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Abstract

Aim of this work is to find the dynamic influence
functions of an Euler-Bernoulli beam under differ-
ent boundary conditions actuated by a couple of PZT
patches and to investigate about their use in the dy-
namics of an active beam. A modal approach is used
to build the dynamic influence functions in such a way
that not only the position of the PZT actuators but
also their size can be directly taken into account. Sev-
eral analysis concerning the controllability of the dy-
namic response of the beam and in particular the pos-
sibility of exciting some desired modes are presented.
Finally simple optimization problems concerning the
placement and the size of the actuator are solved.

Nomenclature

by beam width
bs actuator width
d3; piezoelectric strain coefficient
Ey, Young’s modulus of the beam
E, Young’s modulus of the actuator
t, beam thickness
t, thickness of the actuator
h  length of the actuator
a position of the center of PZT
V  voltage applied to the actuator
w  deflection of the beam
M, equivalent bending moment
A free strain of the actuator
¢ mass per unit length of the beam
w; i-th natural frequency of the beam
X;i i-th eigenmode of the beam
®; i-th modal amplitude
Q dimensionless loading frequency
I, moment of inertia of the actuator
I,  moment of inertia of the beam

1 Introduction

In the last years there has been a large number of
studies on the possible use of distributed actuators
and sensors in the frame of the ’intelligent’, or 'smart’
materials technology, which makes focus on the possi-
bility to build biologically-inspired structures capa-
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ble of changing their shape, self-detecting and self-
repairing internal damages, adapting to different en-
vironmental conditions [1],[2] .

Among the various available materials for smart
structures actuators and sensors, lead zirconate ti-
tanate piezoceramic materials (PZT [3]) are very
attractive [4]: they can undergo mechanical strain
when subjected to an applied electric field and gener-
ate an electric field in response to mechanical stresses
and strains. They are easy to be bonded to the struc-
ture, and their high stiffness makes possible to induce
high strain energy in the system.

In fact it is possible to bond or even embedd these
materials to a passive traditional structure [4] to per-
form both sensing and actuation functions, provided
that appropriate placement and size is chosen for
them.

A number of models have been proposed to represent
the static and dynamic interaction between the PZT
and the structures, like the static Pin-Force model
by Crawley and de Louis [4] [5] [6] [7] that can be
used for active beams, the two-dimensional model
for plates developed by Fuller and Rogers [8] and a
number of finite-elements approaches [9],{10].[11].

A large number of studies have been also done in
the active and passive vibration control of uniaxial
structures [12], [13],[14], plates [10], [15],[16], [17] and
cylinders [18], also using self-sensing PZT actuators
[19],[20]. _ :

In this work a modal approach will be used to
perform the dynamic influence functions of an un-
damped Euler-Bernoulli beam, activated in bending
by a couple of PZT patches driven out of phase ar-
monically; the static Pin-Force model is here used in
the case of dynamic actions.

Since the major interest is here directed to obtain the
best geometric conditions that allow a good employe-
ment of the PZT as actuators as well as sensors, the
presence of internal damping is neglected. In fact in
such a case the presence of damping does not change
significantly the nature of the problem.

On the contrary very significant changes in the dy-
namic response of the system depend upon the po-
sition and the dimensions of the PZT actuators [21],
[15], so an accurate analysis of such a relationship



is performed. The advantage of using the influence
functions is that an analytical approach can be used
to determine the optimal.design variables such as the
length and the location of the PZT patch.

2 The actuator/beam interac-
tion

An Euler-Bernoulli beam actuated by two PZT
patches bonded respectively on the top and the bot-
tom of the beam , driven out of phase by an electrical
field is considered.

We assume that (Pin Force Model [4]): the actuators
are perfectly bonded to the structure, their mass is
negligeable with respect to the mass of the beam, the
presence of the thickness of the actuators do not af-
fect significantly the bending stiffness of the beam.
The dynamic as well as the static actuation of the
PZT on the beam can be considered equivalent to
two concentrated moments with opposite signs act-
ing at the edges of the couple of piezoelectric patches
[4], as shown in figure 1, where:

L
M, = mEabatafbA (l)
and
1% EyIy
A =dz;— = 2
da1 - ¥ E.L (2)

ds; is the piezoelectric strain coefficient between the
applied voltage in the z direction and the resulting
free actuation strain A along the axis z of the beam.

3 The Dynamic Influence
Functions

.The deflection w(z,t) of the beam is expanded into
the series:

w(z,t) =Y ®;(t)Xi(z) (3)
i=1

where X;(z) is the i-th eigenmode of the beam, and
®;(t) the corresponding modal coordinate. We take
the virtual displacement

~6wi - ,5’@,’){,‘ (4)

for the i-th mode.
The derivatives with respect to the space coordinate
x and the time ¢ will be denoted by primes and dots:

a.) ., a(.) _
9z = () 5 =)

The virtual work of the elastic forces is expressed as:

L
§We =-Ey ) :q>,~5<1>,~/ (X")2dz ()
- 0
1
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and the virtual work of the inertial forces is:
L
§Wir=—-py  ®:69; / X?de (6)
7 0

The virtual work of the concentrated actuation mo-
ments, can be expressed as:

§Wh, = M,[6w'(x2) — §uw'(zy)] =

= Mo Y 6&8:[X{(z2) — X{(21)] (M

where z; and z, represent the locations of the edges
of the PZT.

In this way, by superimposing the effects of two con-
centrated moments acting on the edges of actuators,
the mechanism of the actuation of the PZT patches
is directly accounted for in the formulation. As a
consequence parameters the length h and the posi-
tion a of the actuator will appear explicitly in the
expressions of the influence functions.

The principle of the virtual works can be written as:

SWg + Wy +8Wx, =0 (8)

By substituting egs (5) (6) and (7) into eq. (8) we
obtain for the i-th mode:

L . L
EyIy®;(t) / (X!I)2dz + pd;i(t) / Xidz =
0 0

= Mo(t){Xi(z2) = Xi(z1)] 9)
By assuming the following normalized quantities
—Z = _. a i _h
=71 a=7 h=1
m 2 By %1% _ ML
2=t _f[?b' X;i=L"1-X; M, 'EfT{
and

it follows that .

1 62;{'{ 2 2
]o (37)2 ) = : (D

being .
2 _ Wik 4 :
2. Yk
o; ELL (12)
The equation (9) becomes:
% | - 0K [P
> 7@,‘ = J)\{a t - 13
0t2 +,0', ( ) 61’] & ( )
where -
i b
fi=d-3 f2=a+3 (14)



For sake of simplicity the symbol tilde will not be
reported in the following expressions.

The solution of the i-th dimensionless differential
equation in the case of homogeneous initial condi-
tions reduces to:

; |%sin o (t

) dr

(15)

<I>,-(t)=/ Ma(r )a

As a consequence the deflection of the beam can be
expressed as:

w(ﬂ,t»a,h)=
oX; 52/ Ma(r )sma,(t )dT' (16)

which represents the dynamic influence function of
the deflection of the beam under the action of the
couple of PZT patches.

By assuming that the performed actuation moment
is:

M,(t) = Mo sin 2t an
it follows that:
t
/ M,(r)sino;(t — 1)dr =
0
M,
= -Q-z_"—g?(ﬂsin it ~ oy sin Q) (18)
1
and
w(n,t,a,h) =
oX; <2 (Qsinoit — o;sin Q)
M,
Z’\ (n ) Ll 0 o:(Q2 = o?) (19)

The use of the above functions will greatly simplify
the search for the optimal length and/or position of
a single (couple of) actuator(s) due to the possibility
of working with such explicit functions directly in the
expressions of the optimal conditions.

4 Applications

In the first set of applications the possibility of excit-
ing the dynamics of the beam according to a single
bending mode is examined and the relevant optimal
choice for geometric parameters is presented.

In the second set of examples the optimal response of
the beam is described in terms of two different objec-
tive functions: the mean over a period of the square
of deflections or rotations measured at a generic point
P~ of the beam and the acoustic energy of the beam.
For the first group of applications it is easy to rec-
ognize that the effects of the position and size of the

1892

2

actuator only take place in the term 6—-5%- . If the

31
length h of the actuator is fixed, in order to find the
optimal value of a, it is necessary to impose that:

8 €2
| —t = 2
da\Bnl,) =" (20)
that leads to the condition: ;
8%2X;
M e (21)
Ml 0% g

This fact means that the actuator must be located
on the beam so that its edges correspond to pomts
of equal curvature.

On the other hand when the position a of the actu-
ator is fixed its length h will be found by imposing

P ; £2
ah 7377— . =90 (22)
that leads to the condition:
8%X; 8%X;
on? |y - on? (23)

In such a case the opposites edges of the actuator
must be at positions with opposites curvatures. The
expressions of the derivatives for different boundary
conditions are reported in the Appendix.

To obtain the optimal values of the position a and
the length h, both the equations (20) and (22) must
be satisfied, and the solution of the problem is found
whenever a PZT is placed on the beam so that the
curvature in §; and & is zero. In other words this
means that to excite a desired mode the actuator
must be placed between two consecutive points at
which the curvature becomes zero; in this case the
center of the PZT lays near a location corresponding
to a wave-crest of the mode itself, where the highest
strain takes place. On the contrary placing the ac-
tuator at a strain node makes the actuation modal
force negligeable [4]. '

In the first example the excitation of the first bend-
ing mode is considered for a cantilever beam. In fig.2
the amplitude of the mode as a function of the loca-
tion a and the length h of the actuator is illustrated.
Of course for a fixed value of h the range of a is re-
stricted. The same is true for h if a is fixed. The
amplitude of the modal response increases both with
the increase of a and the increase of h. There is just
one point of maximum corresponding to Ih' =1 and
T =0.5.

Figures 4 and 5 are relevant to the second bending
mode. In this case the maximum amplitude is ob-
tained for 4 = 0.785 and £ = 0.6075.

For the third mode (fig.6-7) the optimal values are
a = 0.7163, h = 0.5025. In the case of fixed length
of the actuator (h = 0.2) the optimal solution can

2



respect only the condition of eq.(20); in fact the po-
sition of the actuator is such that the opposite edges
have the same curvature (fig.8). In fig.9 the case of
fixed position (a = 0.4) is illustrated. The solution
here satisfies eq. (22) only, that is the condition of
opposite curvatures at the edges of actuators. The
sixth mode is considered in fig.10 and 11.
In the next diagrams beams with different bound-
ary conditions are examined. Fig.12-13 concern the
case of the first mode of a simply-supported/clamped
beam, for which the best position of the actuator is
the one closer to the simple support. Fig.14-15 and
16-17 illustrate respectively the case of the second
mode of a clamped/clamped beam and of the third
mode of a simply-supported beam.

For the second group of applications, in the first
case the function to minimize is expressed as follows

. T
w(n*,a,h) = \/%/0 (w(r)',t,a,h))z dt =

= \J i B2 + f: ﬁl (/02, %@,«p,-dt) X:X; (24)

fzl =] j=i4
where
=2 1 2r 2
w; = 5—7; A w; dt (25)

Substituting the expression of eq.(21) and integrating
we obtain:

N N

1

@(n*’a,h) = ;E [A,‘ +ZB,'J} (26)

f=1 j=i
52)2
I3

2 2

Q o}
2 2y indro; — ——gin 47
[TF (Q? + o?) 10, o0 4wa; 70 Sin 47Q+

with

[ MoXitr) 0%
F\ o2 —0d) On

sin2n(o; + Q)  sin2n(o; — Q) .
+"’Q( 2o + Q) Ao — Q) (27)
: A2V A *Y V. {(n* . &2 y £2
b _  MEXONX () 6X:[% 0, [
TT(Q = 0})oioi (2~ 0F) Oy |, On |,
-[o-v- ('r sindwo;  sin 47rarj>+
2 40; 40;

2 (sin 2w(0y — 0j) sin2x(o; + crj))
Q7 — - — +
2(0; —0;) 2(c;i + 0j)
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sin2x(Q —o;) sin27(Q + 0;)
Q""( 2M0-0;) 2(n+o,~)1)

sin2n(0; — Q) sin2nx(o; + Q)
o (M - S )| o

In the second case the objective function can be de-
fined as follows:

_ 1 T pm 2
E:JT /0 /0 [w(n,t, e, h)] “dndt (29)

that is the mean-square acoustic energy of the beam.
Eq.(29) can be expressed in the following form:

- 1 (T et f N 2
E=\l= [ / LY w; | dpdt =
\ Tle Jo g

1 7 IN f - N
= T/ / Solwi+2 ) ww; | dndt (30)
o Jo

R i=i+1

Being the modes orti’rénmmal we can write:

E= 5 _/ /w?dndtz 2 (31)
\i:xT o Jo \i:l ‘
with : .
pro . ME_(OXi?\"
—ao(@0 - a)® \ On |,

Q2 +0?) & sin 47&- o} sin 47 Q0+
(@ F T g endnei g

i

+20:0 (sin?n‘(a; +9Q)  sin2n(o; — Q))] (32)

2{o; + Q) 2(o; — Q)

In fig.18 the first objective function is shown as a
function of a and h for a bending case of a cantilever
beam with M(t) = sin Q. In the numerical process
the first seven modes are considered. At a loading
frequency close to the first one the first mode is ex-
pecially excited, as expected. At fixed values of A the
maximum deflection is obtained for the lowest value
of a, that is for locations close to the clamped edge.
In fig.19 and 20 the values of mean square tip deflec-
tion and rotation can be compared for a value of a
loading frequency between the first and the second
eigenfrequency. It is worth noting that the maxi-
mum rotation iis not obtained for the values of h and
a for which the maximum displacements is reached.
In fig.21 the best exciting conditions for the second
mode can be seen: the positions around 0.22 should
be avoided if the aim is to excite the second mode.
For values of h between 0.4 and 0.5, the best place-
ment to excite the first mode is the worst for exciting



the second mode. Moreover from a comparison be-
tween fig.21 and fig.22 respectively relevant to load-
ing frequencies close to the second and third eigenfre-
quencies, it can be seen that the optimal conditions
for the second mode may be the worst for the third
mode at least for the lower values of h.

Fig.23-26 show the mean-square acoustic-energy of a
cantilever beam built with the first seven terms of
the modal expansion. Finally fig.27 shows the op-
timal geometric conditions for discrete values of the
frequencies for a cantilever beam for three significa-
tive values of the length h. For small actuators the
best placement is close to the clamp if the load fre-
quency is less than the third eigenfrequency, beyond
this value the PZT must be placed at about the cen-
ter of the beam. Larger actuators must be placed
near the clamp until the second eigenfrequency is
reached.
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Figure 2: Cantilever-beam - amplitude of the first
mode as a function of the location and the dimension
of the PZT
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Figure 3: Cantilever beam - Optimal PZT-patch to
excite mode 1
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Figure 10: Cantilever beam - amplitude of the sixth
mode as a function of the location and the dimension
of the PZT
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the first mode as a function of the location and the
dimension of the PZT
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Figure 17: Simply supported beam - Optimal PZT-
patch to excite mode 3
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Figure 18: Mean square tip-deflection of a can-
tilever beam (load frequency = 10.3 rad/s)

Figure 19: Mean square tip-detlection of a can-
tilever beam (load frequency = 30 rad/s )

0,08 ko o e epoe o
0.06 -
B.04 po o o T s e et T T

0.02F pmg mo rmem e eem

Figure 20: Mean square tip-section rotation of a
cantilever beam (load frequency = 30 rad/s )
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Figure 21: Mean square tip-aeflection of a can-
tilever beam (load frequency = 64.7 rad/s )
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Appendix

Dimensionless eigenmodes

In the following of the paper the i—th natural spatial
frequency k; = /o7 is considered.

-Simply supported beam

Xi(n) = VLA; sinkin (33)
0X: = VLAsk; cosk;n (34)
on
2
it = —VLA;k?sinkip (35)
on’
where
2
A; = I kn =nm (36)

-Cantilever beam
Xi(n) = VLA; - (sin kyy—

—ccos kin —sinh kjn + ¢ - cosh kin)  (37)

= VL Ak; - (cos kin+

Q
§’L»<

+ ¢ - sin k;n — cosh k;in + ¢ - sinh k;n) (38)

2y
X = VLA;k?

Q:"_Q’
P B 1%

- (—sin k;n+
+ ¢ cos kjn — sinh k;n + ¢ - cosh k;n) (39)

where

( sin 2k; L sm 2p [—

____k__!._

__sml; ?k;L(cz ~1)+ __IL cos k;Lsinh k; L

u|.-

2

= ! in k;Lcoshk; L — é%(cosh 2%k; — 1)) (40)

sin k; 4+ sinh k;
€= cos k; 4 cosh k; (41)

-Clamped beam
Xi(n) = VLA;(sin kin—

—c - cos kyn — sinh k;n + ¢ - cosh k) (42)
af:‘;’ = \/EA,'IC,'(COS kin+
+csin k;n — cosh kin+ ¢ - sinh ki) (43)
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2y,
_71561; = VL Ak (—sin kin+

+ccos k;n — sinh k;n + ¢ - cosh k;7) (44)
where
A,' =

cosh k; L

<c2L+(1+c2)&[h2&£+(—1)n(1+c2)-_k—4_+

+2(el)"+lfjsinh kL + -ifk—_(l — cosh 2Ic,-L)) (45)

_ sink; —sinh k;
~ cosk; — cosh k; (46)
-Supported-clamped beam

Xi(n) = VLA; - (sin kyny — ¢ - sinh ;) 47

%’% = VL Ak; - (cos ki — ¢ - cosh ki) (48)

2y,
aa)g' = VLA;k? - (=sink;n —c-sinh ki) (49)
U]

where

A; = (%(1 — )+

¢? sinh 2k;L — 1 Vi L, \F
plesm il ol "-L) (50)
sin k;
- sinh k,‘ » (51)

The following is a list of the first six eigenfrequencies
of the cantilever beam considered:

Eigenfrequencies (rad/s)

w1 wo w3 W4 - Ws we
10.34 | 64.77 | 181.37 | 355.41 | 587.53 | 877.67
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