ICAS-96-7.1.1

MODELLING AND IDENTIFICATION OF NON-LINEAR UNSTEADY AERODYNAMIC LOADS

BY NEURAL NETWORKS AND GENETIC ALGORITHMS

Flavio Marques ard John Anderson

Department of Aerospace Engineering,
University of Glasgow, Glasgow G12 800, UK

Abstract

Recent developments in neural networks and genetic
algorithms have provided a unified framework for the
identification of models of complex non-linear
processes and for the subsequent design of appropriate
controllers. The ability of neural networks to
approximate arbitrary non-linear mappings and
dynamical processes is particularly attractive in the
context of unsteady aerodynamic problems where
significant non-linearities and delays are present. The
present work describes a procedure for the systematic
identification of parameterized neural network models
of unsteady aerodynamic loads exhibiting weak non-
linearities. It is shown that a temporal finite impulse
response (FIR) neural network model provides a
reasonable approximation to the aerodynamic
behaviour observed in mildly separated flow. The
identification procedure is facilitated by an adaptive
optimisation process based on. a genetic algorithm in
which both the network topology and network time-
delays are optimised for multiple training data sets of
input motion history-and output aerodynamic response.
The approach is shown to furnish a satisfactory
generalisation property to different motion history input
patterns.

In ion

Prediction of motion induced unsteady aerodynamic
loads in flow regimes exhibiting dynamic shock
excursion or flow separation presents a significant
challenge in aeroelastic design and analysis. The
inherently non-linear relationship between the motion
history and the aerodynamic response demands
sophisticated modelling techniques. Recent research
effort has focused on computational procedures based
on numerical solution of the governing fluid dynamic
equations() and on a range of semi-empirical
methods(2.3), While such methods are entirely
appropriate as a basis for numerically computed
response studies, their suitability for aeroservoelastic
control system design is questionable. Here, the non-
linear relationship between the motion history and the
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aerodynamic response is represented implicitly and is
not easily accommodated by standard non-linear
control synthesis procedures.

Empirical evidence suggests that, for weakly non-linear
flow behaviour, a functional description of the
aerodynamic force response is justified. The existence
of a unique non-linear aerodynamic force response
functional appropriate to a particular flow regime is,
necessarily, inferential. Non-uniqueness of the
aerodynamic force response is generally associated
with certain types of degenerate flowfield behaviour. In
particular, aerodynamic hysteresis, flow instability and
bifurcation have been identified as key elements in the
breakdown of unique, single-valued behaviour of the
aerodynamic force response. Flows admitting shocks
and gross separation offer a potentially rich source of
mechanisms for the realisation of such phenomena.
However, computational and-experimental evidence
suggests that, for certain classes of flows, unique
single-valued behaviour of the aerodynamic force
response is observed over a range of flow parameters
and motion histories. The basic properties of the
aerodynamic functional depend on the nature of the
flow regime with which it is associated and the class of
admissible motion histories for which it is defined.

In a series of papers{4.5), Tobak and co-workers have
developed a hierarchical class of functional
aerodynamic force response models sufficiently general
to encompass a broad range of flow regimes and
motion histories. Although explicit representation of
the aerodynamic force response functional is generally
unavailable, its notional existence permits a succinct
representation of the aerodynamic force response. In
addition, several methods exist to identify approximate
aerodynamic force response functionals from known
characteristics of the motion history and aerodynamic
response. A convenient approach is based on the
Volterra-Wiener theory of non-linear systems(6.7).
Here, the functional is approximated by an infinite
series of multi-dimensional convolution integrals of
increasing order (the Volterra series). For weakly non-
linear systems, only the first few kernels of the Volterra
series are required to accurately model the input-output



characteristics of the system. An important feature of
the Volterra-Wicner theory of non-linear systems is that
a bilinear state-space system can be realized once. the
kernels up to second-order have been identified. This
bilinear state-space system can be used as a non-linear
aerodynamic model for aeroservoelastic analysis and
design.

Recently, an alternative approach to the approximation
of non-linear functionals has been proposed in which
the functional is represented as a non-linear
combination of linear functionals®. For a large class
of non-linear systems, these so-called multi-layer
functionals can be shown to be universal
approximators. Moreover, the approximate functional
form is conveniently represented by a temporal neural
network. The utility of neural networks in non-linear
system modelling is well-documented(5.10),
Identification of an appropriate neural network model is
achieved via a supervised learning process in which a
limited sample of system input-output training sets is
presented to the network. In general, the network
architecture and parameters are adjusted to minimise a
measure of the error between the network output and
the sample outputs. For a sufficiently broad sample of
training data, the inherent generalisation properties of
the network enable extrapolation/interpolation to
arbitrary inputs. The principal advantage of the neural
network representation is that it readily accommodates
multiple input/multiple output system descriptions. In
addition, control system design is facilitated by a
number of standard procedures. In the context of
aeroservoelastic design, a neural network model of the
unsteady aerodynamic response characteristics can be
combined with a standard structural dynamic model for
the purposes of control system design.

The aim of this paper is to describe an approach to the
modelling and identification of unsteady non-linear
aerodynamic loads via neural networks. A brief account
of the approximation of non-linear functionals by
multi-layer temporal neural networks is presented. This
is followed by a description of a network adaptation
procedure based on a genetic algorithm and a variation
of the simulated annealing algorithm in which both the
network architecture and network parameters are
optimised for multiple training sets. Application of the
scheme to representative motion history ~ aerodynamic
response data for a 2-D aerofoil exhibiting mild
separation in low subsonic flow is used to demonstrate
the feasibility of the approach.

Mulii-Laver Functional Approximation

The basic premise of multi-layer functional
approximation is that all time-invariant systems
characterised by continuous functionals can be
approximated by multi-layer operators(8)< Multi-layer
operators are input-output models that can be thought
of as non-linear generalisations of convolution, or more
generally as being composed of a number of linear
systems.

Network Model

A practical realisation of the multi-layer functional
approximation is the temporal neural network
model(9.11), The basic processing unit of a neural
network is the neuron shown in Figure 1. The
relationship between inputs and outputs is established
via connections or synapses. The connections present
weights which are used to modify the information
between neurons. Each neuron modifies its inputs
through an activation function (e.g.. a non-linear
sigmoid function).

PV () —

Figure 1. Neuron Model

To represent the temporal behaviour (or time-history
effects) of the input data, each input connection or
synapse is modelled by a linear, time-invariant filter.
The characteristics of synapse i belonging to neuron j

are described by an impulse response h,(r). The
response of the synapse i at time ¢ to the input x,(7) is
equal to the convolution of the impulse response £,(¢)
with x,/(t). Given a neuron j with a total of p
synapses, the net activation potential v;(r) of the

neuron due to the combined effect of all the inputs and
the externally applied bias 8, is given by

v,.(r){ﬁ [A)x@-2)ar|-6,

i=l _oo

The neuron output is the value of the activation
function for vj(t),

y(t)=@(v,(t)) ()
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A multi-layer feedforward neural network or mulli-
layer perceptron is formed by interconnecting layers of
neurons (Figure 2).

Inputs Output Layer

Hidden Layers

Figure 2. Example of Network Architecture

FIR Neural Network

From a computational viewpoint, it is convenient to
assign a finite memory T to the synaptic filter and to
approximate the convolution integral in equation (1) by
a convolution sum. Consequently, the continuous-time
variable ¢ is replaced by a discrete-time variable n
defined by f = nAr where n is an integer and At is the
sample interval and equation (1) is approximated as

P M

v,(n)= l:Z ZWJ.,,(/,‘) x(n— é’)}— 8,

i=l {=0

®3)

where M =T/At is the number of delay units of the
filter and w(£)=h,(£)Ar is the synaptic weight at
time-delay £.

Alternatively,

v,(n)= iw;x‘.(n) -6, 4
i=1

where

W, =[wj,.(0) wi(l)...w,(M) ]T

and

x, =[x(n) x(n-1) ... x(n-M) ]

This model form is referred to as the finite-duration
impulse response (FIR) model (see Figure 3). The
neural network structure defined by a multi-layer
perceptron whose hidden neurons and output neurons
are all based on the FIR model is referred to as a FIR
multi-layer perceptron.
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Figure 3. FIR Neuron Model

rk A i netic Algori

Identification of an appropriate neural network model is
achieved via a supervised learning process in which a
limited sample of system input-output training sets is
presented to the network. Where the network
architecture and network delays are prescribed, the
synaptic weights can be trained using a temporal
version of the standard back-propagation algorithm®),
However, prescribed networks of this kind may exhibit
poor convergence and generalisation properties and, in
general, the network architecture and network
parameters are adjusted to minimise some measure of
the error between the network output and the sample
outputs. An efficient network optimisation scheme can
be formulated via a genetic algorithm(12.13),

Genetic algorithms are a type of evolution based search
algorithm which manipulate sets of possible decoded
solutions for a problem. As an evolution based
technique or evolution program, genetic algorithms
operate on the set of decoded solutions according to the
principles of natural selection and the survival of the
fittest premise. The elements of a conventional genetic
algorithm comprise: Individuals - representing possible
solutions to a problem, each of whose features are
encoded in a chromosome; Chromosomes - the basic
units of a genetic algorithm which encode how each
individual is to be constructed (a chromosome is
normally represented by a string of binary numbers, but
other representations may also be used); Genes -
subsets of a chromosome which maintain a particular
feature of an individual; Population - a complete set of
individuals for the search process; Fitness Function - a
value assigned to each individual which represents how
good an individual is as a solution to the given
problem.

A conventional genetic algorithm generally starts with
a randomly initialised population of individuals. Each
individual is evaluated by decoding its chromosome
and applying the fitness function. The new individuals



are the result of combining individuals (ranked by
fitness) from the original population, in a process called
reproduction. Reproduction in a genetic algorithm is
facilitated by the operations of: Selection - to choose
the individuals for combination; Crossover - 10 create
new individuals by swapping genes from the selected
individuals; Mutation - t0 guarantee that occasionally
(with low probability) a few genes are modified and
therefore a new search space is explored, thereby
increasing the chance of achieving the global minimum.
The reproduction process is repeated until a new
complete population is established. The process is
further iterated only if the fitness of the best individual
has not achieved a goal value, or if other termination
criteria have not been satisfied. For each new
population, the process steps a generation,

The genetic algorithm is used, as part of a supervised
training process, to obtain an optimal architecture and
time-delay distribution for the FIR neural network
while, simultaneously, training the network (that is,
identifying the synaptic weights). To achieve this, the
genetic algorithm interprets each FIR neural network as
an individual belonging to a population. The associated
chromosome is a sequence comprising the time-delays
and weights per connection. The measure of the
network fitness, f, is defined by the inverse of the sum
of squared errors between the desired outputs and the
actual neural network outputs; that is,

1
T (5)

= (dk (fl) Y ("))2

f==
>

k=1 n

where N is the number of training sets, L is the total
number of time steps, d,(n) is the desired output at
time n of training set kand y,(n) is the corresponding
neural network output.

The networks in the population are constrained to
maintain certain basic ‘features; for example, the
network is composed of a multi-layered architecture of
biased neurons without missing connections between
hidden layers, all hidden neurons are non-linear
(sigmoid activation function), and all output neurons
are linear.

The chromosome is represented by a string of constant
length irrespective of the network architecture encoded
within it. This is achieved by assuming an FIR neural
network architecture with bounded structure and
parameters. The chromosome size depends on the
limiting FIR neural network considered. It is a string
which records the information necessary to decode any
feasible network within the pre-defined bounded
architecture. For each neuron of the limiting
architecture, the string is the sequence of all time-gelay
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values of the previous hidden layer to the neuron itself,
The complete chromosome is, therefore, the sequence
described above for all neurons of the limiting
architecture. A schematic representation of the
chromosome is illustrated in Figure 4.

time-defays of
connections
10 neuron 1

time-delays of
connections
w neuron i+1

ncuron § neuron i+

Jlag 10 determine i newron exists

Figure 4. Generic Representation of the Chromosome

Flags are used in the chromosome to signify which
neurons and connections do not exist. For each
connection which exists a weight vector (whose size
depends on the time-delay value) and a bias value are
assigned to each neuron. This information is recorded
separately in each case to avoid working with a very
lengthy chromosome. However, the weight and bias
values must always be related to their respective
connection and neuron, whatever the genetic operation.

The training process commences with an initial
population of individuals. Each individual is created
with a randomly generated architecture and receives
random weight values from a uniformly distributed
source in the range -1.0 to 1.0. The entire population is
evaluated through a feedforward pass of each
individual to produce a fitness distribution. The values
of the minimum ( f,,,), average (f.), and maximum
{( [ mae) fitness values are evaluated for further genetic
operations.

The next step is to apply the genetic algorithm. Parents
are selected and, using the fitness values f,., f,, and

S .. determined previously, the selection operator re-

scales the fitness values of the population via a linear
rule and then conventional roulette wheel selection is
applied. Selected parents produce new individuals by
the crossover operator. A conventional crossover
operator is used in which multiple crossover points may
be chosen. Some care must be taken after the
production of new individuals. Encoded FIR neural
networks of different architectures may present
problems during genetic operations. The gaps left
inside the chromosomes by non-existent neurons or
connections may lead to an inconsistent new individual
after the crossover operation.

The need for a checking routine following any
operation on the chromosomes is clear. The checking
procedure attempts to correct distortions of the
architecture of the new individuals. The procedure
provides a systematic means of identifying anomalies
and enables the chromosome strings to be re-arranged
in the best way possible. If this is not feasible, then the
new individual is discarded. To facilitate the checking



procedure. a number of pre-conditions are assumed to
apply:

« Each existing neuron must receive connections
from all existing neurons of the previous layer and
it must send connections to all existing neurons of
the next layer;

* All connections must be present between two
adjacent layers;

« Networks must have at least one hidden layer;

+ Qutput neurons must always exist;

« Networks are not allowed to have hidden layers
with only one neuron:

*+ No one individual can be equal to any other
individual of the population.

If a new individual is accepted there is also a possibility
of that individual being mutated. The new individual's
chromosome is swept gene by gene and for each one
the mutation operator changes its value with respect to
a user-defined probability distribution. Only time-delay
values and neuron existence parameters are mutated,
although the respective changes in weight and bias
values must be carried out. The mutation operator is not
allowed to change time-delay values over the limit of
the memory span ang it is forbidden to mutate output
neurons.

A final operation is applied to the accepted new
individuals to update their weight and bias values. This
operation consists of perturbing each weight and bias
value by a normally distributed random value
multiplied by a proportionality constant; that is,

W, =W, +BN(O01)

, (6)
enew == oola‘ +B N(O' 1)

Analogously to the simulated annealing algorithm(®),
the new values of weights and biases are only accepted
if they lead to a fitter FIR neural network. This process
of updating the weight and bias values is repeated
several times before returning the modified individual
to the population. In the simulated annealing algorithm,
it is possible that poor perturbations may be accepted,
but this circumstance occurs with a probability which
depends on the system's temperature parameter. This
feature is not used in the present procedure.

After one generation; the new and old individuals of the
population are compared in terms of their fitness values
and the best ones retained for the next generation. With
this form of non-replacement, the expectation is that the
good genes will not disappear during the genetic
search. This procedure also provides a means of
accelerating the convergence.

The simple application of mutation to the new
individuals, or even the use of a greater number of
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Crossover points, cannot guarantee that the process will
not be frapped in a sub-optimal condition. When this
occurs, the process appears to stagnate and, if the
members of the population are inspected, it is observed
that they are all practically equal. In fact, for a good
implementation of a genetic algorithm, such behaviour
is desired. However, because of the size and complexity
of the chromosome encoding a FIR neural network, it is
appropriate to implement routines to help the process to
escape from the stagnation.

Here, the avoidance of stagnation is treated by another
mutation operator. The operator is called forced
mutation and it starts to work only after a pre-defined
number of generations present the same fitness value
for the best individual. For each member of the
population, the operator randomly chooses a gene to be
modified. The gene is then modified and the individual
is tested to check if its new fitness is greater than the
old one. If this is the case, the individual is accepted,
otherwise it is only accepted with a probability of
0.01%. The routine is repeated a number of times and
the final mutated individual returns to the population.
Such a scheme is basically a variation of the simulated
annealing algorithm, but considering constant
temperature.

A scheme for the complete training process is
summarised in Figure 5.

Step 1 Initialisation
Step 2 Evaluation - Fimness values
Step 3 Genetic Algorithm
3.I Selection (roulette wheel)
3.2 Crossover
3.3 New Individual OK?
yes - Mutate and Update Weight/Bias
no - next sep
3.4 New Population complete?
yes - next step
no - backto 3.1.
Step 4 Evaluation - Fitness values
Step 5 Fitness of the best individual is unchanged
after a pre-defined number of generations?
yes - Forced Mutation and back to Step 3.
no - Stop criteria ?
yes - end of process
no - back (o Step 3.

Figure 5. Training Process



Functional Approximation of Unsteady Aerodynamic
Response

To illustrate the application of the neural network
identification procedure Lo an unsteady aerodynamic
system, the low-Mach number unsteady aerodynamic
normal force response of a 2-D NACAQO012 aerofoil in
pitch is considered. The aerodynamic force response is
assumed to depend on all past values of the pitch
motion and may be interpreted as a non-linear
functional of the motion history. Only motion histories
compatible with the assumption of weak aerodynamic
non-linearities and continuous functional behaviour are
considered (motion histories resulting in gross flow
separation or deep dynamic stall are therefore
excluded). The data used to train the FIR neural
network is generated by a semi-empirical unsteady
aerodynamic model originally proposed by
Beddoes(3:14). The model uses various input parameters
obtained from steady and unsteady wind tunnel data
and simple mathematical formulations based on
observation of the physical aspects of the flow. For the
training process the pitch incidence, aft), is the
prescribed input and the normal force coefficient,
C, (1), evaluated from the Beddoes model is the desired
output.

For a range of motion histories, the aerodynamic
normal force coefficient exhibits continuous weakly
non-linear behaviour. The limit of continuous non-
linear behaviour of C,, is assumed as the boundary for

network training purposes. For the freestream
conditions considered in the present example,
numerical experimentation indicates that weakly non-
linear behaviour is present for angies of attack in the
range 10° to 14° and that discontinuous behaviour
becomes apparent for motion histories involving angles
of attack greater than 14°.

Identification of the FIR neural network characterising
the non-linear relationship between the motion history
and the aerodynamic response demands that the
network be exposed to a broad range of motion induced
unsteady aerodynamic responses. To meet this
requirement, a variety of motion histories are presented
to the network for training. In the present example,
three training cases are considered: sinusoidal motion,
ramp-up motion, and ramp-down motion. In each case,
the motion history is normalised with respect o the
maximum incidence prior to training.

The network architecture and parameters are identified
using the genetic algorithm described previously. The
following parameters define the maximum complexity
FIR neural network in the population:

. 2 hidden layers;
. 10 neurons per hidden layer;
. 4 time-delays per connection.
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A population of 40 FIR neural networks is used for
training. Five points are applied to the crossover
operator. This number is adopted after comparing the
performance of the process for other numbers of
crossover points. It is observed that better results occur
when the fitnesses increase more smoothly. If a greater
number of crossover points is used there is more chance
of bigger jumps in the fitness values which, in most of
the cases examined, leads to stagnation. The stagnation
arises because the total replacement approach is not
apptied to the process. If a greater amount of pressure is
induced in the process, sub-optimal solutions may
occasionally appear and the process is driven to a local
minima.

Other parameters that may influence the performance
and accelerate the process are the mutation probability
values. These values are applied to the mutation
operator as a reference to modify or retain a time-delay
value, or to create or delete a neuron. If the chance of
such modifications is great, the pressure on the process
is proportionally greater, increasing the chance of
achieving a local minima. The mutation probability
values adopted for training are 0.3% to mutate a time-
delay value and 0.1% to create or delete a neuron. The
selection operator assumes a scaling coefficient equal
to 2.0. Larger values do not improve the process
performance.

Weight and bias values are modified considering a
perturbation constant 8 = 0.01 (¢f. equation (4)). This
parameter is similar to the learning rate parameter
commonly applied to the general back-propagation
algorithm; therefore, it has a substantial influence on
the training performance. Another factor affecting the
performance is the number of steps in the routine to
update the weight and bias values. Both a large S value
and large number of steps in the routine increase the
pressure on the process. It is observed that the
convergence rate tor optimising the weight and bias
values is smaller than the convergence rate in the
genetic algorithm for the network architecture.
Increasing the pressure on updating the weight and bias
values does not tune the two algorithms to the same
convergence rate. In fact, a larger pressure on the
weight and bias value modifications leads only to local
minima. It appears to be more appropriate to update the
weight and bias values for a few steps and return the
modified individual to the population. Such an
approach also helps to accelerate the procedure. In the
present application, the number of steps is set equal to
five. The training procedure has two termination
criteria. The first criterion checks if the fitness of the
best individual achieves a value of 10°. The second
criterion terminates training after a fixed number of
generations. In the present application, the maximum
number of generations is 10°.
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The form of the adapted network (including the number
of time-delays per connection) is illustrated in Figure 7.
This network represents the best FIR neural network in
the population after ‘the maximum number of
generations. The dependence of the aerodynamic
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Figure 7. Adapted FIR Network

The robustness of the adapted network identified from

the prescribed training sets is examined in Figure 8.

Here, the network response to a range of other motion

histories is shown to be satisfactory (the freestream

conditions and network sampling are unchanged)

Non-Dimensional Time (2°t'Vic] although minor discrepancies do exist in the early

transient phases of the motion. The ability of the

network to capture the essential features of both the

linear and weakly non-linear aerodynamic behaviour

Figure 6. Training Sets and Network Output with only a few training patterns is particularly
noteworthy.
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Conclusions

The functional representation of unsteady aerodynamic
response characteristics is an efficient model form for
weakly non-linear aerodynamic systems. Approx-
imation of the aerodynamic response functional can be
realised via a discrete-time multi-layer FIR temporal
neural network.

Identification of the network architecture and network
parameters is achieved via a supervised learning
process using mutliple training sets. The identification
procedure is based on a genetic algorithm and a
variation of the simulated annealing algorithm. This
approach overcomes many of the difficulties associated
with the standard temporal back-propagation algorithm,
and allows each connection (o be assigned a different
time-delay.

The use of multiple input/output training sets ensures
that the adapted network models a broad range of
system characteristics and presents good generalisation
features. In addition, multiple input and multiple output
variables are readily accommodated by the network
model. Furthermore, static parameters, such as
Reynolds number or Mach number, can be used as
inputs to the neural model, thereby increasing the range
of flow conditions and, as consequence, the
applicability of neural model.

A major limitation of the FIR neural network
approximation is the restriction to continuous
functionals. To extend the capabilities of the neural
network modelling approach to unsteady aerodynamic
systems exhibiting strong non-linearities associated
with discontinuous functional behaviour, it is necessary
to incorporate additional logic. A continuous-time
neural model is also desired to overcome some of the
limitations of the discrete version.
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