have provided further
support to this notion.

In this paper we will study the nonlinear evo-
lution of two-dimensional instability waves in the
unbounded mixing-layer. The aim is to describe
the rilevant effects of compressibility on large-scale
structures which develop from the primary inflexio-
nal (inviscid) instability of the mean flow. In this
stage of instability the most unstable wave is two-
dimensional. The well-known sensitivity of the shear
layer to its initial conditions implies the possibility
of controlling its development by means of exter-
nal forcing. The goal of this external control is to
enhance the spread rate of the layer and, hence, the
mixing between the two streams. Then we will in-
vestigate the evolution of a forced shear flow. The
temporal approximation that we have adopted cor-
responds to a simulation of the flow by employing
a Galilean space-time transformation to concentrate
on a small section of the flow field that moves with
the flow average velocity. This leads to neglet locally
the spatial spreading of the layer and impairs the
comparison with experimental results. Motivation
behind this approach is offered by the computational
savings inherent in the small size of the computatio-
nal domain. A direct consequence of this approach is
the implementation of periodic boundary conditions
in the streamwise flow direction.

Mixing-layer flows

Mixing processes are created by the merging, down-
stream of a splitter plate or a bluff body, of two
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parallel streams flowing with unequal speed. The
two streams match in static pressure but, in general,
have different fluid densities. Experimental evidence
suggests that the flow field resulting from this mer-
ging is essentially two dimensional at its early stages
and is dominated by large vortical structures (ed-
dies). These structures form as a result of the inhe-
rent instability of the velocity profile between the
two layers and represent the primary mechanism of
entrainment. The development of the layer follows
the amplification of perturbations via the Kelvin-
Helmholtz instability, which, in its nonlinear stage,
leads to roll-up and the formation of concentrated
vortices. Further development is dominated by the
mutual interactions of these vortices. These interac-
tions, which are a manifestation of the growth of the
subharmonic mode of instability, lead to the forma-
tion of larger vortical structures and are, hence, the
prime contributors to the growth of the layer.

Governing equations

Unsteady two-dimensional compressible viscous
flows are described by the full Navier-Stokes system.
In compact vectorial formulation it can be written
as:
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where @ is the vector of conservative variables Q =
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All the quantities in the equations are dimensionless.
As reference values for this normalization we use the
upper free stream physical quantities:
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where a? = yp/p is the speed of sound. The super-
script () refers to dimensional quantities, the sub-
script (1) refers to the upper (y > 0, say faster)
free stream, and the subscript (2) to the lower free
stream. The reference lengthscale for the specific
problem is the vorticity thickness 6, of the initial
velocity profile:
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where g is the specified initial mean velocity profile.
The characteristic associated time is given by: ¢t =
t*aco1/6;,,- The Reynolds number in equations (1) is
correlated to the Reynolds number based on the free
stream velocity ts1 by means of the Mach number
Moot = Ueo1/ac01:
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The non-dimensional costitutive relations for the
Newtonian fluid are:
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The perfect-gas law in our non-dimensional scheme
is

p=-0(E-550) 5 @

the viscosity g is assumed to follow the Sutherland
law, and the specific-heat ratio v is equal to 1.4. In
all the simulations we take the Prandtl number to
be constant, i.e. Pr = 1.

Numerical method

A two-dimensional code (®) was used for these si-
mulations. Navier-Stokes equations are resolved in
their entirety, with no turbulence model, by using a
conservative finite-differences technique, for a com-
pressible viscous flow which grows in time. Advance
in time is performed by means of fourth-order expli-
cit Runge-Kutta integration scheme. To simulate an
infinite domain in the non-periodic y-direction, cha-
racteristic non-reflecting boundary conditions (1%)
are imposed. The boundaries are collocated suffi-
ciently away from the viscous shear layer so that
characteristic form of Euler equations can be con-
sidered. QOutgoing characteristics use informations
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from within the computational domain, and hence
any manipulations are requested. Incoming charac-
teristics are handled by setting the time-derivative of
their amplitude equal to zero, thus giving the boun-
dary conditions their non-reflecting character.

Convective fluxes are evaluated by using a
second-order upwind flux-splitting scheme. The
adopted scheme is an improved Advection Upwind
Splitting Method (AUSM) proposed by Wada &
Liou (V). This scheme combines the procedure of
resolving an approximate Riemann problem at the
interfaces (Flux Difference Splitting approach) with
the procedure of splitting into travelling components
(Flux Vector Splitting approach). Its main property
is that it removes the large numerical dissipation on
contact discontinuities and shear layers which was
the main drawback of classical flux-vector schemes.
In particular, it can reproduce with no numerical
dissipation the exact Riemann solution for statio-
nary or moving contact discontinuities. Its adoption
is justified also by its shock-capturing property: in
fact, as we will show in a later section, weak shock
waves develop in the flow field for a convective Mach
number approximately above 0.7.

Viscous terms are evaluated by using a standard
second-order centred scheme.

In the temporally evolving simulations the ini-
tial conditions provide the source of disturbances.
A base flow is assumed to be described by a velo-
city profile ig(y), a temperature profile Ty(y) and
by a constant thermodynamic pressure. The spe-
cific base velocity profile we use is the one which
would be brought about by molecular diffusion from
initial coplanar discontinuity of horizontal velocity
at y = 0, i.e. the error function:

W) = af (LX) (4)

p
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The initial mean temperature profile is specified
as a solution of the compressible boundary-layer
energy equation. For the antisymmetric mean ve-
locity profile, with equal free stream temperatures
(T2/T1 = 1) the Crocco-Busemann solution is gi-
ven by:
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Small amplitude disturbances are then added to
the mean flow. All the perturbations have the form
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where c.c. denotes the complex coniugate. The di-
stributions 1, are the stability eigenfunctions pre-

sented in the next section. The phase ¢¢; is irre-
levant to the evolution of the flow, and is set to =
for convenience (the Kelvin’s cat’s-eye, the charac-
teristic closed recirculating region, is centred on the
computational box). The amplitude a} for the fun-
damental mode was selected with a relative magni-
tude of 5% with respect to the largest normalized
perturbation component. The relative ratio of the
amplitude of subsequent subharmonics a2 /2 /al was
selected equal to 0.5. The phases ¢y, of the subhar-
monics (k = %,%,...) relative to the fundamental
(k = 1) determine whether large-scale amalgama-
tions occur by pairing or shredding. In most ca-
ses the optimum pairing phase (¢ox = 7) was selec-
ted. The inibition of the corotation and subsequent
pairing amalgamation by shredding interaction bet-
ween the Kelvin’s rollers was indagated by varing
the phase ¢, from = to the critical shredding angle
$o1 = 0 (these results will be discussed in a later sec-
tion and illustrated in the figure (5a)). The temporal
approximation, as discussed above, yields to perform
the simulations on a small section of the flow field
that moves with the mean velocity (Uy +U2)/2. The
streamwise length of this (rectangular) domain is fi-
xed to accomodate the largest wavelength of the per-
turbations. The bulk of our simulations with compo-
site initial perturbations was performed with initial
disturbances which include only the most unstable
mode from linear theory and its first subharmonic.
All the computations were conducted at a Reynolds
number based on initial vorticity thickness and free-
stream velocity of 400, which was sufficiently low to
resolve the flow fully by adopting a computational
mesh with 151 by 151 grid points in the streamwise
(uniform mesh) and trasversal direction (with clu-
stering of points in the shearing region) when the
domain contains two wavelengths of the most un-
stable disturbances, and 255 by 181 grid points for
initial disturbances which include also the second
subharmonic.

Linear stability analysis

Linear stability analysis (!?) is employed to repro-
duce the modification of the early stages of the insta-
bility of the vorticity layer. The dependent variables
are splitted into base and perturbation components.
The perturbation components are assumed to exhi-
bit the form of propagating waves:

(W', v, 0, T, p') = (,9,5,T, p) explia(z ~ ct)]

where « is the wavenumber, ¢ is the wave speed and
w = ac is the frequency. Since temporal instabili-
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ties are considered in the present work, « is real and
w = ac, + iae; is complex. The imaginary and real
part of w represent the temporal growth rate and the
frequency of oscillation of the disturbances, respecti-
vely. Disturbances are amplified when ¢; is positive,
damped when ¢; is negative, and are neutrally sta-
ble when ¢; is zero. The perturbed quantities are in-
troduced into the compressible Navier-Stokes equa-
tions. Since inviscid compressible free shear flows
are more unstable than viscous ones because of the
existence of inflexional point in the velocity profile,
the molecular diffusion is neglected. Linearization is
then performed by neglecting, as small, terms invol-
ving the products of the perturbations. We obtain
the following equations for the disturbance amplitu-
des:
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i( w)p + pict + 9 by T ’Dy ;
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The pressure disturbance p is obtained from the per-
fect gas equation of state:

p=pT+pT

By employing a process of elimination, an equation
governing the evolution of one cross-stream pertur-
bation variation is obtained. In our work, this per-
turbation is chosen to be the cross-stream velocity,
i.e. v, so that:

o(i(y) =), _ D | (a(y) - B2 - 25414
T(y) "~ Dy | T(y) - M(a(y) = )2 |

where ¢ = i/ad. Its solution poses an eigenvalue
problem due to the presence of the wave parame-
ters, o and ¢. The boundary conditions are imposed
by considering that away from the initial interface
between the parallel streams all the perturbations
decay to zero. Our solutions were obtained by trea-
ting the complex wave speed ¢ as an eigenvalue for an
externally specified real wave number o by using a
direct spectral collocation (pseudospectral) method
based on series expansion in term of Chebyshev or-
thogonal polynomials (13), The eigenfunctions are
normalized so that the real part of the trasversal ve-
locity perturbation 9 is symmetric in y (and positive

at y = 0), its imaginary part is antisymmetric, and
the perturbation energy integrated across the layer
is one.

Results from the above analysis are plotted in
the figure (1) which show the temporal amplifica-
tion rate ac; versus the wave number o for different
Convective Mach numbers (for the same tempera-
ture ratio T5/Ty = 1.) The figure clearly shows that
the growth factor of the most unstable mode of the
Kelvin-Helmholtz instability is strongly reduced as
M, is increased. Experimental results, as well as
the results of our numerical simulations presented
in the next sections, indicate that this type of beha-
vior persists into nonlinear stages of the evolution.
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Figure 1: Linear stability analysis results: effect of
Mach number on the growth of two-dimensional wa-
ves (T2/T1=1.0)

Two-dimensional pairings

The temporal evolution of the two-dimensional in-
stability can be easily described in terms of redi-
stribution in space of the vorticity that the layer
possesses initially. During the first stage (Kelvin-
Helmholtz roll-up) a concentration of vorticity ap-
pears into periodically spaced region (the cores) joi-
ned by thin layers (the braids) in which the vorticity
is also concentrated. The thin layers are the chan-
nels along which vorticity is advected into the cores,
and the cores provide the strain which creates the
braids. Further in time, pairs of well-developed rol-
lers come together, corotate and eventually amalga-
mate (pairing process). Both the number of rollers
and the number of braid region are thus halved, with
the contents of every other braid region being absor-
bed into the new paired roller. The surviving braid
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Figure 2: Contours of constant vorticity during the
roll-up and the first pairing events; M, = 0.4, a =
0.85, a$ = .05, a‘l’/2 = .025, a‘l’/4 = .0125, Re = 400

region continues to be depleted of spanwise vorti-
city as all the vortical fluid is drawn into the paired
roller. As the cores of the original spanwise rollers
merge into a new, roughly circular, core, spiral arms
of weaker spanwise vorticity are ejected away form
the paired eddy. This process repeats itself after
each pairing as we can see in the temporal sequence
illustrated in figures (2-3) that show the vorticity
redistribution for a simulation with M. = 0.4 and
two-subharmonics added to the fundamental mode.
As a pairing proceeds, the thickness of the layer (as
measured by the area of the Kelvin’s cat’s-eye, see
figure (4)) and the streamwise lengthscale double.
Since the velocity scale remains the same, the ti-
mescale also doubles and the time between pairing
approximately also doubles. For the same reason
the strain rate in the surviving mid-braid region is
approximately halved with each pairing (as it can
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Figure 3: Contours of constant vorticity during the
second pairing event; M, = 0.4, « = 0.85, a? = .05,
a‘l’/2 = .025, a‘l’/,1 = .0125, Re = 400 .

be seen in figure (5b)). When only the fundamen-
tal mode is superimposed to the mean flow (single
roll-up case, illustated in figure (4)) the roller cores
become elliptical, the spanwise vorticity is advec-
ted into the braid region (oversaturation), and the
vortices continue to undergo shape oscillations for
several cycles (nutation process). In the pairing ca-
ses, the corotation of pairs of rollers begins in most
cases before oversaturation occurs. The occurrence
or suppression of an oversaturation before a pairing
depends on the relative amplitude and phase bet-
ween the subsequent subharmonics (as it can be seen
in figure (5a)). The re-entry of spanwise vorticity
into the braid region after the pairing (or before, if
the pairing is delayed) can be deduced by observing
the evolution of the vorticity contents —wj in the
mid-braid plane. This re-entry is marked by sud-
den increases in the evolution of —wy (figure (5a)).
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rent contents of subharmonics into the initial exter-
nal forcing; M. = 0.4, Re = 400, « = 0.85, af = .05,
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When surviving paired rollers do not undergo fur-
ther pairings, one can observe a final re-entry which
indicates that the nutation process begins.
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Figure 5: Vorticity contents (top) and residual strain
rate (botton) in surviving mid-braid plane for dif-
ferent phase angles between the fundamental mode
and its first subharmonic; M, = 0.4, Re = 400,
a=10.85.

Compressibility effects

Experiments have documented the reduction in the
growth rate of compressible shear layers as M. is
increased. In figure (6) we show the time history of
the vorticity thickness é, (1), defined as:

2tico) (6)

W) = T ay T

for different M..
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Figure 6: Compressibily effect on the vorticity thick-
ness growth: fundamental mode only (top) and with
its first subharmonic included (botton).

The stabilizing influence of M, is clearly seen.
This slow growth arises primarily because of the re-
duced linear instability growth rate. A physical ar-
gument for this stabilizing effect (1) in the nonlinear
stages of the evolution follows from the analysis of
the inviscid vorticity equation, which describes the
rate of change of vorticity with respect to a moving
reference frame:

dv Ou
wi(z,y) = %z Oy
0w, 0w, _ dw, Bw,
5 T Ve = —(u—-Ue) oz ' Oy
“wz{; U+ ____V,D pxz'v"p , (1)
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Figure 7: Vorticity field redistribution for M, = 0.4
(T2/T1 = 1.). In the panels are illustrated: (a) Vor-
ticity isocontours [—0.569 to 0.00, AW = 0.025] (b)
Advection term [-0.418 to 0.306, AWa = 0.05] (c)
Compression term [—0.068 to 0.043, AWe = 0.005].
Baroclinic term is very small [-0.0125 to 0.0187]

where U, is the convective velocity of the large
structures, i.e. U, = (Uyag + Uza1)/(a; + az). The
most important term causing the vorticity redistri-
bution is the advection term: at low Mach number
(M, < 0.4) it is much stronger than the dilatational
and baroclinic terms. The vorticity is advected into
the vortex cores while the braid regions are deple-
ted of it. This is the incompressible redistribution
mechanism causing the shear layer instability. The
term which describes the change due to the compres-
sion of fluid elements i1s —w,V - 4.

With respect to the reference frame moving with
speed U, the mid-braid planes are stationary: the
cat’s-eye vorticity patterns are fixed and their areas
grow in time. The stagnation points correspond to
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Figure 8: Vorticity field redistribution for M, = 0.7
(T2/T1 = 1.). In the panels are illustrated: (a) Vor-
ticity isocontours [—0.839 to 0.00, AW = 0.05] (b)
Advection term [—0.290 to 0.212, AWa = 0.05] (c)
Compression term [—0.344 to 0.132, AW¢ = 0.05].

- Baroclinic term is still small [—0.034 to 0.032].

pressure maxima, while the vortex cores correspond
to pressure troughs. The fluid particles moving away
from the mid-braid region are expanded as they ac-
celerate towards the vortex center (V - @ > 0 yields
Dp/Dt < 0). Past this point the flow compres-
ses and decelerates towards the other braid region
(V - < 0 yields Dp/Dt > 0). Consequently, the
compression term —w,V - @ results negative ahead
of the vortex and positive behind it. The expansion
and compression cycle has then the effect of incre-
asing the vorticity near the stagnation points and
reducing it near the vortex center. This is exactly
opposite to the redistribution arising from the ad-
vection term. The numerical simulations show that
as M. is increased the vorticity compression effect



becomes comparable in magnitude to the advection
term. (figures (7-8)). Therefore the growth rate of
the layer is strongly reduced.

The last term in r.h.s. of the equation (7) de-
scribes the vorticity change due to baroclinic torque.
This is an essentially incompressible effect and arises
whenever a density gradient exists across the shear
layer. For equal free stream temperatures (which
means equal mean densities for a constant ther-
modynamic pressure) the baroclinic term is an order
of magnitude smaller than the other terms. On the
other hand, when the densities of the two streams are
unequal, during the roll-up the density interface re-
mains sharp in the mid-braid plane and the pressure
maximum produces regions with dinamically signi-
ficant baroclinic torque, i.e. (Vp x Vp)/p?. As we
can see in the figure (9) the baroclinic effect stron-
gly modifies the vorticity distribution. The net cir-
culation of the vortices, however, remains relatively
uninfluenced by this redistribution.

Vertinny redntiution Mow0 4 T2/T140.33
HOVORTICITY CONYOURS

Vortchy suestring
BARDICUNC TEAM

Figure 9: Baroclinic effect for M, = 0.4 when
T2/T1 = 0.33: (top) the shape of the vortices
is strongly modified; (botton) the baroclinic term
[-0.537 to 0.381, AWc = 0.06]. is comparable to
the advection term and reduces the growth.

Eddy shocklets in the 2-d flow field

For M. > 0.7 the flow fields develop eddy shocklets.
These shocks remain attached to the vortices and
travel with them.
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Figure 10: Eddy shocklets into the flow field for
M. = 0.7 (T2/T1 = 1) during the pairing event.In
the panels are plotted isocontours of vorticity, pres-
sure, density and temperature respectively.



For M, = 0.7 the shocks arise during the vortex
pairing events, but the flow field is otherwise shock-
free. For M. = 0.8 the shocklets are produced du-
ring the roll-up. An example of flow fields with eddy
shocklets is presented in the figure (10). As observed
earlier, the flow accelerates and decelerates around
the vortices travelling from a mid-braid region to-
wards the other one. As the convective Mch number
is increased, one can observe the presence of local re-
gions near the vortex cores where the relative Mach
number of unity is exceeded. This supersonic flow
slows down first by going through a shock, becoming
subsonic, and then decelerating further by compres-
sion towards the stagnation points. The regions of
expansion are consequently more spread out and the
region of compression more compact (essentially wi-
thin the eddy shocklet). One can observe that the
vorticity increases because of the compression th-
rough the shock, as well as the entropy grows. The
induced velocity pattern associated with the fluid
expansion and compression opposes the entrainment
velocity induced by the clumped vorticity field. This
may cause a further reduction in the entrainment of
fluid into the layer.
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