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ABSTRACT

In the present work we address the problem of
the acoustoaeroelastic analysis of structures, i.e., the
study of the dynamic response of a fluid-filled elas-
tic structure in motion within a compressible fluid
in presence of a sound source. The analysis is ac-
complished by an integrated approach, taking into
account the feedbacks between the structure, the cav-
ity, and the exterior flow, leading to a single acous-
{oaeroelastic {matrix) equation. This is formulated
in terms of the amplitudes of the structural modes,
considered in vacuo. The pressure in the cavity is
expressed in terms of acoustic natural modes of vi-
bration, while for the pressure in the exterior field we
rely on a direct boundary integral formulation, nu-
merically solved using BEM. The application of BEM
for the solution of the exterior problem introduce
the so-called Fictitious Eigenvalues Difficulty (FED).
This involves the arising of fictitious (not physical)
resonances for frequency values coincident with the
eigenvalues of the associated interior problem, i.e.,
the problem which is governed by an operator equa-
tion adjoint to that of the case under consideration.
Here we introduce a regularization technique in or-
der to overcome this problem, based on the linear
combination of the Kirchhoff-Helmoltz equation with
its normal derivative. These equations are written in
terms of velocity potential function. Preliminary re-
sults obtained for radiation and scattering problems
are presented, and validated through comparison with
analytical solution.

Copyright © 1996 by the AIAA and ICAS. All rights reserved.

1. INTRODUCTION

This paper presents a methodology for the analy-
sis of acoustoaeroelastic systems. We define an aeroa-
coustoelastic system as the complex system composed
by an elastic structure (tipically a thin shell) which
encloses a compressible fluid and is surrounded by a
(possibly different) compressible fluid; the structure
may be in motion with respect to the undisturbed
exterior fluid. In such a situation, the internal and
external pressure fields interact through the elastic
boundary, thus imposing the consideration of the un-
derlying feedback mechanism. Such a problem is of
great interest in aeronautics, where the structures in-
volved are tipically shells surrounded by a pressure
field highly perturbed by the engine noise and the
aerodynamic noise of propellers or jets. The acous-
toaeroelastic effects due to the airborne noise (in this
analysis, the noise propagating through the structure
is not taken into account) may dramatically affect the
pressure field in the interior of the cabin of the air-
craft, with consequences on the passengers comfort.

The dynamics of the structure and the pressure field
in the interior of the shell can be eflectively described
in terms of natural modes of vibration. The latter
can be obtained in analytical form for simple config-
urations, or, for more complex geometries, using nu-
merical methods, such as the finite-element method
for the structural modes, and the boundary element
method for the acoustic ones (this particular issue is
addressed in Iemma, Morino, and Trainelli (”)). For
the solution of the external pressure field, the Bound-
ary Element Method (BEM) is again the best can-
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didate. The drawback of such a formulation arises
from the so-called Fictitious Eigenvalues Difficulty
(FED): the Kirchhoff-Helmholtz Boundary Integral
Equation (BIE) used for this approach is affected by
spurious (not physical) frequencies values correspond-
ing to the adjoint interior problem eigenvalues. This
means that, for example, the resonant frequencies of
the Dirichlet interior problem appear in the spectra
of a Neumann exterior problem, and vice-versa. This
Fictitious Eigenvalues Difficulty is a primary issue
in the present research on BIE applied to acoustics.
In fact, this non-physical resonances can completely
destroy the solution of the numerical method used
to solve the Kirchhoff-Helmholtz BIE, as we will see
later.

Many analytical and numerical regularization have
been proposed, but no complete satisfactory schemes
have been developed yet. In lemma, Trainelli, and
Morino () this problem has been by-passed by means
of a finite-state reduction of the aerodynamic opera-
tor, as follows. The BIE leads to the expression of
the aeroacoustic pressure on the structure as a aeroa-
coustic matrix acting on the structural displacement
vector. This matrix then undergoes a finite-state re-
duction, obtained through a sampling procedure fol-
lowed by a least-square approximate reconstruction.
We use a preventive BEM analysis of the exterior
acoustic field, so that spurious frequencies affecting
the adjoint problem are identified, and the sampling
procedure is implemented with care in order not to
include values in the immediate vicinity of fictitious
eigenvalues. This allows for a profitable smoothing of
the numerical solution, in which no non-physical res-
onances appears, thus representing, in the framework
of the finite-state approximation, the desired regular-
ization tool. In this way, a matrix-polinomial-rational
dependence of the exterior pressure on the frequency
is established, thus simplifying the set of governing
equations in terms of structural and (internal) acous-
tic modal amplitudes. The results obtained with this
approach reveal that the approximation of the aero-
dinamic matrix reproduces with remarkable accuracy
the spectrum of the aerodynamic operator. Figures
1 and 2 shows the spectra of the normal displace-
ment of the structure w for the case of a fluid-filled
spherical shell subject to a spherically-symmetric im-
pinging wave. For this particular configuration the
coupled acoustoaeroelastic system can be solved an-
alytically. The exact expression for the amplitude of
the radial displacement w(w) is
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where ¢ and cg represent the speed of sound in, re-

spectively, the interior and exterior acoustic media,
kK = wfey and k = w/eg, o1, o, and gs are the
densities of the fluids and of the solid, and A is the
magnitude of the impinging wave A e**"/r. In Fig. 1
the numerical solution obtained with a zeroth-order
BEM formulation for the Kirchhoff-Helmoltz equa-
tion is compared with the finite-state approximation
of the aerodynamic matrix. In both cases, 10 modes
have been used to describe the dynamics of the shell,
and 28 for the decomposition of the internal acous-
tic field. The BEM solution (dashed line) is clearly
affected by peaks corresponding to non-physical reso-
nances; these correspond to natural frequencies of the
interior Dirichlet problem (see, e.g., Iemma, Morino,
and Trainelli(“)). These peaks are completely absent
in the finite-state solution, which, on the other hand,
perfectly reproduces the natural frequencies of the
problem predicted by the BEM. The comparison with
the analytical solution of the finite-state approxima-
tion (Fig. 2) reveals a good overall behaviour.

As mentioned above, this methodology is nothing
more than a convenient way to by-pass the spurious-
frequency problem. As mentionad above, the non-
physical resonances are cut-off by a careful choice of
the samples of the aeroacoustic matrix used for the
least-square approximation. Two drawbacks make
this approach not particularly appealing for design
applications on real configurations: the sampling pro-
cedure requires the a priori knowledge of the natu-
ral frequencies of the adjoint problem (for geometries
of practical interest, this knowledge can be achieved
only by numerical experimentation); small modifica-
tions on the geometry of the cavity results in the mod-
ification of its resonances, and, as a consequence, in
the re-evaluation of the whole finite-state approxima-
tion procedure.

From this point of view, the most effective approach
is the regularization of the Kirchhoff-Helmoltz oper-
ator. In the present work, a regularization technique
for the integral representation of the velocity poten-
tial in the external field is presented, similar to that
suggested by Burton and Miller *). This is based on
a linear combination of the Kirchhoff-Helmoltz equa-
tion for the potential with that obtained by taking the
normal derivative. In fact, although the Kirchhoff-
Helmoltz operator and the integral equation for the
normal derivative are both affected by the spurious
resonances at the charachteristic frequencies of the
cavity, it was demonstrated that the combination of
the two equations circumvents this problem (see, e.g.,
Colton and Kress (*)). The linear combination of the
integral equations is numerically solved using a third
order BEM, based on Hermite interpolation of the
variables. A special treatment of the hypersingular
integral present in the integral equation for the nor-
mal derivative is introduced.

A review of the most significant work in the field
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is beyond the scope of the present paper. Two works
closely related to the argument of the present paper
are those of Chien, Rajiyah, and Atluri*), and Amini
and Wilton(®. Extensive reviews on the subject are
available, for instance, in Gaunaurd(”, and Amini
and Harris(*).

In Section 2 a brief description of the coupling terms
in the equation of the structural dynamics is given, in
order to put in the proper perspective the results pre-
sented in the following Sections. The approach used
for the external flow is presented in Section 3, includ-
ing the regularization technique. Preliminary results
obtained with the methodology presented are com-
mented in Section 4. The theoretical aspects of the
present work have been developed jointly by lemma,
Gennaretti, and Morino; lemma and Gennaretti are
also responsible for the derivation of the numerical al-
gorithm, which has been implemented and validated
with Trainelli, for the zeroth order formulation, and
with Giordani, for the third order one.

2. AEROACOUSTOELASTIC COUPLING

Consider a solid body B which divides the fluid do-
main in two regions: the interior volume Vy, and the
unbounded exterior region Vg. Introducing the natu-
ral modes of vibration of the free structure in vacuo,
®,,, the generic displacement u of the structure can
be decomposed as

u(x, ) = Y am(t) Em(x) (2)

m

while (®1, ®,,) = 6gm. The corresponding Lagrange
equations of motion are

am+Q,?n Um:fm (3)

where f, = (f,®,,) denotes the mth generalized
{modal) force on the shell. Next, we assume that the
body is a thin shell, and that the outer and inner
flows are inviscid. Denoting with & the surface of the
shell (note the difference between 0B and S}, we have
f = —Apn, where Ap = pg — pr and n = ng, and
hence

fn = _/ Ap @ -1 dS = — (Ap, Pp)s (4)
: s

The issue of the influence of the interior pressure
field in the forcing terms fy,, is addressed in lemma,
Trainelli, and Morino(®. The approach used in that
work is closely related with that of Dowell et al.(¢),
Note that in lemma et al.(®) the analysis includes the
coupling with both interior and exterior flows (aeroa-
coustoclastic problem), whereas in Dowell et al.(®)
only the interior fluid is considered (simple acoustoe-
lasticity). In the following of the present work the

contribution of the internal pressure field will be ne-
glected, since the emphasis is here on the regulariza-
tion of the external integral operator used to evaluate
the velocity potential. Thus, in the following,

fm = fE,,. = (PE, q’m)s (5)

3. EXTERNAL ACOUSTICS

In this section we turn our attention on the evalua-
tion of the external pressure load. Although the fol-
lowing derivation could be easily extended to aeroa-
coustic cases (i.e., when the body is in motion with re-
spect to the undisturbed exterior fluid field), we limit
ourselves to simple acoustic (i.e., no-flow) cases (see,
e.g., Morino(*®) for the aerodynamic general theory).
‘We make use of the superposed ~ to indicate Laplace-
transformation throughout. The external pressure
field can be expressed in terms of potential using the
Bernoulli’s theorem in the frequency-domain

PE = —500 (#°° + ¢'°) (6)

where we distinguish the total scattered field ¢*¢, and
the incident field "¢ due to the external source. The
boundary integral equation for the scattered velocity
potential ¢*¢ in the frequency-domain has the form

e [[08 o .06 ]
e —,/S[Bn G-¢ on ds (7)
where G = —e*? /47r, with the acoustic delay given

by 6 = r/cg, » = ||x — x.]|, while cg represents the
unperturbed external sound speed. The boundary
condition on &, expressed in the frequency domain,
are
a¢sc
dn

= s(@-n—0aggwy’’)

—~ (—6—% + sa’ggoos?"‘) (8)
(ag is the exterior acoustic admittance). Thus, the
total scattered field ¢*¢ may be decomposed into the
rigidly scattered field o*°*, corresponding to a struc-
turally rigid surface (i.e., w = 0), and the radiated
field ¢"%4, produced by the vibration of the bound-
ary. For ag = 0 the boundary condition 8 are of the
Neumann type. Thus, Eq. 7 will be affected by fic-
titious peaks corresponding to the resonances of the
interior Dirichlet problem. The regularization is ob-
tained by combining Eq. 7 with its normal derivative
with respect to the normal n, in the observation point

apye gt 0G  _,. 9*G
on. ”/5 [ on On. dn.on ds )

The linear combination of Egs. 7 and 9 yields

.14
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where ((s) is a linear function of the Laplace variable.
In Eq. 10 there is an integral term with an highly
singular kernel, the evaluation of which represent the
most challenging issue in the numerical implementa-
tion of the method. In the present work, the hypersin-
gular integral is integrated by parts, and regularized
taking advantage to the equivalence of doublet and
vortex layers.

4. NUMERICAL RESULTS

In this section preliminary resuts obtained with the
formulation presented are validated through compar-
isons with analytical solutions. Eqs. 7 and 10 are
discretized using a third order BEM based on the
formulation introduced in Morino, Gennaretti, and
Calcagno?). In all the results presented the atten-
tion is posed on the capability of the present formu-
lation to overcome the occurence of the spurious res-
onances in the solution. In the following, we will ad-
dress as method A the third-order BEM solution of
Eq. 7, whereas the solution of Eq. 10 will be indi-
cated as method B.

The first test case deals with an elastic spherical
shell subject to a spherically-symmetric impinging
wave. This problem is similar to that of Fig. 1 and
2, with the difference that here the interior acoustic
field is not taken into account. The analytical so-
lution of the problem can be obtained from Eq. 1,
setting ¢ = 0. In Figure 3, the frequency spec-
trum for the amplitude of the normal displacement
w is presented. The analytical solution (continuous
line) presents only one peak, corresponding to the
frequency of the spherically symmetric mode of vi-
bration of the shell (dot-dashed vertical line).:‘ The
solution of Eq. 7 (method A) presents non-physical
peaks at the resonances of the corresponding interior
Dirichlet problem, indicated with small squares. On
the contrary, the solution of Eq. 10 (method B) is not
affected by the FED; the numerical result is smooth
and in excellent agreement with the exact solution.
Note that in all the results presented, the function ¢
is {(k) = i/k This form is suggested in Chien et al.(*)
as the optimal value for ¢ in radiation and scattering
problems. A second test confirms the capability of the
regularized operator to smooth out the non-physical
resonances. The spherical shell is subject to the per-
turbation due to an impinging plane wave. This kind

°F Note that the analytical solution of Eq. 1 in Fig. 2
presents several peaks, corresponding to the natural modes of
vibration of the acoustic cavity. Here, the interior pressure
field is not taken into account, so only the natural mode of
vibration of the structure are present in the solution.

of disturbance excites modes of the shell which are
axially-symmetric with respect to the axis of prop-
agation of the wave front. In Fig. 4 the spectrum
of w obtained with an external pressure field evalu-
ated using Eq. 10 is presented. All the resonances
in the numerical solution correspond to the frequen-
cies of the axially-symmetric modes of vibration of
the shell. Note that no spurious effects are present.

The formulation presented for the evaluation of the
exterior pressure field can be successfully used also
to evaluate scattering pattern due to rigid or elas-
tic bodies. In Fig. 5 preliminary results obtained
for the scattering signature for the same problem of
Fig. 4. The angular distribution of the potential
function at a distance of 5r from the sphere is pre-
sented. The solution is obtained for k = 3.14, which
corresponds to the first spurious frequency. Note that
the solution of Eq. 7 is completely different from the
analytical solution. This result demonstrates as the
FED completely destroy the numerical sclution of the
Kirchhoff-Helmoltz equation. Conversely, the regu-
larized operator yields to a numerical result (method
B) which is in very good agreement with the exact
solution.
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