ICAS-96-5.8.3

MODEL-INDEPENDENT FUZZY VIBRATION SUPPRESSION OF FLEXIBLE
STRUCTURES USING NON-COLLOCATED TRANSDUCERS

Kelly Cohen, Tanchum Weller, Joseph Ben-Asher
Faculty of Aerospace Engineering,
Technion, I.I.T., Haifa 32000,Israel

Abstract

The present investigation deals with an AFCA
(Adaptive Fuzzy Control Algorithm) for an Euler-
Bernoulli approximation of a cantilever beam-like
orthogonal tetrahedral space truss, having a span of 150
m. Transient disturbances, modeled as a unit impulse,
excite all the modes of the beam. The resulting transverse
displacement and its corresponding rate at the free end are
observed by sensors placed there, and active control of the
beam is provided by a force actuator. A design
methodology for the closed-loop control algorithm that is
independent of an exact mathematical model of plant
dynamics and based on fuzzy logic is presented. This
approach results in relatively quick settling times, low
overshoots and dying out of vibration within a few
seconds. When the control force is turned off after a short
while, almost all the vibrational energy is dissipated as the
beam returns to its undisturbed state throughout its length.
The sensitivity of the AFCA to nen-collocation of
actuator/sensor is examined. Results show that even
though a marginal loss in settling time is obtained at this
off-design point, the closed-loop performance, for the
non-collocation is reasonably good.

Background

Future aerospace applications include concepts
such as large space stations, high resolution radar and
communication antennas, astronomical observatories and
solar power stations. Qualifying as LFS (Large Flexible
Structures) these facilities may generally comprise of
repetitive latticed trusses, span large areas with a few
intermediate supports, are light in weight and extremely
flexible, and consequently are characterized by a large
number of high density low frequency structural modes.

The LFS may be characterized by low inertia,
light inherent damping, undamped rigid modes, low
natural frequencies, high modal density, some joint non-
linearity, and includes sensors, actuators and computers,
on-board power and a laser pointing system. The dynamic
characteristics of the above are poorly known and
therefore make the analytical modeling of the structural
dynamic problem of LFS cumbersome with substantial
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uncertainties. Hence, it would be advantageous to develop
control design strategies that are independent of an exact
analytical model (e.g. state-space model).

LFS may need to meet target tracking, slewing,
stringent line-of-sight and jitter control, pointing
accuracies, and microgravity acceleration requirements.
However, when disturbed, the structure is likely to remain
excited for some time because of its high structural modal
density at low frequencies and possibly small damping.
Therefore, it is vital to introduce means for either passive
energy dissipation, or active control, or their combination
to restrain the response of a given structure within an "in-
mission displacement-time allowables envelope" by using
vibration control methods.

Introduction

Robustness of a LFS control in the presence of
uncertainties has been an area of intense research. One
such method, based on the positivity design assures that
the closed loop system will be characterized by stability as
well as an energy dissipation related to the input/output

behavior. Hyland(!) describes this energy dissipative law
that combines collocated actuator and sensor pairs as
electromagnetically emulating passive structural damping.

Meyer, Burke and Hubbard® use velocity
feedback with positive-definite feedback gain and
collocated piezoelectric transducers in- a - control
methodology integrating sliding mode control, distributed
parameter systems theory, and fuzzy logic to develop
vibration damping of a cantilever beam. A frequency-
shaped LQR adaptive control scheme, based on a priori
knowledge of the intervals of system- parameter variations
and fuzzy-logic, is applied to vibration suppression of a

cantilever beam using collocated piezoceramic
transducers®) .
Hollkamp and Starchville® present a

piezoelectric actuator that emulates an inherently stable
dynamic vibration absorber. This self-tuning piezoelectric
absorber is made adaptive by tuning the electric resonance
(i.e. by adjusting the shunt inductance and resistance).
Within the past decade, experiments conducted on flexible
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structures - validated the shunted piezoelectric models
which predicted the optimal tuning parameters. In
addition, real time tuning of the resistance and inductance
of the shunted network has also been experimented on.

Cohen, Weller and Ben-Asher® introduce an
approach, based on fuzzy logic control, which provides
continuous tuning of the damping parameter. of the above
described emulated absorber. The main advantages of
using a fuzzy approach are the relative ease and simplicity
of implementation and the robustness characteristics. The
parameters of the above absorber may be adapted to
provide fairly fast control for large deviations, of the
measured state of the plant from the desired state, and a
minor amount of control for small deviations. Thus, non-
linear control actions, corresponding to a lightly damped
absorber with a large mass ratio, which fully utilize the
range of actuator displacements, send the plant state
hurtling towards the desired state. On the other hand, in
the vicinity of this desired state, the absorber is heavily
damped, having a small mass ratio. Heuristic rules, based
on basic "common sense" engineering insight, coupled
with fuzzy reasoning provide crisp values for lightly,
large, heavily, and small.

The input to the control law is based on sensor
readings of  displacement/distortion, and their
corresponding rates. The control law, based on emulated
dynamic vibration absorbers, requires that the positioning
of the sensors be collocated with that of the actuator.
However, in many real-life situations involving the
control of LFS, because of physical placement and
hardware limitations, 'absolute collocation is often

impossible(® . Hence, the performance sensitivity of the
AFCA to non-collocation of actuator/sensor needs to be
examined. : )

Objective and Work Statement

The present research, based on MATLAB®
(Math Works(")) simulations, examines the application of

an AFCA (Cohen, Weller, Levitas and Abramovich(g)).

AFCA actively controls structural vibrations of a

cantilever beam-like orthogonal tetrahedral space truss

represented by an Euler-Bernoulli continuum beam

approximation. The above studies, will observe the

following behavior:

e Closed-loop response including rise time, overshoot,
settling time and steady-state error.

e The sensitivity of the AFCA to the positioning of the
sensor with respect to the actuator i.e. non-
collocation. ’

Problem Description

The LFS studied is ‘typical'of large space

structures®). The discrete, transducers applied to actively
control the above structure emulate the behavior of a
dynamic vibration absorber. Figure 1 describes the 2-D
beam-like lattice with a virtual absorber attached. The first
five modes of the structure are considered in the
MATLARB simulation. The respective natural frequencies,
given in [rad/sec] and corresponding to the beam model,

are displayed in Table 1 (Cohen and Weller(!9)):

Mode First | Second | Third | Fourth | Fifth
Frequency | 1.59 1998 2795 | 54.77 | 90.53
Table 1- Natural frequencies of the structure in Figure 1
[rad/sec]

The structure, subjected to an initial condition
unit impulse, provides similar transient disturbance to
each of the first five bending modes, thereby exciting all
of them. The closed-loop controller is applied at the lapse
of a second, at which time the beam is in the vicinity of
the maximum open-loop amplitude (see Figure 2). The
control law is fed with sensor readings of displacement
and velocity, placed at a distance | (m=l) from the fixed
end. An additional sensor, positioned midway between the
fixed and the free ends, at 1/2, observes the transverse
displacement-time history. Nominally, the actuator and
the sensor are collocated. The- closed-loop performance
will be examined for a case where the sensor is placed at a
distance of at least 10% of beam length from the actuator.

Proposed Approach

The fuzzy adaptation strategy developed selects
the most appropriate damping factor for the virtual
absorber. The mass ratio of this absorber is a function of

the damping factor as described by Cohen et. al(l),
whereby a Jightly damped absorber corresponds to a large
mass ratio and vice-versa. Based on this mass ratio, the
absorber is then tuned to the fundamental frequency of the
beam, obtained from the open-loop transverse
displacement sensor output (see Figure 2). After each
sensor reading, the damping and the mass ratios of the
absorber adapt themselves using a fuzzy decision-making
process. The above adaptation leads to the calculation of
the actuation force by solving the 2nd order differential
equations concerning the equations of motion of the
emulated absorber. This approach, not only assures
inherent stability associated with passive absorbers, but
also circumvents the phenomenon of modal spillover.

1908




Fuzzy Adaptation Strate

Fuzzy logic, on which the fuzzy control is based,
is a convenient way to map an input space into an output
space. The major mechanisms of FLC (Fuzzy Logic
Control) are: a set of if-then statements called linguistic
control rules; and a fuzzy inference system that interprets
the values in the input vector and, based on the linguistic
rules, assigns values to the output vector. The experience
of the past decade, with the successful marketing of a

wide variety of products based on the FLC(2) | has shown

that for certain applications FLC provides superior results
to those obtained by other conventional means.

Fuzzy Membership Functions

The first step in building the fuzzy part of the
controller involves the Fuzzification of the input/output
parameters. Here, the transverse displacement y(m,t) and
the transverse velocity y(m,t) of the beam are normalized
to yield the dimensionless variables yy and ¥y,
respectively, using the following relations:

yN = Ny . Y(m7t) >
¥ =Ny -¥(m. O

where Ny and N9 function as tuning parameters for the

arbitrarily chosen membership functions illustrated in
Figures 3 and 4, respectively. The use of these "tuning
knobs" substantially cuts the degrees of freedom involved
in reaching the required membership functions. In
addition, once Ny and Ny are found, the sensitivity of
individual fuzzy sets to the closed-loop performance is
examined. Since no improvement is obtained, no
additional changes are made to the arbitrarily selected
membership functions of yy and ¥ .

Fuzzy sets for the normalized transverse displacement,
yN» are characterized by membership functions

HnsMnssizshpg and pp that map elements of the
universe of discourse, yy, into the closed interval [0,1] as
follows:

up =yy = [0,1] for L=N,NS,ZPSP Q)

where L stands for one of the linguistic terms used in this
effort to categorize yy i.e. N(Negative), NS(Negative
small), Z(Zero), PS(Positive Small) and P(Positive). The
membership functions given in Equation (2) express the
degree to which yy belongs to some category L. These

fuzzy sets may be viewed by plotting yy versus p; as
shown in Figure 3. For example, for the normalized
displacement, y,, a crisp value of 2.5 corresponds to 50
percent Positive Small and 50 percent Zero.

Similarly, fuzzy sets for the normalized transverse
velocity, ¥y, are characterized by the membership
functions HQ» for Q = N, Z and P(where N(Negative),
Z(Zero) and P(Positive)). In Figure 4, yy is mapped onto
the characteristic fuzzy sets. In this case, it was sufficient

to describe the mapping by using only three membership
functions.

The fuzzy sets for the damping factor, 3§,
presented in Figure 5, are characterized by four
membership functions pg,up,i;  and  pgy (where
S(Small), M(Medium), L(Large) and EL(Extra Large)).
This mapping was initially based on insight and previous

work(10) . However, some fine-tuning, of the medium and
large fuzzy sets, was required to further reduce settling
times.

Fuzzy Rule-Base and Inference

The fuzzy adaptation strategy, presented in this effort,
is based on rules inspired by "common sense" engineering
reasoning whereby large values of the inputs require a
lightly damped absorber, which would provide quick rise
times. However, when the plant state is in the vicinity of
the desired state the damping factor is large to reduce the
overshoot and steady state error. The resulting rule-base
that converts fuzzified inputs into a fuzzy output is
presented in Table 2. For example, the rule described by
the first row, first column, in Table 2, reads "if yyis

Negative AND }'/N is Positive, THEN the damping factor,
8, is Small".

As observed in Table 2, and is common practice in
fuzzy logic control, the rule-base contains quite a few
rules relating to the same output variable. Therefore, to
obtain an overall output in the fuzzy state, an inference
method is applied. First, the degree of fulfillment of each
and every rule is found by applying the fuzzy "AND"
operation. Let us represent the individual elements of the
rule-base "matrix", presented in Table 2, as Sij(i=l,3;

j=1,5), where:
Sij=Minimum( HQshp) 3)

for Q= Positive, Zero and Negative. ;
L= Negative, Negative Small, Zero, Positive Smal
and Positive.
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Yy N Y N Y N y N y N
Negative Negative Zero Positive Positive
Small Small
¥ N SMALL MEDIUM LARGE MEDIUM SMALL
Positive
¥ MEDIUM LARGE EXTRA LARGE MEDIUM
Tene LARGE
¥ N SMALL MEDIUM LARGE MEDIUM SMALL
Negative

Table 2 - Rule-Base for computing the viscous damping factor (6)

Then, from Table 2, the union of the fuzzy sets
for the same output variable is taken to reach the
membership functions of the output, described in
Figure 5, as follows :

Hg =81y +8)5+83 +835;

Hp =81y +84 +8y +875+83) +83;

By =83 +8y) +8,4 +833; O
HgL = 8535

The rule-base, which was not made to be part of the
tuning process, underwent only a single closed iteration
to rid inactive rules. However, the sensitivity of closed-
loop performance to changes in the rule-base was
examined to verify the continued use of these heuristic
rules.

Defuzzification

Finally, in order to reach a practical controller a
control action comprising of a single numerical value is
required. Therefore, the space of the fuzzy damping
factor, obtained using the method described in the
previous section, is mapped into a non-fuzzy space
(crisp) by defuzzification.

There are various strategies aimed at producing a
crisp value. Some of the commonly used strategies are
the center of area (COA), the mean of maximum and

the max. criterion(!®). Since, there is no accepted
systematic methodology for selecting a defuzzification
strategy, herein, the COA scheme is adapted. This
strategy was found to vyield better steady-state
performance when compared to the other above
mentioned strategies. The COA method projects the
centroid of the output membership function pp (for

R=S,M,L and EL), defined in Equation (4) as the crisp
value of the output viscous damping factor, &:

%”R'AR'CR
0=t 5)
2 HR AR
R

where Ay - Area under the "R"th fuzzy set defined

in Figure S.

cg - Centroid of the area Ag.

R - Small, Medium, Large and Extra Large
(See Figure 5).

Results

The closed-loop fuzzy based adaptive controller,
developed in Phase One, is now applied to the nominal
plant. After some tuning, to a variety of initial
conditions, the values of the tuning parameters, N, and

N-y are frozen:

Ny= 15 [1/m];
N§,=O.5[sec/m]; (6)

The closed-loop displacement impulse response is
presented in Figure 6. The application of the fuzzy
based control law results in relatively quick settling
times, low overshoots and dying out of vibration within
a few seconds. When the control force is turned off
after 16 seconds (about 10 seconds after settling time),
almost all the vibrational energy is dissipated as the
beam returns to its undisturbed state throughout its
length. In addition, the performance of the control
algorithm is insensitive to varying initial conditions.
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To demonstrate the robustness of the control system
to changes in the temporal dynamics of the cantilever
beam, the transient disturbance response to a
considerably perturbed plant is simulated. The Young's
modulus of the beam was raised as well as lowered by
60%, substantially perturbing the natural frequencies of
vibration. Results of this robustness test, described in

Cohen et. al D | illustrate nearly similar settling times
and rates of vibrational energy dissipation when
compared to the nominal structure.

Next, the sensitivity of the AFCA to non-
collocation of actuator/sensor is examined. Results
presented in Figure 7 show that even though a marginal
loss in settling time is obtained at this off-design point,
the closed-loop performance, for the non-collocation, is
reasonably good.

Conclusions and Recommendations

e The present effort describes the application of an
adaptive fuzzy control algorithm (AFCA), based on
adaptive dynamic vibration absorbers, on a large
flexible beam-like structure

¢ The controller is applied to an Euler-Bernoulli
mode! of a cantilever beam which is subjected to an
initial unit imulse disturbance.

¢ Numerical results, based on MATLAB simulations,
of the closed-loop transient response demonstrate
quick settling times, a high rate of vibrational
energy dissipation and no control spillover to the
higher modes.

¢ The performance of the AFCA is not very sensitive
to deviations (about 10% of beam length)
concerning the collocation of actuator/sensor.

o The controller presented may further be developed
and tested for the vibration suppression of structures
such as lattice trusses having very high modal
densities and which include coupling between the
bending and twisting modes.

® Future research plans should include experimental
validification, a stability analyses of the AFCA and
performance comparisons with other classical
control laws.
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Figure 1: A 2-D version of a beam-like lattice with an absorber attached
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Figure 2: Response of the open-loop system
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