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Abstract

In the present paper a theorctical mechanical
elastoplastic model have been developed, able to
describe composite shells damage behaviour under
multiaxial quasi-static loads, by introducing damage
and elastoplastic parameters into layer constitutive
equations. Particularly, a damage tensor has been
introduced, able to simulate damage into the elastic
ficld and to describe the new stress distribution into
layers due to damage. Through this, it results possible
to determine the active stresses upon the plastic
deformation, and to express it as function of damage
amount. The resulting set of equations requircs
numerical solution, since generally, the mechanical
characteristics of the layers result function of their
position into laminate shell, and depending of damage
through the damaged stress tensor. The numerical
results have been compared with experimental data,
obtaincd for Glass-Epoxy composite shells under
multiaxial loads.

Introduction

The damage behaviour and residual mechanical
characteristics of composite materials is still an open
issue. At today, the damage behaviour under simple
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load configurations has already been studied, but very
few studies have been carried out about composite
materials behaviour under multiaxial loads, as well as
about their long time behaviour. (1.2) This paper is
devoted to obtain a realistic behaviour for composite
shells, with random stratification sequence, under
multiaxial quasi-static loading. For this purpose, a
non-lincar damage-clastoplastic modcl must be
applied for layers mechanical characterisation. (3.49)

In carly modelling, thc laminatc has been
considered as constituted of an orthotropic material
and modelled directly. This model does not allow to
take into account coupling effects that can occur
between strain and bending, and is able to
characterise only symmetrical laminate under traction
and/or internal pressure loads. (3)

In the present paper, an alternative way is
presented in order to model the layer damage-
elastoplastic behaviour, and, subsequently, integrate
this behaviour it into thc laminate thickness through
the extension of classical laminate theory. () In this
way, it is possible to take into account multiaxial
loading, such as traction, internal pressure with or
without boundary effects, torsion and their
combinations. Moreover, the stratification sequence is
not any more a critical parameter since layers
behaviour have been modelled directly.
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Theoretical modelling

The total laminate deformation ¢, can be
expressed through two internal variables, ¢, ¢ 02
respectively elastic and plastic deformations, as
following:

£, =g, +E, (1)

Into the following analysis, micro-crack damagc in
the matrix, or debonding phenomena at the interface
between fibre-matrix can be modelled. Delamination
or fibre failure has not been considered, since these
phenomena should be treated as macroscopic damage,
related rather to the fracture mechanics than to a

damage modelling.
Laycr damage and clastic deformation

In order to introduce a damage parameter into layvers
constitutive equations, the effective stress tensor
concept has been applied:

§=M(Q)g )

with M(Q) damage operator, and G effective stress

tensor into the damaged layer. (7)
The concept of cquivalence in strains between virgin
and damage materials is used, such as:

€=5:8 and ¢=S:o 3)

which implies that € =g, with € damaged material

strain, S, S respectively virgin and damaged
material compliance matrixes.

The damage operator can be defined through the
equation:

M(D)=(1-p)” @

where D represents the damage tensor. (1)
By using eq.(2),(3),(4), the damaged stiffness matrix

of cach layer C, can be expressed as:

~ -1
c=m(p) c=(1-D)c )
Micro-cracks orientation in thc layers has been
considered parallel to the fibres, Fig.1, as the most
representative damage direction.

By noticing that it these conditions, damage respects

the orthotropic axis of the layer, it is possible to
obtain for D as follows:

g
Microcrack

o Fibre
2
O
BP0 80%
@)
1
FIGURE 1 - Micro-cracks orientation.
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with H.,,H,,H, obtained through a method

based upon the incrcase of elastic cnergy into the
material, due to micro-cracks:

H =%(S n(s »+H zz)) "

(7a)

*F(SZZ+H22JW+ 28, +S+He |
sy ®, |

nd 12
Ho="(Ss(Su+Hu)) (Tb)
Hy-—dg

66 11
242 (Tc)

|-S +H,, " 2812+S(,6+H66T/2
* 22
| B T

These last parameters result function of micro-cracks
density d, given through the following equation:
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d=x— @®)

with b ;,a ;, respectively thickness and length of the
Jth micro-crack, ¥ volume of the laver, N number of
micro-cracks in the layer. (1,5.6)

Through the above described equations it is possible

to obtain the damage stiffness matrix C as function

of micro-crack density only.

However, since experimental measurement of d is
rather a difficult operation, it should be wiser to use
an other parameter to express damage stiffness
matrix.

Indeed, by using as damage representative internal
variable the variation of layer transversal Young

modulus D ,,, defined as *
AE ,,
_ 9
»="E, 9
it is then possible, and easier, to evaluate the damage

stiffness matrix C and its evolution, as function of

D ,,. An approximation of C can be written as:

€=¢(p,=0+D,C +DLC, (10)

with C " C . obtained numerically by solving the set

of eq.(5),(6),(7),(9).
Through ¢q.(2),(3),(8), the effective stress tensor can
be written as function of layer compliance matrix:

-1

az(y D,,C S+ Dizgzzg) o

an

In order to obtain the kinetic of D ,,, Helmholtz free
energy ¥ is given through the following equation:

1

¥=2C(D e, e, +¥° (12)

with W* function of some other internal variablcs,
like hardening variables etc.

A driving variable Y ,, to the damage variable D ,,
can be defined:

* Notice that damage intemal variable D ,, , is not a

component of damage tensor D.

~9D (13)

It is also necessary to introduce one more variable,
R ;, representing an isotropic hardening, as

oY
8D »
with D 5, an accumulate damage variable, which has

R,= (14)

the same value as D ,,, but no the same meaning.
An experimental damage criterion has been proposed,

through a damage representative function f |, as:
fD'_‘(-Yzz)‘RD" (15)

with Y yield point of damage, and {a)=a if 2> 0,
or{a)=0ifa<0.
At this point, knowing that damage grows if f;, =0

Y, <0

and 61Ldyn > 0, the rate of damage could be
2

oY

obtained by using the rule of normality to the
criterion:

. Of,
Dzz =—Adpmo— aY (16a)
3 . Of,
Dzz =-ADRp— 7R, (16b)

Finally, using an experimental identification, relating
R D to E 22, a8

R,=apD an

with o ,, P,, experimental constants, it is possible to

obtain K p through the consistency equation.

In this way, the evolution of G is completely
defined, and the elastic damage deformation can be
expressed as:

g, =S (18)

-~e

(17}
al
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Layer plastic deformation

The effective stress tensor &, imposes its non-
linearity upon the elastic strain g , through eq. (18).

Since g_ represents reversible phenomena, this

parameter is null after a load/unload cycle. Through
experimental investigation, permanent deformations
have becn detected in test specimens, under repeated
progressively increasing applied load; it results

necessary to introduce a plastic deformation term g o’

which takes into account the non-reversiblc
phenomena that occur during loading cycles.

With the hypothesis that micro-cracks are
parallel to the fibre direction, some components of

effective stress tensor &, are not active upon plastic
strain. Into the following, the method proposed by
A.J. Spencer (®) for the determination of the active
stress components upon plastic deformation will be
applied, in order to obtain a plastic criterion and the
plastic strain component.

Supposing that an elastic behaviour is
achieved into fibres direction, and that plastic strain is
due mainly to friction between micro-cracks surfaces,
it is possiblc to suppose that only shear stress
components should be active upon plastic strain.
Consequently, a plastic criterion can be proposed into
the following form:

B,8.+P,3. <0 (19)

with 3, B , material constants.

This criterion, eq.(19), can be written into a matrix
form, as:

172
f,(8)=[a:m:3] -s: (20)

with M anisotropic matrix of the material, given as:

-~
=)

—
7]
&~ o

@n

Fo 3K+

<
I
o O [e] OO O

S O o O O O

o O O O O O
o

o O (o] S O O
-0 o O OO

(=]

where S¢S, are respectively shear elastic yield

points. (7:8)

In order to fully model the hysteresis loop of
Glass-Epoxy shells, appears necessary the
introduction of kinematic hardening variables, which
modify the criterion as follows:

f,(8) =5- X-S; (22)

with 5-X=[(3-X):M:(8-X)] ", X sum of
associatc variables to kinematic hardening, as:

.X_=X.1+.>_(2 23)

where X | represents a non-lincar kinetic hardening as
described by the Armstrong-Frederick equations,

while X, is linear. These last two parameters are

given through:
X]zalép"Yx..X.lép (24a)
_'Xzzazép (24b)

with §,,8,,v,, material parameters, € , cumulative
plastic deformation velocity.

Considering that plastic strain g ,» occurs if f,=0

f [ 3 »
and é—p;dg-> 0,andthatg ande,
oo~ =P

are given through:

.. oof
g,=A, agp (25)
e, (o~ X) =(o-X)e, (26)

with the previously described kinetics, and the
consistency equations applied to the plastic criterion

f . it is possible to obtain k P
The plastic strain component is now completely
defined. Into plastic behaviour, the damage is taken
into account by replacing ¢ with G.

Now the model is completely written at the

mesoscopic scale. It rests the integration of laver
behaviour into laminate thickness.
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Numerical implementation

Through Classical Laminate Theory (applied into
elasticity field), it is possible to obtain the well known
equations for laminate shells:

[NT [A BJe,]
MJ=[B Flp |
with N.M, respectively applicd forces and moments,

@7

€,, p mid plane deformation and bending, and:

A=3Q, (z,-2,,) (282)
1 o —

B=530Q, (i -2, (28b)
| -

F=320Q,(zi -2 (28¢)

where 7 is the number of layers, Q . layer stiffness

matrix written into laminate axis, z co-ordinate
through laminate thickness.
The integration of ¢q.(28) can be obtained

analytically, since Q , is not function of g or z.

In the elastoplastic field, lavers behaviour can be
described through the following incremental equation:

. — -1
dg:(§e+-§—P) d_S__
By integration of eq.(29), through the laminate

thickness it is possible to obtain an equation similar
to eq.(27), written into damage elastoplastic field, as:

(29)

[an] [, B, [de,]
F

LdMJ‘LEep epJLdPJ 30)
with

K,=% z (Se{ép)_ldz Gla)
~ n 2k (= = \-!
Bw=,§,,f(_§e+§_p) zdz (1b)
~ n %k (= -1

Fo=2 f(§e+sp) z?dz Glc)

The analytical integration of these last equations is

not possible, since stiffness matrix is function of g,
either through damage behaviour or hardening. In the

casc of a flexion applied load, or even in the case of a
non-symmetrical stratification sequence, stress in the
lavers results function of the layer position within the
laminate shell. (6)

Resolution principle

Into damage and plasticity behaviour, non-reversible
phenomena occur, resulting function of the path.
Consequently, it is necessary to fix a starting point
and, step by step, following the loading cycle, solve
numerically the non-linear set of equations.

In the case that an external load is applied to
the composite shell, the stress field in each layer is
not dircctly accessible. It is nccessary to start the
resolution cycle with an evaluation of mid plane
strain and bending. Then, it is possible to determine
strain in each layer, and through it, layers stress field,
and finally, calculate the external load by layers
stress field integration through laminate thickness. At
this point, a comparison bctween applicd and
calculate external loads, allows to proceed with a new
evaluation of mid plane strain and bending. This
mteractive cvcle must be repeated until calculated
loads are close to external applied loads unless of a
fixed tolerance.

Into the following Fig.2, it is possible to observe a
flowchart of the resolution method.

EXTERNAL APPLIED LOADS

v
E EVALUATION OF MID PL%\NE STRAIN & BENMNGA}

STRAIN CALCULATION IN THE LAYERS
v

LAYER DAMAGE-ELASTOPLASTIC BEHAVIOUR
v

STRESS CALCULATION IN THE LAYERS

EVALUATION OF APPLIED LOADS THROUGH STRESS
INTEGRATION THROUGH LAMINATE THICKNESS

ARE EVALUATED AND APPLIED
LOADS THE SAME ?

YES

END

FIGURE 2 - Flowchart of the resolution method.
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Finally, the resolution cycle can be sub-divided in
three main phases:

- Progressive and optimal evaluation of mid plain
strain and bending;

- Resolution of layers damage elastoplastic model
imposing the deformations;

- Integration of layers stress ficld into laminate
thickness.

Mid plain strain and bending evaluation. Newton
Raphson method has been applied to solve eq.(30).
The first iteration starts with an elastic evaluation of
mid plane strain and bending. The test of convergence
results as follows:

(dN ]|
LM

v
d M applied

If eq.(32) is satisfied, the evaluated parameters are

updated ( XP'=XP?+dX, with X a vector

containing the parameters evaluated step by step),
and the method is repeated for the next step.

< Tolerance (32)

Resolution of layers behaviour model. The layers
damage elastoplastic model, as described in the first

part of the present paper, can be represented through
a system of differential equations written in the
following form:

FY=XorY=F'X (33)
with X vector containing problem parameters, Y
vector containing the increments of these parameters,
F representative matrix of the set of equations.

Such a system, can be solved through Runge-Kutta
method.

Integration of lavers stress ficld into laminate
thickness. In general loading conditions and for a

random stratification sequence, the stress tensor is not
constant through laminate thickness. In such
conditions, into Newton-Raphson method, also
Jacobean matrix elements are not constant.

The Gauss-Legendre method has been applied in this
case. It is necessary to consider a certain number m of
points into the layers (sub-dividing them in sub-
layers), wisely and not equally distributed. In these
points, both, function to be integrated and its values,
are known.

Finally, it is possible to obtain the following set of

equations:
A -ple (~ 3 )”l (342)
A°p=k=1_2- Wi -§-e+-_s-p @

I h rm ~ — -1 —l
B,=2— 34b
Bo-fg fwils +8,) jm] o0
= ah m R 2‘]

=& 34
F“"—g 2[L'=lel(§e+§p)kylzk,l-l (340)

g 1urs (34d)
aN=3HEw dgy |

n hk m
dM:E}—Z—[l:le,dcklzkl] (G4e)

with 4 layer thickness, & I, respectively layers and
sub-layers, » number of layers, m number of sub-

layers, w, Gauss-Legendre integration factors, z co-

ordinate of layers and sub-layers through laminate
thickness.

Numerical and experimental results

The theoretical damage elastoplastic model has been
validated through comparison with experimental data.
For this purpose, cylindrical Glass-Epoxy specimens
have been used, length 300mm, diameter 60mm,
thickness 2mm, achieved by winding 6 layers with a
winding angle +55°. Repeated, progressively
increasing loads have been applied in quasi-static
conditions, uniaxially and muitiaxially, respectively
through traction or pure internal pressure loads,
Fig.5,6, and internal pressure load with boundary
effects, Fig.7.

In Fig.3, it is possible to observe a specimen

under traction loads, with some details about
anchoring system. It is also possible to observe that
circumferential and axial strains have been achieved
through extensometers wisely positioned on the
central zone of the specimen. Particularly, for axial
strain measurement, two extensometers have been
used, in order to monitor possible flexional effects.
In Fig 4, it is visible the special form of the anchoring
system, for multiaxial internal pressure tests, with the
internal rubber vessel, specially constructed for this
purpose.
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FIGURE 3 - Mcasurement and anchoring systems for
experimental tests.

Pntemal pressure

&5\ Rubber vessel
N

FIGURE 4 - Anchoring system, and special rubber
vessel for internal pressure tests.

Into the following Fig.5,6,7, it is possible to observe
the obtained theoretical/numerical results and their
comparison with experimental data.

60% 5, (MPa)

\‘ A
\ y

€gp (70) €47 (%)
0302 01 0 01 02 03 04 05 06
604 6., (MPa)
(b)
0 N\l 7/ 0
ige (/0) : W : ' ' . 'Ezz (:/:)
03 0201 0 01 02 03 04 05 06

FIGURE 5 - Cylindrical composite shells under
repeated progressively increasing traction loads,
(a) experimental, (b) numerical.

In this first test under repeated progressively
increasing traction loads, it is possiblc to observe that
the numerical results are in good accordance with
experimental data. Form and shape of both numerical
and experimental curves are similar, specially for the
first loading cycles, having only light strain over
estimation during the last loading cycle.

30040, (MPa)
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FIGURE 6 - Cylindrical composite shells under
repeated progressively increasing pure internal
pressure loads, (a) experimental, (b) numerical.

In the casc of pure internal pressure, Fig.6, it is
possible to observe that the numerical approach
simulates correctly both circumferential and axial
strains for all loading cycles, having quite the same
residual strain components in both experimental
analysis and numerical calculation.
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FIGURE 7 - Cylindrical composite shells under
repeated progressively increasing internal pressure
loads with boundary effects, (a) experimental,
(b) numerical.

In the case of internal pressurc with boundary effects,
Fig.7, the present formulation of the damage and
plasticity criteria are able to simulate correctly the
phenomena, giving to the numerical curves a
particular physiognomy for both circumferential and
axial strains. By careful investigation, it is possible to
noticc that the damage variable has not the desired
evolution, resulting a little smaller. This phenomenon
occurs since in the present case the leading parameter
is plastic deformation , and consequently, a very
small amount of elastic deformation (directly
connected to damage parameters) is not able to create
the correct quantity of damage. However, it is
possible to observe that circumferential strain is
represented correctly, while an over estimation occurs
during the evaluation of axial stain.

In internal pressure loading with boundary
effects (that corresponds to a biaxial load of internal

pressure and traction) &2, is negative during the first
loading cycles. In order to take into account this

phenomenon, it is necessary to introduce &, stress
component into anisotropy matrix M, defined into

-~

o
eq.(21), and to optimise the ratio —;f—. In these

o,
conditions shear stress component should be the
leading variable during the first loading cvcles,

conducing to £2, < 0. Into the next loading cycles,
the presence of damage should be able to exploit the

influence of &, stress component upon & , resulting
P
7. >0.
Conclusions

Nowadays, composite material behaviour is still the
object of scveral studies. A very large amount of
composite materials , as combination of two distinct
solid phases, renders impossible the elaboration of an
universal model. For this reason, researchers
generally focus their attention upon one type of
composite material. In the present paper Glass-Epoxy
compositc shells damage behaviour has been
analyvsed.

The presented modelling has been obtained
through a theorctical\numerical approach, and the
evaluation of particular characteristics of the selected
material has been carried out through experimental
procedures. The resulting non-linear set of equations
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of the theorctical model has been implemented into a
numerical code, using numerical approaches, like
Newton-Raphson, Runge-Kutta, and Gauss-Legendre
methods.

The model has been validated through
comparison of the results with experimental data, in
quasi static conditions and under multiaxial loads,
such as traction, internal pressure with or without
boundary effects and their combinations. It is
necessary to notice that the generality of the
theoretical approach, achieved through the layer
damage-clastoplastic modelling, allows to handle also
torsion and flexion loads.

Taking into account the present encouraging
results, to complete the model should be necessary to
introduce viscoelastic and viscplastic behaviour in
order to handle also dynamic and creep loads.

Nomenclature

micro-crack length.
micro-crack thickness.
micro-crack density.

laminate mid plain deformation.

damage criterion function.

o oW
<.

-
@,

criterion of plasticity function.

layer thickness.

number of sub-layers.

number of laminate layers.
Gauss-Legendre integration factors

Ng B3FE_ ™

co-ordinate through laminate
thickness.
classical laminate theory matrix.

classical laminate theory matrix.

layer stiffness matrix.

o i@

[@]

—
-

@}

[ 8]

numerical evaluation of layers stiffness
matrix.

damage tensor.

variation of layer transversal Young
modulus.
cumulative damage variable.

o I9

3

4
[ ¥

layer transversal Young modulus.

classical laminate theory matrix.

Tim m ol

energetic method parameters.
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identity tensor.

applied moments.
plasticity anisotropic matrix..

damage operator.

applied forces.

damage experimental constant.

layer stiffness matrix into laminate
axis.

associate variable to damage isotropic
hardening.

layer compliance matrix.

shear clastic vield points.

associate variable to damage.

yield point of damage.

sum of associate variables to
kinematic hardening in plasticity.

non-linear kinematic hardening.

linear kinematic hardening.

layer volume.
damage experimental constant.

plasticity material constants.
plasticity material parameter.
plasticity material parameters.

strain.

Lagrange factor in damage.

Lagrange factor in plasticity.

laminate mid plain bending.

stress tensor.

Helmholtz free energy.

internal variables function free energy.

indicates elastic components.



)

)

3

S

&)

(6)

indicates elastoplastic components.
indicates plastic components.
indicates total components.
indicates the presence of damage.
indicates a vector.

indicates tensor.

(a)=a ifa>0,or(a)=0ifa<0.
indicates an increment or velocity. |

indicates a cumulative variable or
parameters written into laminate axis.
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