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Abstract

A method of buckling analysis for complex structures
comprising a cylindrical system of interacted bars,
plates and shells made of composites is developed.
Curvature, load and thickness variation of the system
along its contour as well as stacking sequence,
anysotropy of elements, discrete stiffening and
possibility of general and local buckling modes are
taken into account. The method is based on the
formulation of the respective boundary problems, the
separation of variables, the "exact" numerical solution
of differential equations wusing the discrete
orthogonalization method as well as on the finite
element method algorithms to unite the elements into
a system. An approximate analytic solution is obtained,
which describes deflection and stress-strain state (SSS)
of orthotropic composite plates after local buckling
under combined loading. A method of stiffness
characteristics reducing for such plates is developed
using substantiative hypotheses and classical concept of
reduction coefficients (by von Karman, K. Marquerre).
Basing upon this approach, a method to analyze global
nonlinear SSS and buckling behavior of complex thin-
walled structures with due account of postbuckling
behavior of some plate elements is proposed.

Introduction

There exist two kinds of methods to analyze the static
stability of metallic/composite structures. In classical
methods the stability differential equations are solved in
closed form or numerically for relatively simple
elements. The advantages of this way are high accuracy
and time savings, but it cannot be used in the buckling
analysis of more complex structures. The second kind

Copyright © 1996 by the AIAA and ICAS. All rights reserved.

is presented by the finite element methods for the
computer modelling of structures with complex
geometry, but the accuracy and reliability of this
approach to the stability analysis is often doubtful, the
solution durations being too long. In this paper we
want to draw attention to a new, unified method for a
numerical analysis of stability of complex aerospace
structures. It simultaneously offers. sufficient
possibilities to describe the structural geometry, achieve
a high precision and attain time saving. The structure
comprises cylindrical and slightly conic systems of
interacting bars, plates and shells made of both the
metallic and composite materials under combined
thermo-mechanical loading.

Typical examples of such systems are shown in
Figure 1.

FIGURE 1 - Typical Structures Under Consideration

The curvature, loading and thickness variation, initial
out-of-plane deflection and subcritical deformation of
the system along its contour as well as stacking
sequence, anisotropy of components, discrete stiffening
and the possibility of general and local buckling modes
are taken into account.
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The method is based on the formulation of the
respective homogeneous boundary problems, the
separation of variables and the "exact" numerical
solution of stability equations for structural members
using the discrete orthogonalization method™. Finite
element method algorithms are used to unite all
elements into a system.

It is known, that the separate elements of stiffened
thin-walled structures may buckle long before the
general buckling or overall structural failure. In this

case, prebuckling stress-strain state determination

problem arises as well as the general instability
problem for complex structure with due regard for
nonlinear postbuckling behavior of mentioned elements.

In engineering statement, this problem is solved by
method of reduction coefficients taking into account the
reduction of stiffness characteristics of elements after
buckling. The application of corresponding solutions
and reduction coefficients to metal structures was
considered by von Karman, KMarquerre®®, The
general approach was reported by the authors®,

In this work, the reduction procedure for
rectangular composite plates is developed which
consists in the replacement of real buckled plate by the
unbuckled plate made of nonlinear elastic orthotropic
material which exhibits the same stiffness. The
approximate analytical solution is obtained both for
deflections/SSS of simply supported plate and for its
reduced stiffness characteristics under combined loads.
On this base, the numerical method developed before®
for the prediction of stress-strain state of metal thin-
walled structures with buckled skin is applied to the
structures with composite elements. Correspondingly
the method of buckling analysis for complex composite
structures stated below becomes applicable to the
analysis of general instability of structures with
previously buckled skin.

Stability
Single element

Let us consider an arbitrary (not circular) anisotropic
cylindrical shell which is loaded in subcritical
stress-strain state by N’ (s,8), N°(s,t), N°.(s,t); t=0is
the load growth factor. The complete set of stability

equations describing the buckling effects for this shell
can be written as three groups of relations®.
Neutral equilibrium equations
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Elasticity relations
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{N}=IN, N, ST, {M}=IM, M, H, (2)
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[B]=[B], [CI=IC,l, [D]=[D,]

Geometrical relations
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Here u, v, w, 8,, 8, are the additional displacements and
rotation angles of the shell; ¢, ¢, v,,, &, x,, x,, are the
strains and curvature variation components; w,(s), w’(s)
are the initial and accumulated subcritical transverse
displacements, respectively; By, C;, and D, (i, j=1, 2,
3) are stiffness characteristics of the shell.

The boundary conditions at the edges s = 0 and

s=b of the single shell are given by
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The critical value ¢=¢, of the load growth factor
should be found as the minimum value of t for which
a nonzero solution of the homogeneous boundary
problem (1) - (4) (with additional simple-support
boundary conditions at the edges x=0 and x=a) exists.
These equations provide the possibility to analyze the
general instability of structures, as well as local and
thermal buckling.

Cylindrical system

Similarly, the stability equations can be written for the
complex stiffened cylindrical structure composed of
interacting cylindrical shells, plates and bars; the bars
may be considered as distributed or discrete members.
For instance, equations for the ith discrete rib (see
Figure 1) are written as follows:

W 5 giodyodh
dx dr ' dr
dQZ' i+1 i

—=+N, -N,=0,

dx 2 2

dQ,;

<3, isl_ i=0

l Q3 Q3 s /
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M., . .
— 2N 0y-0y+8;S 1480,

M., R
dxa. ~N; #5,-Qy-A3"'S 1-A3S -0,

N, =ﬁssina —ascosa, Q, =I\_Iscosa +assina );

N=EFg, My =ELxy+Elyxs @y

H=GIx, My=ELxy+EL; X,
dx dx dx dx 3)
dv dw

(Pz,'=_a s ‘Pu='7d; s

where 5, Ve Wi @n € ¢ are the generalized
displacements of the bar; N, Q,, Qa, H, M,, M,, are
the stress resultants;

A,, A, are the eccentricities of the bar; EF, EL, EI,
GI, are the stiffness; the superscripts i, (i+1)
correspond to the left (right) edge of the ith ((i+ 1)th)
shell. Note that the local coordinate system x, x,, x; of
the bar has been used here; « is the angle between axes
x, and s on the rib. The displacement compatibility
conditions for the shells under consideration and the rib
must also be written in the form

vi=y-A30, =1 +A5" ),

Wi =“3i”A;‘pi =“3M+A;+1‘Pi’

u=u'+ Ay -Aey =u'-05" 9,485 e, @’
0,=6,=0";

(u, =vsino. -wcosa, u, =vcose +wsina).

Equations (1) - (3) are written for every shell and
plate (R—o¢). Equations similar to (1)/- (3)/ are valid
for each bar. Certain conditions must be added to them
at all junctures of shells and plates; usually, those
include the equilibrium equations and the requirements
for equal generalized displacements at the junctures, All
these relations are evident and not presented here.

Solution method

Let us first consider the particular case of an ortho-
tropic system without subcritical shear: N°, =0, B,, =
B,, = C, = C,, = D,, = D,, = 0. The solution to be
found for every shell may be presented as follows:

{P}={P,.}cos—’f‘g~’f, {F}={F,}sin%, (%)

where:
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and m is the number of the buckling half-waves on the
shell in its longitudinal direction; the functions with the
subscript m depend on coordinate s only. The stability
equations (1)-(3) can in this case be transformed into
the system of 8 ordinary differential equations (for any
m and £):

d{u} _

& [A] {u} (6)

where

{u}=[w, 0 M Q.uv NS 1T

m™m mem m m- mm
is the vector to be found,

— du dv,
Sm=sm+N:Ti:i’ Nm=Nm+Ng(%+_d_:')’ szQm—%EHm

[A] is a square matrix of coefficients which are certain
functions of s.

The boundary conditions (4) for the single element
can be written in the form

[Tol {#(0)} =0, [T){u(b)}=0

where [I'y], [T4] are constant (4 x 8) matrices.

The problem (6), (7) can be effectively solved by
the numerically stable discrete orthogonalization
method (by means of solving some Cauchy problems).
The solution at the point s=b is given by

{(u®)} =[Z(®)]{ c(b)}

and the condition for obtaining the critical value ¢=t¢, is
written as follows:

()

det[ D(H] =0, (8)
where [D]=[I'][Z(b)], [Z(b)]
solution matrix.

Equations (1/) - (4/) for the discrete ribs can be
transformed similarly and some relations are obtained
for the solutions {u}'*!, {u}' on the left and right
edges of ribs.

For complex cylindrical systems the following solu-
tion method is proposed. The solutions like (5) are
written for all elements.

is certain (8 x 4)

Solutions of equation (6) for every shell and plate
are obtained under the "unit-displacement" kinematic
boundary conditions, for example, under the following
conditions at the points s = 0 and s = b:

k k__k__k k_k__k__k _
wmls“:O:l’ Qm=um= mls"=0=o’ wm—Q,,,—u,,,=v,,,|,k=b;-0,

where the superscript k is the element number.

Thus the generalized stiffness matrices may be con-
structed for every element ([K]¥) and for structure as
a whole ([K]) by means of usual assumed displace-
ment finite element method algorithms. The resulting
structural neutral equilibrium equations are written in
the form of linear algebraic equations (for arbitrary m
and-t)

[K1{y}=0 ©)
where {y} is the generalized displacement vector for all

nodes in a cross section of the system. The vector {y}
is composed of the vectors of nodal displacements

{y;}= [wmi(pmiumivmilr’ i=1,2..,N,

taking into account the corresponding coordinate
transformations in nodes.
The equation for obtaining the ¢, is given by

det[K(©)] =0
At the first step we must use (10) to find ¢, for any
m, then ¢, is obtained as min, ¢, at m=m,. Finally,

equation (9) is used to find the critical value {y.};
thereafter the structure buckling shape is found.

(10)

Accounting for shear load and anisotropy of structures

In the general case of a non-zero subcritical shear N’
# 0 and/or general elasticity relations (2) for at least
one element the solution to the problem on structural
instability may be written in the form
P}=(P_}cos X +(P sinE,
{P}=(P,} ] (P} ] sy
(FY=(F,}sin">+{F,}oos =,
where the variables of the first group, {P,} and {F,},
are the same as in (5), and the second group is

coniprised of the variables
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{ﬁm} :["mém?mimgmﬁmém] T’
{Fm} =[0mwmém ~xmém~mim ~mﬁmﬂxmﬂmém] T‘

In this case, the structure is assumed to be prolong
(a>>b) and [ is the longitudinal half-wave length (in
practical analyses, one may take roughly I=I, = a/m,
m=1,23 ).

Substituting (5)/ into shell buckling equations (1)
- (3) makes it possible to separate variables to obtain
16 simultaneous ordinary differential equations of the
form (6) with a variable matrix [A] not written here
for brevity. Analogous transformation should be applied
to equations (1)/-(3)/ for stiffeners, to the boundary
conditions of the type (4), and to the compatibility
conditions for the longitudinal edges of the
components. The subsequent matrix formulation and
the solution method are just the same as those for the
particular case above; the dimensions of all matrices
and vectors are duplicated due to the addition of nodal
displacements of the second group

(9} =W, 0 i i Vi Wi B i i ¥l s i=1,2..,N

Let us note that the integral stiffness By, C,, D, of
multilayer composite structures are to be determined
by integrating through the thickness(*>) on the basis of
elastic characteristics of the unidirectional layers the
structures are comprised of. By applying the reduction
factor concept, the regularly stiffened panels may be
considered as structurally-orthotropic ones with the
skin simulated by orthotropic layer with reduced
characteristics). Only in the particular case of a sym-
metrical laminate layup and the stiffeners symmetrical
with respect to the skin midsurface the wusual
assumption of [C] =0 is valid.

Many classical problems exactly and/or approxi-
mately solved, as well as new problems on composite
component stability which occur in design practice can
be solved with the use of the technique proposed and
the computer program developed.

Postbuckling behavior of composite plate

For analysis of postbuckling composite skin
deformation, let us consider the behavior of rectangular

plate stiffened by mutually perpendicular ribs, Fig.2.

Plate cell

b w(x,y)

Skin
Ribs

FIGURE 2 - Siffened Composite Panel

Each typical part of plate with adjoining parts of ribs in
biaxial compression and shear behave similar to the
others retaining the rectilinearity of ribs and edges x=0,
x=a, y=0, y=>b of plate cell. Prior to buckling, the
uniform flat stress state is realized in the plate with
average stresses p,=T/h, p,=T/h, 1=S/h. After
buckling, the plate get the deflection w(x,y); the
distribution of membrane forces balancing external
loads T,, T,, S becomes nonuniform. Let us consider
that the ribs are simply supported; the plate is
orthotropic with symmetrical layup arrangement, so
that the elastic relationships (2) with [C] =0, B,; = B,;
= D,; = D,; = 0 are valid. Postbuckling plate behavior
is described by nonlinear differential equations of von
Karman type

Ll(®)+—;—L3(w,w) =0, Lw)-Ly(®,w)=0, (11)

where & is force function,

& & &

L=A—+2A, ~et A e A=A +A[2

W R U P A 3=A A5/

L,=Dy—+2D;———+Dy,—, D,=D,+2D,,
ax4 axZayZ ay4

(12)

ey i aayady A Ad
Fo_y Fo_y _Fe

5V S ey (1AL

Plate midsurface strains are coupled with its
displacements u(x,y), v(x,y), and deflection w(x,y) by
relationships
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5" gyv ;(aw) (13)

so that for relative mutual displacements of plate cell
edges the following is valid:

17 du
oL [P
ay ox
-1 Auf)z_% azq: 1( )dx Const,
ay oy o ox (14)
b
v,
rif2
b
2
-1 {Ana"f =322 lay=Const.
dy ox 9y

We will give the approximate solution of the problem
by using the assumption that the postbuckling
deflection pattern is close to that for buckling pattern
and by obtaining the latter from the equations (12)
using Bubnov-Galerkin’s method.

Biaxial compression

In this case we shall follow the solution scheme
proposed by K. Marquerre!® in application to metal
plates. According to (14), we consider the relative
mutual displacements e,, e, as given ones (by defining
the absolute displacements of edges). The plate
deflection we represent as

w(x,y) =f, smmsiniz—y— ,

mn=123,.., (15)
that corresponds to all possible buckling modes of
simply supported plate

Fw

x=0,a = ax2 |x=0,ﬂ

Fw

_'_2'|x-0,b=0‘ (16)

w| =0, w|

y=05 "

Boundary conditions (16) are also satisfied in
postbuckling phase of deforming at any amplitude of
deflection f, Substituting equation (15) into first

equation (11), the solution of the latter can be

expressed as

2 2
Ty* Tx .

®(x,y)=-—2— -2

EN="=" (17)
+fo_ a’n® . 2mnx b'm? qoe2nmy |

32 b2m2A22 a ZnZAu b

Hence the loads in plate are expressed as
Zm? 2nmy

N (x,y)=~T - T™_£Cos ,
s g b (18)

11
n’m? 2mny _
v jg Cos ot ny(x,y) =0.

N (x3)=-T,

Here T,, T, are average compressive plate loads in x
and y directions. They should satisfy the conditions

T———fN (x,y)dy= ——f——dy =Const,
(19)

T--—fN( )dx-———f dx=Const.

It is obvious that T,, T, are independent of coordinates
x,y. Substituting equations (15), (17) into conditions
(14) together with simultaneous using the average
laminate stresses P,, P, result in relationships

P, By, nlm?
B R (20)
_Py P, n2n2
where
1 1 A, B
Ex=__._..’Ey=.—___};,uyx=—__l_2.=.£’
Ah Ay 1 P (21)
A, E
By= =k,
i 22 Ex

are laminate elastic moduli and Poisson ratios (average
of lamina moduli and ratios®®). According to (12)

B,

B
22

——-,A =
B’ %

11
AT

B, 1
._..._’ A33=—-—~’

Ay=
B 33

2
B=B,,B,,-By,

For-f, determination we use the approximate solution
of second equation (11) by Bubnov-Galerkin’s method.
According to it

f f [L,(w)-L,(®,w)] sin ¥ smm:y —=dxdy=0.
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Substituting equations (15), (17) into this equation, for
£,#0, the following relation can be obtained after some
transformations

m? n?
LR - 22
Dmmy-p p,4b2+E(m,n)f§ 0, (22)

where
2 4 2,2 4
D(m};):l Dum_+2D3M+D22£. s
4h a4 aZbZ b4
2 4 4
Emm=|EZ +gZ |
64\ a4 Vpt

Critical state of the plate is determined from the
condition of nontrivial solution £, 0 of equation (22).
For proportional loading p, =yp,, we can find

p, =minp (m,n)=p (my,ny), p, =¥p,
mn

px(m,n) =__D(.L’n)__ , (23)
m?  n?
—_
4a’  4b?

numbers of half-waves in buckle
pattern of plate cell. Fixing these numbers for
postbuckling plate deformation phase at p, > p.*, we
can obtain from (22) the following dependency of f,2

on Px’ Py

where m, n, =

(24)
P,

fgzﬂ(_’ia_

= DO .
IJ'EO(p 1))

where

-~ — — — P, — P
P=p.*p,, P,=—, p,=—>,
P 7 Py
Dy=D(myny), E =E(myny),
4q? 4p?
P,a=—2Dos Pyo='—2Do~
my ny

(25)

Substituting equation (24) into equation (20) at m=m,,
n=n, p =1 results in two relations between e,, e, and
P, P, similar to that for prebuckling deformation phase
p < 1, when at f,=0, ¢, = ¢, e, = ¢, the usual
relations (12) of prebuckling plane stress state of plate
are valid

. P,
R e
X 2 Ey

P, P,
g =—=

E, '™E, )
So the postbuckling state of representative plate cell is
fully determined including its deflections and bending
stress-strain state; the boundary conditions could be
determined by mutual relative displacements e,, e,, by
external forces T,=ph, T,=ph or by their
combinations e,, T, and ¢, T..

The characteristic features of obtained solution are
that the shear forces are equal to zero including the
forces on the edges of plate cell as well as the nonlinear
variation of contour tangent displacements along the
edge. This result in inaccurate satisfaction of
compatibility conditions for displacements of the plate
and ribs in the direction along rib, when these
conditions are satisfied integrally (the so-called edge
slipping). Marquerre'® has shown that this has no
appreciable effect on the SSS of plate and ribs and all
the more on reduction factors.

Reduction factors

As far as stiffness characteristics of buckled composite
plate are concerned, let us consider the most interesting
case of uniaxial longitudinal compression of elongated
plate with a> >5b. We will use usual nondimensional
parameters of the theory of orthotropic plates

S R TR R L . SCY)
2

The solution of instability problem (23) for ¢y=0,
1/Va =3 can be expressed by known relations

, m4DyD,, ,
L pr=IouTz . e paap).

n=1, my=—o, p K.,

Jo o b
For the amplitude of postbuckling deflection f, from
(24) we can obtain

h . ’fx_'f=4,/§ A+B) Px 4y (29
A Dy, Dy 1+y) Pe

Here an additional nondimensional stiffness parameter
is introduced

(28)
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_ AllDll = BZZDII = EyDll

- . (30)
A22DZ2 B11D22 ExDZZ

influencing the postbuckling behavior of plate.
Substitution of equation (29) at p,=0 into relations
(20) results in the following relationships

*

p 3+y—2p—x
U ) p B 2elte,

s

e.= = =L e
OE(sy)  gSTT Gy [+
. _E___VD"/D” 1_p_; =—pf Py (e’ =pIE)
Y El* (1+y) P, YgroT T

(31)

As we can see from the comparison of relations (31)
and (26), the buckled skin behave like non-buckled
plate made of nonlinear elastic material exhibiting the
reduced averaged elastic modulus E°,=1/A°, h=¢", E,
and corresponding reduced stiffness characteristic
A’ =A,/¢’.. From equations (31) changing e, by ¢, we
can obtain two equivalent expressions for secant
reduction factor ¢° . =E°/E, <1

o= (1+y) =(1+Y)L+2e;/ex]
* ( p*] G| a+p] (32
J+y-2-2

x

where ¢,*=1at p.=p.", e,=¢," and prior to buckling. In
particular case of isotropic plate when y=1, this
expression can be transformed into the following one

(P:: 1 =..1_(1 +_e_x]’

(33)

which corresponds to the solution®. Thus the unique
parameter determining the distinctions of reduction
factors for orthotropic and isotropic plate is the
nondimesional parameter y. In accordance with
equation (30) for homogeneous and quasi-
homogeneous plates, the parameter v is also equal to
unit because the following is valid

E_h® E.h?
D= Dp= o .
12(1-p, 1,0 12(1-p,, 1,0

Thus we obtain an important result, that such plates
behave like the isotropic metal plate with respect to the
longitudinal stiffness.

In addition, we obtain from the second relation
(31), that the Poisson ratio is also reduced according to
relationship

2d .
=5 My,”'(‘l‘:{;(l Py /Px)]=‘P:Py,‘(1 -opd, (34

where the additional parameter d=/D,/D,, has
appeared. In particular case of homogeneous material,
this parameter may be replaced by d=/E JE, . For

isotropic skin we can obtain
s s * $
Hy=@,(k-1+p,[p) =0 (1+p)-1.

It is obvious that the value of reduced Poisson ratio can
be expressed through the reduction factor ¢,*, which in
its turn depends upon the extent of critical state
exceedance p/p.” or ¢/e, .

Figure 3 shows the typical generalized dependence
of p./p,” upon ¢,/e,” obtained from equation (31). These
functions do not depend on parameter g; they are
piecewize linear. The obtained solution gives the
constant slopes of these curves in postbuckling region
or p/p,” is independent upon e/e". The tangent
modulus E/=1/A,/h=¢E, and reduction factor

B _1dp, 14y (35)

* E, E de, 3+y

s (93],.1=0.9).

These results qualitatively correspond to the results
of numerical solution of the problem under
consideration given by Stein(®; they coincide for the
initial phase of postbuckling deforming. The dotted
curve in Figure 3 shows the particular case of isotropic
plate, which correspond to the relationship (36)
reliably verified by tests(®

(36)
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FIGURE 3 - Stess-Strain Curves for Uniaxial

Compression

The obtained solution is rather accurate in the region
of “moderate postbuckling” when the conditions
e/e. <7, p/p. <4 are satisfied. If buckling state is
exceeded more than in these conditions, the value of ¢ f
appreciably differs from the numerical result® and
results of calculation by equations (36). In accordance

with equation (32) this value approaches

(1+Y)/(3+Y)=¢, as p |p ~e~ , while the tests and

equation (36) give considerably smaller values ¢,’=0.
The reason of this discrepancy is certainly the constant
representation of plate deflection mode (15), while the
real mode modifies during the plate loading up to the
possible full change of wave pattern®, For quasi-
homogeneous plates in this case, it is possible to
replace the relationships (32), (35) by the relationships
(36).1t should be noted that for uniaxial loading, the
introduction of elastic modulus reduction factor ¢,°
with respect to the longitudinal stiffness of skin is the
same as the introduction of effective skin width by von
Karman b,=¢ b at the same E,,
E’b=Eb.=¢’ Eb.

In case of biaxial loading, after substituting equation
(24) into equation (20) and taking into account that e,
=€, e,=¢, We can go over the usual relations (26) with
reduced stiffness characteristics

because

L R S S L
E; E S

where

£
1 1 A
E:“PiEx‘ P E;=‘P;Ey P P-;;"—;,
1h Agph Aqy (38)
s__AISZ___ .rAlsl_ :5
Bgy="— “yzA;z ysE:’

and the secant reduction factors ¢,’, ¢, Poisson ratios
By By, can be expressed by the following way

s_ 1+? » (P‘= 1+7

* 34y-2/p’ 7 1+3Yy-2y/p’
s s 2? ( 1)] s 1—@; 39
By=@ylby—=———1-=|=0,by—=> (39)
xy Yy|Fay d+(1+y) F yFxy a
s s 22 ( 1 ] s $\7
W=l ———{1-={=e 1 -(1-9,)d.
> {  aspl p ”

The following notation are introduced in (39)

4 2
“:,?5:1"% =l_"= 75‘ =2 ;.5
b 3 X 3 .
Ex I;Ex lyz \ Ey '”o ’ nO

The latter two depend on the direction of loading ().
Thus, as in case of uniaxial loading, the buckled plate
can be replaced by the stiffness-equivalent nonbuckled
plate made of nonlinear elastic material with
characteristics (38),(39). The extent of critical state
exceedance under biaxial compression is characterized

by the load index p becoming equal to unit in critical

state. In particular case of uniaxially loaded elongated
plate, when Y=y, d=d, p_=p, , the relations (39)

result in the above mentioned relations (32),(34). The
important inverse statement is also true, that the
general expressions (39) can be simply obtained from

(32), (34) by substituting p,75, d for p/p,’, v, d
respectively. After that ¢°, p,° can be obtained from
m, by the simple change of variables

s

$x s
x-y, y=x, y~1/y, d~1/d. . Stain-stress relations (37)
in the obtained solution are piecewize linear with

constant secant elastic characteristics

1 _1+y

881 3+y
%P,

El=¢'E = E, A =Eh,
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y y & 1+3? y? y
y
oe 25 1-¢!
[ Y %x t Y t Yy
u =—E p— u - = - >
xy )'apy Yitxy d(l"‘ )] Yy xy d (40)
e 2d
= t_—_zz t cdll P t (1
By="E, . Oulb = [ Pebn (1-¢)d,

It should be noted that all stiffness matrixes of the
buckled skin [A’], [A¢T, [B,1=[Ay1, [ByT=[A/1"
can be uniquely determined by the introduced secant
and tangent reduction factors and other elastic
characteristics of material (39), (40).

Py

4

FIGURE 4 - Example of Stability Boundary and
Postbuckling Plate Behavior

If numbers m,, n, are fixed, all the reduced stiffness
characteristics depend on the loads identically. The
character of these functions is determined by the index
p; it is independent on the load path. Since in
accordance with equation (23) in general case m,, n,
depend on nondimensional plate parameters «, 8, a/b
and they discretely change as  changes, the relations
(39), (40) behave similarly. The boundary of stability p=1

in p, p,-frame of reference is the piecewize linear
function; these pieces are created by the straight lines
corresponding to m, n, = Const. For the constant
values of p>1 , the similar piecewize boundaries with

discrete change of m, n, and relations (39), (40) at

corresponding values of ¢ (see Fig.4).

In each rectilinear piece of this boundary, the reduced
plate stiffness characteristics are constant and
independent on the load direction. For the plate which
form is close to the square when m, n, are
indépendent on ¢ and equal to unit, we obtain unique

relations of reduction factors and loading index p for

all possible load spectra. These relations (30), (40) are
the same for all load paths including the case of
uniaxial compression in x or y directions.

Shear consideration in compact plates

The plate is considered to be "compact” if o parameter

satisfies the inequality 0.5 <a <2 . In application to such

plate, similar approximate solution for postbuckling
skin behavior were obtained for the combination of
biaxial compression and shear $#0. The same
relationships  (11)-(14), (16) and binomial
approximation for deflection were used‘”

w(xy) =f"sinﬂ sin™Y +f,,sin ——2nxsin————2ny . (41)
a b a b
The expressions were obtained for reduced stiffenes
characteristics introduced above as well as for the shear

reduction factor ¢}=G,/G,, (v,,=t/G;) asafunction

of plate parameters and load level p, T=1/1,,

respectively. That solution is not shown here for the
sake of paper brevity.

Analysis of stress state and stability of composite
structures with the local skin buckling

It is known that the skin of thin-walled aerospace
structures often buckle locally under load which is
much less than the general failure load. The nonlinear
problem arises to determine the general stress state and
load-~carrying capability of such structures with buckled
skin®. For example, the static bending failure of wing
box shown in Figure 1 is usually caused by the general
instability of upper stringer-stiffened panel. The static
strength in this case can be analyzed by the method
described in the first part of present paper. After skin
buckling, the panel is considered as the structurally
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orthotropic panel with reduced skin elastic
characteristics which depend on the load level. These
characteristics enter into the known expressions for
stiffness [B], [D] of structurally-orthotropic panel.
Thus, two different problems should be solved. First,
the prebuckling stress state in the structure with
buckled skin is determined for the increased load (¢
parameter) by using some method, e.g. engineering
"beam" method or finite element method. The stress
resultants (membrane forces) are determined which
nonlinearly depend on the external load (N ’(s,¢) in case
of wing box bending). These resultants are necessary to
solve the general instability problem for each ¢ value.
For cylindrical compound structures (ie. wing,
fuselage), it is advisable to solve this second problem
by the above developed numerical method.

Let us consider in a general way both mentioned
problems taking into account specific features of
composite structures.

The numerical method for thin-walled structural
stress state determination in application to the metal
structures was reported by the authors on the Second
Word Congress on the Computational Mechanics in
Stuttgart®. With the help of special methods of
reduction and special finite elements, the problem is
reduced in essence to classical iteration methods of
variable elasticity parameters and the others which are
applied for the stress analysis of the structures made of
nonlinear elastic materials'®), The specific character of
composite skin is only in the necessity of calculation of
its secant reduced elastic characteristics in postbuckling
phase by using the relatively simple relationships
obtained above. Thus, the method of analysis proposed
in paper® can be applied to the structures comprising
composite elements.

If the restrictions stipulated in the beginning of this
paper are valid, the second problem of general
instability of both separate structurally-orthotropic
panel and cylindrical structure as the whole can be
solved for each load level by the described method.
~However in contrast to the SSS problem, the tangent
stiffness should be used in stability equations, which
characterize the relations between the increments of
generalized forces and the deformations of elements.
This result in the necessity of calculation of above
mentioned tangent elastic characteristics for buckled

composite skiﬁ, in particular according to relationships
(40). Naturally, further theoretical and experimental
investigations are necessary to make both secant and
tangent reduction factors for locally buckled composite
elements more accurate. This specially concerns with
nonplanar, nonrectangular elements at complicated
boundary conditions,

The authors clearly realize the approximate and
restricted character of the proposed approach to due
regard for postbuckling deformations of composite skin
when analyzing the general stress-strain state and
stability of complex structures. But the real alternative
is only finite-element solution of this problem in
general geometrically nonlinear statement for very
dense meshes, and with revealing all the local and
general buckling modes and bifurcation points up to the
structural failure loads. This method of analysis is
theoretically possible, if modern FEM computer
systems are in use, but the reliability of the obtained
results will always be doubtful.
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