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Abstract

This abstract presents a model of airflow around an
airfoil which includes variations of position of an isolated
vortex, thus simulating unsteady lift characteristics of a
helicopter rotor blade. The problem, based on airfoil flow
mapping to a cylinder is spread by introduction if a
vortex, which, when angle of attack changes, varies its
position and satisfies the permanency of trailing edge
stagnation point. This request is satisfied by generating a
new vortex of a certain intensity fulfilling the given
condition, and so on. The aim is to define the dependence
of airfoil lift in unsteady conditions and the vortex
intensities and it their distances from the airfoil that
simulate the real airflow. In this investigation the aim is
fo simulate separated flow conditions by a series of
vortices that change their positions in time. The
separated flow velocity profile is approximated by
superposition of displacement thicknesses of these
vortices coupled with the potential solution model. After
every time step the position of firee vortices is changed,
which requires generation of new vortices that would all
together satisfy the airfoil contour boundary conditions.
“ In this analysis models particle-in-cell, vortex and
method of singularities are applied.

Nomenclature

V. = freestream velocity
r = vortex intensity
z = complex variables, x + iy
z = x- iy
xy,z = Cartesian coordinates
f = potential function

7 = complex conjugate potential function
¢ = velocity potential
W = stream function
w = complex potential

174 = complex velocity
Cp = pressure coefficient
n = number of vortices in wake
d = wake thickness
yij = stagnation point position
o = angle of attack
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u,, u” = velocities at upper and lower side
of the shear layer

a = radius

= stagnation point position

unit vector in z direction

. Reynolds number

kinematic viscosity

dynamic viscosity

density

= mapping angle

mapping derivative

= Dirac 6 function
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characteristic length

time
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Introduction

According to the experimental results, a remarkable
difference exist between steady and unsteady lift. This
paper presents an attempt to establish a model that will
obtain unsteady lift curves using stationary lift and
mapping.

This model is based on introduction of an isolated vortex
close to the airfoil and defining of how much it
contributes to the change of pressure coefficient and the
airfoil lift. The finale results is obtaining of unsteady lift
dependence of angle of attack.

Model established in such a way is characteristic for the
helicopter rotor blade airflow and it is based on the
influence of the previous lifting surface’s wake influence
on the next coming blade.

Problem setting

The main idea in this paper is the following moving
vortex close to the cylinder. This vortex, by its moving,
causes the necessity for releasing of a vortex of intensity
I'v from the rear stagnation point, which by its influence
induces a certain speed that keeps the position of
stagnation point unchanged. The condition that
stagnation point position should not be changed sets the
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request for introduction of a mapped vortex inside the
airfoil contour.

The whole problem can be analyzed by mapping of an
airfoil to the circle. The presence of concentrated vortices
is compensated by application of Thomson’s circular
theorem. The intensity of the released vortices will be
determined by application of Kelvin’s theorem of the
constancy of circulation in potential flow field. The
variation of circulation about the airfoil is satisfied by
unsteady Kutta-Joukowsky condition.

The transition of vorticity is modeled according to the
Gauss distribution. The law of Biot-Savart is used for
calculation of local velocities. Discretization of the vortex
area is done according to the assumptions of Lagrange.

The generalization of the problem implies a clear physical
understanding of based on the analysis of the flow field, a
complex description of the vortex system, approximation
of the wake, free vortices trace, position of the moving
vortex, etc.

According to such analysis and a chosen model, a
computer program is developed, used for the helicopter
blade airflow analysis.

Foundations of the Irrotational 2-D Flow

The planar potential flow of incompressible fluid can be
treated in Cartesian coordinates x and y. If physical plane
is mapped to the complex plane by z = x+iy where

i =4/—1. The symmetrical point with respect to the x-
axisis Z =x —iy . '

So that is:

Two dimensional potential incompressible flow is
completely defined by the speed potential and stream
function and is presented by Cauchy-Reimann equations:

9%, %V _ v _99_

=0 - =
dx Jdy dx Jdy

0 @

where u and v are velocities in x and y directions
respectively.

The Laplace partial differential equations can also be
introduced:

Vig=0 i V=0 3)

Where V? is the Laplace’s operator.

s
- Ox? +§y2

V? @)

The fulfillment of Cauchy-Reimann conditions enables
combining of the velocity potential and stream function:

w(2)=¢ (x,))+iy(x,y)
of complex variable z = x +iy .

This complex function entirely defines the planar
potential flow of incompressible fluid as a function of a
complex coordinate.

The complex analytical function w(z), called the complex
flow potential, always has a unique value for the first
derivative. This derivative of the complex potential is
equal to the complex velocity at that point, i.e.:

aw . ©

——=u-Iv=

dz
where u is its real part (velocity component in x-direction)
and v is the imaginary part (velocity component in y-
direction).

Circulation and flow are equal to zero for any closed
curve in complex plane. Complex potential has no
singularities except at the stagnation point.

Flow About Circular Cvlinder

The flow of incompressible ideal fluid is described by the
differential equation of Laplace (3a) with velocity
potential as a variable. This equation was derived from
the continuity equation for incompressible flow.

The airfoil boundary condition is:
(Vg+7)-i=0 ¢

where v is the velocity of a certain point on the airfoil
contour, n is the normal vector and V¢ is the flowfield
velocity. The problem will first be treated on a cylinder
and afterwards, by mapping, on an airfoil. We will settle
the Cartesian coordinate system so that velocity is parallel
to the x-axis.

The equation of the zero streamline is

yxo’ x2 +y2 et 02

where a is radius of the circle (Fig. 1). Streamlines are
symmetrical, while fluid particles that move inside the
circle do not leave that area. This becomes a symmetrical
acyclic flow about ¢ circular cylinder disturbed in any
finite point of the flowfield.

Let the f{z) be a complex potential of the flow without
firm boundaries and let the singularities be at the distance
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greater than a . In that case the resultant flow is obtained
by adding a steady flow around the doublet to the steady
straight acyclic flow, ie. by adding their complex
potentials;

w() :f(z>+f‘(5’z—j ®

or for the flow around the cylinder whose center does not
coincide with the origin of the coordinate system:

2
- a
W(z)=f(z—zo)+f( ) ©®
z-2z,
This formulation is the first Thomson’s theorem for the

circle where:
f(@),f(z-2z)

is the complex potential of the uniform flow when center
of cylinder does and does not coincide with the origin.

The conjugate complex functions are:

2 2
sfay < a
f( z j’f(Z-zo]
Applying the Milne-Thomson theorem for airflow at a

certain angle of attack o (with respect to the x-axis) the
following form is:

f@=V.e"(z-2) (10)
And conjugate complex functions are:
2 2
a a ‘
f (—) =V e"® 11
z z-2z,

For a circle with center out of origin, the complex
potential for flow at an angle of attack o is:

2

e+ia } (12)
Z

0

w(z) = V{(z - zo)e"i” + z‘—l-

By simplifying equation (12) by assuming that z=0 is
new origin, we get the equation for complex potential
(without solid boundaries) at o.:

2

. a 4

w(z)=V ze " +V, —e™* 13)
z

where V _ is velocity at the infinity.

Complex velocity is given by the equation:
— R a 2 R
V)=Ve™ -V, —e™ (14)

z

Steady Cyeclic Flow About Circular Cvlinder.
Introduction of a Vortex at the Center of Cvlinder

Now if we add a steady flow of a vortex of magnitude -I'
to the previously mentioned case, which is also positioned
at the point z, which is greater than z, then a circular
cylinder of the radius a is introduced in the airflow
(Fig.2). By the application of the Thomson’s theorem, and
if complex potential of the newly introduced vortex has a
form:

ir
Jr(2)= gln(z—zo -z,) (15)

ir ir a’  _
wr(z) = Eln(z——zO —zv)~—gln P
0

we obtain a complex potential equation for the flow about
a cylinder of circulation I
2 -
-fa ir
wZ)=f@)+fl—|+—In(z-z 16
@)=/ f[) —In(z-z) (6)

or, for the case with angle of attack o :
an

—ia a2 +Ha lr
w(z) = Vw(z —zo)e +V, ;—;O—e +-2-7-T-1n(z—zo)

We will define a condition that circulation I'. Has to
satisfy so that point z on the circle would become a
stagnation point. Complex velocity is obtained dy
differentiation by z:

Vo=

d 18
Z (18)

a’ , at ir
V=r (ZMZO)_(Z~ZO)2 / (Z_Zo) T 2”(2”20)
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Circulation is obtained from the condition that complex
velocity must be equal to zero at the stagnation point:

F:4n~a-Vmsin(a~ﬂ) (19)

where: o -is angle of attack and

B - angle of rear stagnation point position.
Equation (17) can be written in the following way:

2
w(z) = Vw(z - zo)e““’ +V, 2 v
z~z, (20)

+i2a-V, - sin(a - ﬂ)ln(z - 2,)

Then complex velocity is equal to:

2 .
V)=V e -V, —q—z—e“" + x (21)
z 27z

From this equation it can be seen that complex velocity
will be equal to zero in the points in the complex plane
whose complex number satisfies the obtained quadratic
equation. Analysis of the quadratic equation implies that
positions of stagnation points are defined by its
discriminate. Stagnation points will be moved down while
velocities will be increased on upper and decreased on
lower side. Displacement of stagnation points will depend
on the circular velocity of the cylinder and the velocity V.,
of the undisturbed flow.

In case when a=0, there could be three cases:

a) case when discriminate is greater than zero (Fig. 2),
1e.:

0<—>—<4
<Va<7r

Then stagnation points are at the lower half of the
cylinder , symmetrically distributed are at positions:

(22)

b) case when discriminate is equal to zero (Fig. 3), i.e..

r
—=A4r
V.a
Then quadratic equation has only one solution:
T : 23
Zy, =—I =—ia
12 4nV,

so stagnation point is at the negative part of the y-axis
(Fig. 3).

A e

>
Z

———

g

Figure 3.

¢) case when discriminate is less than zero (Fig. 4), i.e..

——>4
Va>7Z'

Then complex velocity is equal to zero in points that are
at the negative part of the y-axis:

1L, (Y T
zl/zzirz —-a’ + 47rVw _147ti 24)

while one of them is inside and the other outside the
circle. It can easily be proved that circulation and flow are
equal to zero for any curve that does not enclose the
origin, and equal to the vortex intensity for any curve that
encloses it.

e

2/ @\
=2

—
o

———

Figure 4.
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Equations with center of the circle at the origin

If we assume that center of the circle coincides with the
origin, the equations ...take the following forms :

| (i)_,/fi
S =V —e
V4 V4

W, (2)= @)+ f(f’-—j

f(2)=V ez

(25)
il .
we(z) = —2—;lnz =i2a-V sin(a - f)
w(z) =w,(2) +wy.(2) (26)
. a®
w(z)=V ze™ +V —e™*
z Q7

+i2aV,_sin{a - B)inz

Simulation of the moving vortex

If we assume that the moving vortex of intensity I, is at
the distance z,, than the perturbance potential of such a
flow is:
. a2
w(z) =V ze"* +V, —e"* +i2a-V, - sin(a—,B)lnz
z

2%

and its complex velocity:

2
V=V, V——e +— 2aV szn(a ﬂ)
z
L1 +1F (a*/z%)
271' (z—2z,) a’
27 ‘Z“—EO

29)

In this case displacement of the stagnation point appears,
which is now at the distance:

z=a-e’ (30)
According to the request that complex velocity at the
stagnation point must be zero:

=V =0 31

&2

we can determine position z and according to that ﬁ' ie.

V(ae?)=0 (32)

The angle ﬂ' defines new position of stagnation point,
while the difference of angles is:

\J

AB=B-P

In order to keep the stagnation point at the steady
position, a vortex of intensity 1"] must be released.

(33)

Intensity of the vortices that are released can be
determined according to the Kelvin’s theorem:

dl’/dt =0
So every change in circulation must be compensated by
vortex inside of cylinder/airfoil of the opposite sign,

whose intensity is a function of the variation of circulation
around the cylinder:
I = —(dF/dt)At (34)

and it is equal do the difference of the intensities before
and after the free moving vortex is introduced:

F]:AI‘I:47ra-Vw[sin( - B)) - sin(e

Now the total complex potential has the value:

-p)| 69

w(z) =w,(2) +wr, (2) + wr, (2) (36)

where:

~B)inz

, a
wo(2) =V, ze™ +V, ¢ e’ +i2aV, sm(

i, ir, (a® _
wr, (2) = ~2~7—r-1n(z z,)— —~In| — -z,

27 z
(25
2 Nz %

—ﬂ)lnz

il
wr () =7"In(z~z) -
or:

2
; a ;
w(z)=V ze " +V,_ —e"* +i2a- szin(a
z

ir T, (a®@ _
+-i7%ln(z—zo)——5~ln(—— —ZO)

T
o linz—z,) - —-—‘h{—— —z{)
2

G7)
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Complex velocity is:

[}

Vv v, Lo v loay, -sin{a - )
z- V4
T, 1 i@z
2r (z -2z, (az _j
27[ ‘“"‘ZO
z
ir, 1 ir\(a’ /z*)

+— +
27 (z-2z,) (az ‘)
2 — -2z,
z

(38)

After a period of time At induced velocity at the trailing
edge is a consequence of the disposition of both moving
and released vortex.

Setting again the condition that a point at the circle is
stagnation point and complex velocity at that point equal
to zero. we determine a new position of the stagnation

point by new angle B' .
This new angle B' defines a new difference AB = § - [3'.
So the new position of the stagnation point is defined by

distance:

z=a-e* (39)

This again causes generation of a new vortex F2 which

is equal do the difference of vortex intensity before and
after displacing of the free moving vortex from time t| to

time 1y .
(40)

=Al= 47zansin(a ~ﬂ’) - 47tansin(a - :B)

Now the total complex potential has the value:

w(z) =w,(2)+ wr () +wr (2)+wp (2) @D

or.

w(z) =V, ze " +V, 9 _eve Liday sm(a )lnz
z
iT, i,
" 2n = 2) 5;;‘("“)
ir il
e -z

il iT a*
+ —2—ﬂ—ln(z z,) - -?;;—In(-z— - 22}

Complex velocity is:

5

_ B a
V=Ve -V, —e¢

+ia L . ; .
e + - 2a Vmsm(a ,8)

+£EO_ 1 N iT,(a*/z%)
27 (z-z,) (az _J
2m) — -z,

Z

II“ L, ir (a*/z%)
27[(2 z,) (az _)
2r| —-1Z,

4

(42)

. r 2 2
PRLET S (a*/z%)
27 (z-1z,) (az _)
2 — -2z,

z

Now we can give general equations of:
¢ the stagnation point position:
z=a-e* 43)
¢ intensity of the released vortex:
I,=4ra-V, [sin(a - ,B,,’,) - sin(a (44

-A)

e total circulation:

I,=T+0,+>.T, (45)
1

e circulation inside the cylinder/airfoil:
=20y (46)

e complex potential:

w(z) =w(2) +[w (@) + 2w (z)] 47)
I(F r,)

/8

il i, _
+-2——ln(z zo)—zﬂ-ln( > zo>

Ml ir (a )
—_m - ____ﬂl —_——
+ 21 {27[ In(z-2z,) o n( P }

a
w(z) =V, ze™ +V, —e —Inz+
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complex velocity:

i, > ir-r,)
—==V =V e -V —e'"" +—-T"~
dt ' z 2rz
ir, 1 il
2r (z-z,)

+ + m
T 27 (z-z,, ( z? _j
2nlz——2Z

Vortices travel down the flowfield by its velocity so that
their position is determined by solving the system of
equations;
O R N
dt ~ d|,
Position of the vortex at a new moment can be determined
by:

dz =V _dt (50)
and its elementary displacement:
AZ =2 -2 =AMtV 1)

Now a new distance of each vortex as well as the
trajectory of the vortex or any fluid particle is given by:

=2+ AtV (52)

az ‘a (r_rm)
rze

z :Z;+N-{Koe"“ 5
nZ

t ez 2
T 2{2—?2",)

According to the Bernoulli’s equation pressure
distribution can be calculated and then the pressure
coefficient:

(53)

Vorticity in incompressible viscous flow

In many cases viscosity of the fluid can be neglected. If it
has to be taken into account, some approximations and
simplifications can be done, without affecting remarkably
final results.

Incompressible fluid flow is governed by Navier-Stokes
equation:

Au =0 (54)
f;—lti + (W-V)u=-Vp+vViu (55
The vorticity of the flow is defined as:
=Vxu (56)
By taking the curl of equation (55) we obtain:
Sw
N +(u-Vio = o-Vu + vWao (57

For two-dimensional flows @ -Vu = 0 and equation

(56) reduces to:

7
7o (u-Vo = vVo

58
a1 (58)

We can say that if ® is known than » can be computed
using Biot-Savart law . Thus:

u(x)— — J. AN wo(x)dx’

lx-x!

(59)

The essence of the inviscid-vortex method is to replace ..

by:
o(x) = Zl"lé'(x - x,)

where & are functions approximating the Dirac & -
function and I'; is circulation of the i-the vortex. It has to
satisfy the kinematic condition:

(60)

dr (u L-u ;’)
dt 2 b
Where:
1. dl'/dt - is the change of circulation in the
shear layer moving over the stagnation point
2. u,/. u” - are velocities on the upper and fower
side of the shear layer

In order to satisfy the equation of motion of inviscid flow:

D
~—2—(w VIV+v Vie=0

62
Dt ©2)
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the velocity of every vortex must be determined by the
value of flow velocity at its instant position:

dx,

B ()
Let us assume that rather small number of vortices per
unit length represent the free shear layer. The known
assumption of no-slip condition at the wall (airfoil) leads
to the model of wake simulation. If the wake is properly
simulated, it will leave airfoil at the trailing edge. In order
to obtain proper simulation of viscous effects, it is
necessary to assume that the size of the vortex is
proportional to the thickens of the wake o ~ f& . If the
wake length is L then number of vortices can be defined

as:
51 I R,
0_2 ~ 5f‘2 ~ f2

Where R, is Reynolds number

(63)

n~ (64)

4
R =—=
v

And v - kinematic viscosity (v = p/ p).

Mapping of a circular cylinder to airfoil

Mapping of the circular cylinder to airfoil is done by
Joukowsky transformation:
2
a
g=z+ 7 (65)
Where:

z=¢e" + pe'®? (66)
is the parametric equation of the function of mapping of 0

and mapping derivative:

d¢ a’
& €7
Calculation

According to the whole mentioned analysis a numerical
model was established. This model is based on the
following:

e vortices move along the flowfield by the flowfield
velocity

e trajectory of every vortex is defined by equation (52)

e for every point in the flowfield it is necessary to
determine value of complex potential and complex
velocity

e at a certain moment in a defined initial point a free
moving vortex is simulated

e after every time interval At moving vortex changes the
stagnation point position which must be compensated

by introduction of new vortex which brings stagnation
point back to its proper place

e new positions of all vortices are calculated by
multiplying local velocities with ..... and adding these
values to previous )

e viscous effects should be simulated by generating
vortices on the airfoil to satisfy no-slip condition; so
introduced vortices must be moved by velocity defines
by inviscid part of the equation of motion

e boundary condition of impermeability of the airfoil
must be fulfilled

o vortex diffusion is simulated by variation of the vortex
size and arbitrary step

e computer program is made so that flow parameters
can be calculated for different angles of attack.

Analysis of the Calculation

Program vas run first for characteristic cases of flow
around the cylinder ( Figs 8, 9 & 10 ) described in the
theoretical consideration by Figs. 1,2, & 3.

For the comparison, experimental wind tunnel
investigation is shown ( Figs. 5, 6 & 7) and computer
simulation (Figs. 11-21) .

Due to computer limitations, a rather small number of
streamlines is shown. Model is calculated for different
angles of attack (Figs. 11,12,14 & 19), different flowfield
velocities ( Figs. 15 & 16 ), different intensities of the
moving vortex and its starting position (Figs. 15 & 16 ;
19,20 & 21). Also, wake shape with and without the
influence of vorticity due to viscosity.

Figure 5.

Streamlines of steady flow (from
left to right) past a circular cylinder
of radius a

Figure6

Flow from left to right past an
airfoil aligned roughly with stream
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Figure 7 Figure 12
Figure 13
Figure 8
Figure 9 Figure 14
Figure 10 Figure 15
Figure 11 Figure 16
jn
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Figure 17

Figure 18

Figure 19

Figure 20

Figure 21
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Figure 22

Figure 23

Figure 24
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