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Abstract

The viscous 3-D flow method developed by the
authors during the last years has been proven to
be an appropriate and efficient way of treating
complex flow fields in single and multi-stage
machines. According to this model the complete
form of the time  averaged Navier-Stokes
equations is pitch-wise integrated. Subsequently,
the real value of a quantity is expressed as the
sum of the circumferentially mean value of the
quantity and a fluctuation term, describing the
distribution of the quantity in the peripheral
direction. In the present work, a complete
theoretical analysis concerning the passage-
averaged model in an orthogonal curvilinear
axisymmetric coordinate system is described. The
non-uniformity terms are first evaluated using
various available experimental data. Then the
most important terms are modelled, in order to be
included in the complete viscous flow method,
keeping the same order of the computational
requirements. Finally, the impact of the assessed
non-axisymmetric terms on the quality of the
calculation results is demonstrated, by comparing
the prediction results with and without the
contribution of the "apparent stresses", using

several high speed axial compressor
configurations.
Nomenclature

b peripheral blockage factor
B (=bR)
D deficit force vector
DM,DU  meridional and peripheral component

of the total blade deficit force
DM;,DU; spanwise integrated meridional and
- peripheral deficit force components

F force vector
curvature of m-,n- lines
blade pressure force
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p static pressure

R radius

S blade shear (dissipative) force

s entropy

T temperature

v absolute velocity vector

w relative velocity vector

z* number of blades

B angle between meridional -m and
primary flow direction

g blade angle ‘

o normal blade angle

€p deficit force deviation angle

® peripheral position of the blade

‘ surfaces

(6;m,n)  coordinates of an orthogonal

- curvilinear axisymmetric system

& vorticity vector

o density

T components of shear stresses »

) ~ angle between the meridional
direction and the axis of the machine

o angular velocity vector

Subscripts

e external flow ,

p,s pressure and suction side of the blade

(u,m,n) components in a curvilinear axisym-

metric orthogonal coordinate system

Superscripts
) peripheral mean value

’ peripheral fluctuation values
1. Introduction

The viscous 3-D flow method developed by the
authors during the last years ¢V, © has been
proven to be an appropriate and efficient way of
treating complex flow fields in single and muliti-
stage machines, being also an alternative answer

to the use of the time consuming full Navier
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Stokes approach. In the proposed model special
emphasis was put on the distinction between the
existing axisymmetric flow models and the
proposed circumferentially averaged one,
developed from f1rst principles. More precisely, in
our early work ¥ the basic principles of the
Circumferentially Averaged Model (CAM) were
established. According to this model the complete
form of the time averaged Navier-Stokes
equations is pitch-wise integrated. Subsequently,
the real value of a quantity is expressed as the
sum of the circumferentially mean value of the
quantity and a fluctuation term, describing the
distribution of the quantity in the peripheral
direction.

The application of the CAM on the Navier-Stokes
equations leads to the appearance of some
additional terms like the values of the flow
parameters on the blade suction and pressure side
(blade force) and the so called "apparent" stresses.
The apparent stresses usually include the
circumferentially averaged fluctuation terms and
are called so in an analogy to the Reynolds
stresses, descnbmg the turbulence fluctuation
terms ,)_ The so called "apparent stresses" are
commonly assumed responsible for the limited
performance of various early calculation methods
and for the existing discrepancies between the
calculated and the experimental data. Only by
neglecting the blade force terms and the
corresponding apparent stresses the equations of
the CAM coincide with the equations valid for the
axisymmetric model. Besides, during the
development of the governing equations, we have
not accepted that the axisymmetric surfaces used
in the curvilinear coordinate system coincide with
the flow surfaces. Therefore, the normal velocity
components are included in our analysis for both
the external and the real flow field.

In the present work, a complete theoretical
analysis concerning the passage-averaged model in
an orthogonal curvilinear axisymmetric coordinate
system is described. The non-uniformity terms are
first evaluated using various available
experimental data. Then the most important terms
are modelled, in order to be included in the
complete viscous flow method, keeping the same
order of the computational requirements. Finally,
the impact of the assessed non-axisymmetric terms
on the quality of the calculation results is
demonstrated, by comparing the prediction results
with and without the contribution of the "apparent
stresses".

2. Theoretical Model-Deficit Force Terms

During the development of our method special
attention was paid in order to use the complete
form of the corresponding equations. Therefore,
after applying the CAM on the governing flow
equations we get the equations presented in
Appendix One. Some of the most important non-
axisymmetric terms appearing in the CAM are the
terms describing the blade force exerted between
the fluid and the bladings. More precisely, the
three components of the real force between the
blade and the fluid are defined as:

F,=L+S, (i=u,m,n) (1)
with
Z*
T e—— _ 2
L, - @,py )]
R * ae ae
L=, py =) (=m) ©)
and
56 a0
=_2?_:;(r -1, )—R [( P-—a—’:)
’ 4)
T, — %, —=)]  (i=u,m,n)
g a p an

Assuming relatively thin blades, which is quite
realistic for compressor cascades especially for
high speed machines, and defining the static
pressure difference "Ap" between the pressure and
the suction side of the blade as:

Ap=p,p, )
equations (2) and (3) are written as:
Lfﬁ'Ap (6)
2w
-Rzx %8
L= Ap— 7
mo 2n P om M
-Rzx* 3
L = Ap= 8
" 2x P an ®)

Using the blade geometry we can estimate the
above mentioned derivatives of the blade mean
camber as:
90 _tanp’ 9)
dm R

36 __tanp’ans’

on R (10)
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where "B™ and "0 are the blade angles, see also
) ©) "Combining equations (6),(7) and (8) we
can relate the three blade pressure force
components as:

(11)

L,=-L, tanp’
(12)

According to equations (11) and (12) we may
conclude that the blade pressure force is normal
to the blade surface. Additionally, we can calculate
@ the three blade pressure force components as
soon as the static pressure difference is known
along with the blade geometry. Using now the
same relations for the external "inviscid" flow field
we can derive the corresponding relations
concerning the blade pressure deficit force, as it
appears in our model, i.e.:

(13)

AL,=-AL tanp’
(14)

(15)

L,=L tanp’tand’

AL,=AL tanp’tand’
*
AL, = -é-;t--(Ap;Ap)

where "Ap_." is' the corresponding external flow
pressure difference between the blade surfaces. In
order to estimate the three deficit force
components we have to calculate the change of the
blade loading due to the interaction between the
secondary flow field and the blade shear layers .

In the following figure [1] the spanwise
distributions of the peripheral component of the
external and the real flow blade pressure force are
presented for the midchord of a highly loaded
compressor cascade, Flot case B’, already analyzed
by the authors . As we can easily see from these
figures the real pressure force is less than the
external one only near the endwall, while it is
greater than at the major part of the channel.
Additionally, for this cascade test case the external
pressure force is constant all over the span. Note
that the difference between the real and the
external force is quite important, especially near
the midchord of the blade, a fact that is also
verified by the measurements presented ® by
Flot (1975). Despite the scattering of the
experimental points, the predicted force by the
blade-to-blade shear flow model ‘@ describes
accurately enough the experimental trends. Similar
pressure force profiles are given ®’ by Storer and
Cumpsty (1990) for rotor cases without tip
clearance effects.
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Flgure 1: Spanwise distribution of the
peripheral component of the blade pressure
force, "Lu", "Lu".

Passing now tg the shear (dissipative) part of the
blade force "S", it is necessary to calculate the
complete shear stress tensor "'cij" at the suction
and the pressure side of the blade, eq.(4). In order
to avoid this really painful task we may use
equivalently the entropy-shear force relation given
by ("9 Hawthorne (1964), which however assumes
implicitly that the rothalpy of the flow field is
constant along a streamline. More precisely, for
the deficit shear force components one may write:
T % emn (16)
1+tan2ﬂ +tan2¢ i
_ T 0
1+tan?p +tan’¢ R'00
Subsequently,using the analysis ‘" by Kaldellis
and Ktenidis (1990) the complete peripheral
component of the deficit force "D " is given by the
momentum equation in the peripheral direction as
a function of the secondary vorticity components,
ie:

D,-RG W, -8, W, £)-RGW,E,-5.W, E,)

AS,

AS a7 '

u

+20~B'[sin¢(53-ﬁ’m¢—5-V?m)+cos¢(§¢°ﬁ’n’-5~ﬁ’n)]

onb —= = = ~= = 0lnb - 7 =
B> (o W W -DW_ W W W -
[ am (pe mc u, p m u)+ an (pe n, U,
—= = BT, - -
-pW,W)]+———— +b{(cosdt,, +sind T

(18)
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Consequently, the "AS,. term can also be
predicted as the difference between the complete
peripheral deficit force "D," and the blade
pressure force component "AL "using the
secondary vorticity components and the change of
the blade loading due to the secondary flow field,
ie.

AS, =D, -AL, (19)
The "AS," term expresses the impact of the
secondary losses on the blade loading in the
peripheral direction, and may modify significantly
the energy exchange (added work term)
according to the analysis by > Kaldellis (1994)
via the energy conservation equation.
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Figure 2: Spanwise distribution of the
peripheral components of deficit force.

In the figure [2] the predicted peripheral
components of the pressure, the shear and the
total deficit force spanwise distributions are
presented near the exit of the above mentioned
compressor cascade, non-dimensionalized by the
external force value. As it is expected the
dissipative deficit force component is positive and
its distribution is in accordance with the 3-D loss
distribution given ® for the same station of the
cascade. On the other hand the pressure deficit
force is negative excluding the wall region and
takes much more greater values than the
corresponding shear deficit force. Therefore, the
complete deficit force is dominated by the
pressure deficit force component. It is interesting
also to mention that the peripheral component of
the shear force is computed using equation (19)
and not equation (17). At the same time the other

two deficit shear force components (AS , AS,),
can be predicted using the loss distribution in the
meridional and the normal flow directions.

Several (deficit) force models are presented
during the last thirty years depending the desired
accuracy and the available experimental and
computational results. L.H. Smith (1955) seems to
be the first who underline the importance of the
deficit force terms without however to propose a
complete simulation model. Accordingly, the
formulations used assume either that the force
vector is normal to the blade surface or that the
deficit force components are very small. Mellor
and Wood (1971) relate the complete deficit force
vector (for all the blade) with the components of
the external velocity via an empirical coefficient
"g", i.e.

WMM-DM+(1—G)'WW~DU=O (20)

while the normal (radial) deficit force component
was neglected. Horlock and Perkins (1974)
propose a relatively accurate expression of the
spanwise integral of the peripheral deficit force,
from a simplified form of the integral momentum
equation in the peripheral direction, i.e.:

3,
am

(21)

DUB,, W, 8,10

In this way for first time the peripheral deficit
force component was quantitatively related with
the secondary flow field.

Comte et al., 1981, starting from the expression
given by Mellor and Wood (1971) for the
spanwise integrated deficit force components, they
assumed that the deficit force is normal to the
mean blade camber angle, i.e.:

DM, +tanp’-DU, =0 (22)

neglecting also the radial deficit force component.
The same expression was also used by Leboeuf
and Brochet (1985) for the analysis of a transonic
axial compressor with reasonably good results.
However, this expression was modified by Brochet
and Falchetti (1987) using an empirical coefficient
"¢" (found by numerical tests) in order to
convergent their secondary flow code in multistage
axial compressor flow cases. However, the
arbitrary chosen coefficient "€" limits the
applicability of that method.
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Recapitulating, we can say that the change of the
force exerted between the blades and the fluid can
be split in a pressure and a shear (dissipative)
term. For the pressure deficit force component
the equations (13) (14) and (15) are almost strictly
mathematically valid, and express the change of
the blade loading, mainly due to the interaction
between the secondary flow field and the blade
shear layers. For the shear deficit force
component one has to take into account the loss
distribution through out the machine. Taking into
account that the peripheral momentum equation
and the meridional vorticity transport one are not
independent we can estimate the complete deficit
force component from equation (18) and
subsequently the corresponding dissipative force
component from equation (19). On the other hand
the meridional deficit force component is related
with the peripheral one, using the following
equation:

D,=-D, tan(p’-¢,) (23)

taking also into account "’ the deviation from the
normal to the blade condition. As we can see from
equations (16),(17) and (23) the coefficient "ep,"
expresses the relation between the primary flow
and the secondary flow losses. Thus every
predescribed relation (empirical or numerical)
between the meridional and the peripheral deficit
force components is an implicit constraint
between the primary flow and the secondary flow
losses. Therefore, by taken (12’ the parameter "¢"
equal to 0.7 in order to achieve convergence, one
impose a strong relation between the secondary
loss and the primary flow loss (secondary loss and
profile loss), a fact that may lead to incorrect loss
level due to the predescribed loss relation. Typical
predicted spanwise mean "ep," values are given in
the next figure [3], concerning the deficit force
distribution through the above mentioned highly
loaded compressor cascade.

For this cascade test case the blade angle "B™ is
constant, therefore the spanwise mean deficit
force deviation angle "e," can be easily predicted
using equation (23) and the corresponding values
of the spanwise mean peripheral and meridional
deficit force components. As we can see from
figure [3] the deficit force deviation angle is
negative over the first 60% of the blade and is
increased monotonically from the leading edge to
the trailing edge, taking values between -6° to +3°.
The same behaviour is also shown by the

experimental points. Similar (but smaller than)
values are given also (' for the deficit force
deviation angle concerning the blade force in a
cascade case at the presence of tip clearance.
Finally, keep in mind that the blade mean deficit
force deviation angle is approximately zero, a fact
that validates the assumption used by Mellor and
Wood (1971) in their early work 14,
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Figure 3: Distribution of the spanwise mean
value of the deficit force deviation angle.

Finally, for the normal force component, one have
to use equations (14) and (16). However, during
our calculations the "AS " is found to be very
small (at least for axial compressor cases) while
the "AL " term can be taken to be zero in the
absence of dihedral effects (§’=0.).

3. Theoretical Model-Fluctuation Terms

The second group of non-axisymmetric terms
appearing in the circumferentially averaged
equations, given in Appendix One, after the
application of the CAM are the apparent stress
terms which describe the deviation of the flow
from the axisymmetry. What is more impressive is
that although the deficit force terms almost vanish
near the exit of bladed regions and in the
corresponding free spaces, the apparent stresses
are present even in free spaces, since the flow
field presents a non-axisymmetric character due to
the three-dimensional airfoil wakes and the
existing three-dimensional endwall shear layers. In
the following the corresponding fluctuation terms
"A, Ay, A, A" are presented as they appear in
the governing flow equations.
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Mass Conservation Equation
1,38 Tor! 3 =

A== {-=@Rp W )+ 2 (bR W )]
b om on (24)

+Rk, oW k0" W)

Momentum Equation-Peripheral Direction
A= —l . a[B(B ‘Wln‘Wlu+Wn-pI-W/“+ﬁ’“~pI~W/~+p/-W/~‘W/")]
“ 3 om

__1. . a[B'(;_) 'W/"Wlu*ﬁ’"p I'Wln +W"p/'W/"+ p/'W/u‘W/u)]
b on

—cosb[p ~W’,'W’n+i’,'p"W',+ﬁ’"~p'-W'.*p"W'.'W'n+2w Ro'W']

-sing[p-W/, W + W, p" W +W o W +p"W W _+20Rp W ]

Rk, GW W W, o'W _sW o W +p/ W W)

+k',(a ‘W/u'Wln *ﬁ'u‘P/’Wlu *Wn'PI'WIu +p"W’,"W' 1
(25)

Momentum Equation-Meridional Direction
A= -1 ABp 'Wﬂn*'zﬁ’n'p/'wln* p/’Wﬂn)]
b om

1 ABGW W W o W oW p W 0 W W)
b an

(26)

+sing(p W2, +2W, o W +p/ W2 +20 RpW')

Rk, BB W W " W+ W, o'W +ol W W)
-k, W2, 2W, 0 W+ WP G WP -2W, o'W o/ WE )]
Momentum Equation-Normal Direction (-n)

A 1 OBG W 2W, o W W)
b on

1 ABGW W W o W W o W s W W]
b om

(27)

+cosd(p W2 42W o W' +p' W2 +20 Rp"W')

-R2k, GW W+ W, 0" W W oW +olW W)
ki (W 42W, p Wt/ W FWE QW o'W -0l W" )]

All the above mentioned fluctuation terms (A,
Ay Ap, Ap) are usually neglected during the
calculations presented up to now. A first attempt
to simulate these terms was presented by L.H.
Smith ). The experimental values of the
apparent stresses measured at the exit of a
transonic rotor were used also by Sehra and
Kerrebrock ‘' in order to be included in a non-
axisymmetric version of their streamline-curvature
code. On the other hand Kirschner and Stoff ('
used analytical laws in their effort to include the
blade-to-blade flow variations in a semi-inverse

design method for
cascades.

supersonic compressor

4. Apparent Stresses in Bladed Regions

One of the most common assumptions adopted
during the investigation of the impact of the
apparent stresses is the neglect of the peripheral
variation of the flow density, i.e.:

(28)

p' =0

This approximation has its origin on the similar
hypothesis of Morkovin as far as the turbulence
density fluctuation is concerned, and will be used
here for subsonic shear flows due to the lack of
detailed experimental data for this flow
parameter. In this way the necessary fluctuation
terms are significantly simplified. Consequently,
the fluctuation terms are given according to
equations (24) to (27) as:

A,=0 (29)
1 BRW WY | MBI
Ay m b ™ (30)
~cos¢(p-W’ W' )-Rik, bW W +k oW W]
A =_la(35-u/_/lm) _l_a(B'E'W/,,,'W,,,)
" b am b an (31)
-RI2k, pW W )k (5WE -5 WP )]
NRR L I o,
* b on b om (32)

+cosh(5-W™ )-R12k, 5 W W' sk (BW" -5 W" )]
Using the simplified form of these equations we

save more than 50% of the computational effort,
without any visible change in our results.

As we can easily see from the above equations the
following terms (W 2, W 2, W 2, W _'W/
W_ W', W "W ’) have to be estimated in order
to predict the various "A;" terms. For axial
configurations and bladed regions the available
experimental results were investigated concerning
either compressor rotor bladings '®, 19 (eg
Lakshminarayana et al., 1986, Janssen et al.,1991)
or compressor cascades ®®, @D (e g Flot,1975,
Kaldellis et al.,1990b). Taking into account that
inside bladed regions measurements are not
available very close to the blade surfaces, we
present in figures [4] and [5] the evolution of the
peripheral distribution of the W_’? component at
the inlet, near the mid-chord and near the exit of
a highly loaded compressor cascade at two
different distances from the wall. As we can easily
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see from these figures important meridional
velocity fluctuation values are encountered near
the blade suction side even at the outer part of
the endwall shear layer, due to the blade shear
layer. On the other hand the meridional velocity
fluctuation is negligible at the mid-passage area
and the blade pressure side, excluding the endwall
values. Finally, for simulation purposes, all the
meridional velocity fluctuation profiles can be
described by a second-order polynomial, with
minimum at blade mid-passage. Almost the same
remarks are also valid for the experimental
measurements concerning the peripheral velocity
fluctuation profiles W 2 and the meridional-
peripheral cross product W_’'W ’. Comparing the
meridional and the peripheral Huctuation terms,
we can easily observe that the peripheral
fluctuation terms present a more symmetrical
distribution between the suction and the pressure
side of the blades than the meridional fluctuation
terms.
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Figure 4: Blade-to-blade distribution of the
meridional apparent stresses.

Almost the same results are valid for the
experimental data of Lakshminarayana et al. (®
and Janssen et al. %, concerning the blade-to-
blade distribution of the velocity fluctuation
components inside a low-speed compressor rotor.
Besides, in both cases the meridional velocity
fluctuations are bigger than the corresponding
peripheral velocity ones. Based also on the above
mentioned results we may conclude that the blade-
to-blade variation of the principal apparent
stresses presents a rather similar behaviour either
for stationary or for rotating bladings, excluding
cases with shock - shear flow interaction.
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Figure 5: Blade-to-blade distribution of the
meridional apparent stresses.

For the calculation of the blade-to-blade
variations inside the bladed regions we apply the
blade-to-blade shear flow code presented by
Katramatos and Kaldellis ‘®’, properly modified in
order to include quasi-3-D effects (i.e. "W, " is
constant but not zero at every quasi-3-D
axisymmetric surface). The exact values of W/
along with the corresponding values of W _ are
predicted using the meridional vorticity field
along with the continuitgs equation for every "S5;"
cross-passage section © of the computational
domain. More precisely:

ARW,) oW, 33
Y Wy, (33)
and

R® m p oam " R on (34)
sing
W < 2 e

The circumferentially mean density and

meridional vorticity components are taken from
the secondary flow calculation code ¢V, while the
corresponding meridional vorticity is linearly
distributed in the peripheral direction. Numerical
tests carried out using uniform or cubic
distribution of the meridional vorticity in the
peripheral direction show only limited influence
on the corresponding velocity field, see also %,

The use of the complete numerical analysis (blade-
to-blade fluctuations included) increase by a factor
of 3.5 the necessary computational time in
comparison with the time needed by the
secondary flow method © for a highly loaded:
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compressor cascade, Flot case B’. However, the
necessary CPU time is less than two hours on a
25MHz -386 machine.
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Figure 7: Spanwise distribution of the
apparent stresses, throughout a highlyloaded
compressor cascade.

For comparison purposes in figure [6] the
predicted meridional velocity fluctuation profiles
near the exit of the cascade are compared with the
available experimental data, at various distances
from the endwall. As we can easily conclude from
this figure the calculation results are reasonably
well compared with the experimental
measurements, especially after the 5% of the
passage height. Mention also that the
corresponding normal velocity component is found

to be almost one order of magnitude less than the
meridional one at the main part of the channel,
while the peripheral velocity fluctuation profiles
present quite similar behaviour with the
meridional ones.
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Figure 8: Spanwise distribution of the
apparent stresses, throughout a highly loaded
compressor cascade.

Finally, since our final target is to evaluate the
passage averaged fluctuation terms we present in
figures [7] and [8] the experimental and the
calculated spanwise distributions of the W_’2 and
W, W’ fluctuation terms for the inlet, the mid-
chord and near the exit of the cascade. Since the
magnitude of the circumferential mean fluctuation
terms is comparable with the experimental noise
(2%) for the first half of the blade, the calculation
results only at the last station are presented. As
we can easily conclude, the experimental trends
are rather well reproduced by the proposed
calculation procedure, although the position and
the exact value of the maximum of the profiles of
the apparent stresses are slightly underpredicted.

5. Apparent Stresses in Unbladed Regions

The main body of the experimental work
presented up to now for the blade-to-blade
variation of the flow velocity components was
carried out for unbladed regions downstream of
the trailing edge of the preceding blading. Among
the most interesting results presented are the
measurements given by Sehra and Kerrebrock (14
concerning the apparent stresses spanwise
distribution 0.1 and 1.0 chord downstream of a
transonic rotor. Detailed experimental

investigations was carried out also by Jadayel and

2518



Railly (1989) for axial compressor rotors ‘®? and
by Leylek and Wisler, 1991 with emphasis on the
"radial mixing" in axial flow compressors (%2

POINT B POINT A

- = =i
=)

; =]

Figure 9: Schematic representation of the
experimental high velocity separator.

In the present analysis besides the available
expenmental data for the above mentioned
transonic rotor ‘® we take into account detailed
measurements carried out downstream of the "Flot
case B™ highly loaded compressor cascade @, (20
and the corresponding experimental results
concerning a high velocity separator, see also
Cerdan and Talleu ¥ and Ktenidis and
Kaldellis, %, where measurements are taken 1/3
and 5 chords downstream of the biparabolic
distributing blades, figure [9]. The inlet velocity is
constant and equal to 50m/sec, while the
distributing blades are followed by circular type
straightening blades.

OEORO EXPERIMENT at n/h 0.0075

1509 ooono EXPERIMENT ot n/h = 0.4450
s EXPERIMENT ot/ = 0.8150

_ CALCULATION at n/h = 0.445

it

\\ \
Y 0% A‘"v:/g*‘_
0.0 1. O
NOND!MENSIONAL PERlPHERAL DiSTANCE
Figure 10: Peripheral distribution of the
meridional apparent stresses inside the
wake.

0 A = fy = A~ ﬁ—& A

For the calculation of the peripheral distribution
of the velocity fluctuation components we use the
theoretical model proposed for bladed regions,
with the additional assumption that the
meridional flow angle "B" inside the free spaces
keeps the corresponding value at the blading

trailing edge. This assumption is utilized here
instead of developing a complete 3-D asymmetric
wake model, which is now under progress. An
additional modification is included in the
pitchwise distribution of the meridional vorticity,
using exponentially decreasing functions, in order
to modify the linear peripheral variation of the
meridional vorticity utilized inside bladed regions
to a uniformly distributed one, one chord
downstream of the blading trailing edge.

1207 0eeoe EXPERIMENT ot n/h
0onoo EXPERIMENT at n/h
Ottty EXPERIMENT at n/h

Q0.0075
0.4450
0.8150

I

___ CALCULATION at n/h = 0.445

0.0 ) ] [¢X 6 ‘ 1 O
NONDIMENSIONAL PERIPHERAL DISTANGE

Figure 11: Peripheral distribution of the
peripheral apparent stresses inside the wake.
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Figure 12: Distribution of the meridional
apparent stresses, H.V.S.

The calculation results describe relatively well the
experimental distributions of the W_’2, W ’2 and
W, W in the penpheral direction (for one blade
passage at various distances from the wall, see for
example figures [10] to [11], for the compressor
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cascade test case. According to the results
presented in these two figures the flow quantities
are almost uniformly distributed at the central
part of the flow field, while even inside the
endwall shear layer region the apparent stresses
are quite small. Another interesting flow aspect is
that the maximum values of the W 2 component
almost coincide with the minimum values of W’
component and vice-versa.

COCCO EXPER. at 1/3 of CHORD DOWNSTREAM OF T.E.
OBEEE EXPER. at ORDS  DOWNSTREAM OF T.E.
. CALCULL. 0t 1 / 3 of CHORD DOWNSTREAM OF T.E.
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Figure 13: Distribution of the peripheral
apparent stresses, H.V.S.

350

i COOCO EXPER. at 1/3 of CHORD DOWNSTREAM OF T.E.
OSOEE EXPER. ot 5 CHORDS  DOWNSTREAM OF T.E.
— CALCUL. at 1/3 of CHORD DOWNSTREAM OF T.E.
300+

SUCTION SIDE

oS
0.0 0.2 04 0.6 1 O
NONDIMENSIONAL PERIPHERAL DISTANCE

Figure 14: Distribution of the normal
apparent stresses, H.V.S.

The same remark is also valid for the maximum
and minimum values of the apparent stresses
distribution at the mid-span of the high velocity
separator one third of axial chord downstream of
the blading trailing edge, see figures [12] and [13].
The maximum value of the corresponding radial
velocity component, figure [14], is much smaller
(1:6) than the meridional one. Five blade chords

3001
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o, 250
o
>
\
A 200
= a
Z
o]
§150-§
= a
<100+ 0
o
o
S
O

. 0.2 0.4 05 08 10
NONDIMENSIONAL PERIPHERAL DISTANCE

Figure 15: Distribution of meridional-
normal apparent stresses, H.V.S.

downstream of the blade trailing edge all the
apparent stresses are almost vanished, except the
meridional W_ 2, and meridional-radial cross
product W, _'W_ peripheral distributions, see
figures [12] to [15]. Again the calculation results
describe the experimental points with enough
accuracy for engineering purposes. The existence
of two maximum in the peripheral distribution of
the normal apparent stresses is in accordance with
the presence of remarkable asymmetric wakes.

6. Conclusions

A non-axisymmetric 3-D viscous flow analysis was
presented, in order to describe the most important
terms produced by the circumferential integration
of the flow quantities. Detailed experimental data
for stationary bladings were analyzed with
emphasis on the flow non-uniformities in the
peripheral direction. Besides, the investigated
experimental flow pattern was found quite similar
with the available measurements from other
experiments existing in the literature, for rotating
and stationary bladings.

Next, the non-axisymmetric flow terms are
gathered in two groups, the deficit force terms
and the apparent stress ones. For both categories
a consistent theoretical model was presented and
accordingly applied, and the calculation results
describe quite realistically the experimental data,
for bladed and unbladed regions.

Additionally, the relative importance of all these
terms was discussed, without however to have the
ability to decide with certainness about the
importance of the six apparent stress components
encountered. Therefore, all these terms will be
taken into account during the application of the

2520



complete method, non-axisymmetric terms
included, in future work. On the other hand, the
meridional and the peripheral deficit force
components were found to take important values
especially for the first half of the blade. Both
pressure and stress blade force components are
included in our study. Finally, special attention
was paid since the relations existing between the
three deficit force components set at the same
time implicit constraints between the loss
distribution in the three directions.
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Appendix One

The governing equations used in the present work
after the use of the CAM are written in an
orthogonal curvilinear axisymmetric coordinate
system as :

Mass Conservation Equation
%~[§n—(b~k‘5~v_vm)+éa;(bﬂ-5i’.)]m{kni~ﬁ'_+kn~§'ﬁ',)+A,=o (1.1)

Momentum Eguatior_l-lferipheral Direction
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1.6(3-‘?_) +l.6(B~?u)
b om b on
+R{k, T, +k, T, ) 4T, cO8 +T, sind
Momentum Equation-Meridional Direction
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The energy conservation and the transport of
vorticity equation in the meridional direction are
not presented here, since they used in the form
already given ¢!’ by Kaldellis et al.,1990.
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