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Abstract
A theory for linear analysis of thin-walled beams with open
cross-section containing elastic couplings made of general
composite laminates is developed.
For special fibre-reinforced materials with a low ratio E/E,
as glass-fibre-reinforced plastics a complex behaviour even
of a single layer is to be found. Considering this and other
non-classical effects like transverse-shear deformation the
basic assumption of rigid cross-section for the calculation
must be checked carefully.
Thus a known theory was modified by including the
influence on the inplane-deformation of the cross-section,
which is caused by the effects of elastic coupling of the
laminated branches of the cross-section and by the strains in
direction of the contour-line of the cross-section.
Finite-element-analysis as well as experimental results
confirm the modified theory and at the same time show its
limitations. Especially laminated beams with no or low
proportion of fibres in axial direction can be exactly
calculated with the modified theory and have a large
deviation to results calculated with other theories. Beams
containing segments of laminates with a high inplane
coupling can not be exactly calculated, even with the
modified theory.

Nomenclature
Ay, By, D; - membrane, coupling and plate stiffnesses
b, hl width, height and length of beam
By warping bimoment
Cy single layer stiffness
E,E, Young’s moduli of plies, referring to
fibre orientation
Gy shear modulus of plies
K* beam stiffnesses
M, M, bending moments, referring to beam
M, applied torsion moment
M, torsion moment, referring to beam
m,, m, m,.  bending and twisting moments
N axial force, referring to beam
n,, Ay N, membrane forces
n,s,x coordinate system for plate segment
0 applied force
t wall thickness
uv,w displacements of beam
U, v, w displacements of plate segment

XY, 2 coordinate system for beam

o fibre orientation

€, € Vs membrane strains referring to plate
segments

4y Exz transverse shear strain for beam

Ky, Ky, Ky bending curvatures referring to plate
segment

Oy, O, Tys stress field referring to plate segement

@. @y, @,  rotations around axes referring to beam

vy, Poisson’s ratio of plies

A warping function

Introduction
Composite materials are used in a wide field of applications
for lightweight structures. Its technology allows the con-
struction of specific material features by various ways of
stacking differently orientated fibres in the plies. Quite
usual is a symmetric and balanced stacking which results in
orthotropic material behaviour. Deviation from this usual
procedure leads to anisotropic material behaviour including
so-called elastic couplings like tension-shear, tension-
torsion or bending-torsion coupling.
In practice such anisotropic structures are usually not used.
One reason for this may be compex methods of calculation
methods, and another are the difficulties of reproducable
production of anisotropic structures.
Today the potential of elastic couplings is recognized,
because it is possible to take advantage of such couplings.
Applications are being found referring to static or dynamic
behaviour of composite rotor blades?V, influence of aero-
elasticity of composite aircraft wings® or creation of
coupled deformations with strain-actuators®. The numerical
methods using finite-element-method allow simple and
effective analysis of general anisotropic structures.
There are a lot of theories which have been developed for
analytical calculation of the structural behaviour of thin-
walled composite beams. Bauld and Tzeng® presented a
theory derived from Vlasov’s theory for thin-walled elastic
beams® which was developed for isotropic material, but
which does not take into account non-classical effects like
transverse-shear deformation and coupling between lami-
nate membrane reactions and moments.
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Chandra and Chopra' established a theory which includes
these effects and obtained verification of this theory with
experiments on composite I-beams containing unsymmetric
laminate stackings. They expanded this theory™ to a more
complex theory with more generalized beam forces by
considering inplane-warping effects. Wu and Sun®
developed a theory including the inplane-warping effects by
taking into account strains in contour direction of cross-
section, but by using classical shell theory calculation
procedure is also very complex.

In this paper a modified theory for calculation of thin-
walled composite beams with elastic couplings is presented
which bases on the Vlasov-type theory of Chandra and
Chopra®. Besides consideration of transverse-shear
deformation this theory takes into account the effects of
inplane warping of cross-section and its influence on the
structural behaviour which can be neglected only with
specific composite beams as shown in this paper. This is
realized by combining the assumptions of Wu and Sun®
with the theory of Chandra and Chopra'®. To validate the
analytical results glass-fibre reinforced C-beams were
analysed both numerical and experimental.

Some Remarks on Elastic Couplings
First of all some introductory remarks have to be made for

understanding and interpreting the complex behaviour of
composite beams with elastic couplings. The best way to do
this is to look at the basic relationship between stress and
strain of a single anisotropic layer (1).
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Several kinds of reinforced plastics were analysed for their
coupling-behaviour”. To demonstrate the effects of elastic
couplings the tension-shear-coupling of a glassfibre-rein-
forced-plastic (GRP) single layer is analysed here which
material data is shown in table 1.

E,[N/mm?] | E, [N/mm?] Gy [N/mm?] Vi

37940 11220
Table 1: Material data for GRP

3300

Refering to equation (1) the relationship between tension
and coupled shear-deformation is:
— C 0.0, C
=C..0 = 12 ~23 13 722 o (2)
Yl}' 13 "'x del|C| x

All stiffness-coefficients C;; of the single layer are enclosed

in equation (2). Because of low ratio E/E, of GRP the struc-
tural behaviour of tension-shear coupling is as shown in fig.
1. There is a change of sign at a fibre orientation of about 58
degrees, i.e. there is no tension-shear-coupling and, inter-
estingly enough, the tension-stiffness is minimal (see fig. 3).

=
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Fig. 1: Tension-shear coupling coeffizient G 13 VEIsus
fibre orientation of a single GRP-layer

Such behaviour is not seen in carbon-fibre reinforced
plastics (CRP) because of their high ratio E, / E,.

4| |

o

45°

60° 75°
Fig.2: Bending-torsion coupling of a tip bending loaded
GRP-plate with several fibre orientations

90° wiw,,,
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To show this effect of anisotropy a finite-element-analysis
was made for tip bending loaded plates with homogeneous
ply-stackings and several fibre-orientations. Because of this
homogenity the resulting bending-torsion coupling is com-
parable to the tension-shear coupling described above (see
fig. 2).

The result plots of relative displacement in z-direction
shows the twisting behaviour of the GRP-plate depending
on the fibre orientation. The curve of the lines indicates the
coupling of bending load with deformation of the plate in its
cross-section. For the single anisotropic layer one may con-
clude that a one-dimensional load leads to a complex two-
dimensional strain. The tension-shear coupling is also
influenced by the deformation perpendicular to the load
direction. This simple connection is transferable to all
elastic couplings of anisotropic structures. These findings
are important for the modified theory for thin-walled com-
posite beams. o

Increase in stiffness by constraining deformation
In this paragraph the influence of constraining deformation

on stiffness is analysed. Again the anisotropic single GRP
layer serves as an example. From relation (1) tension stiff-
ness can be calculated; the following relationship considers
the boundary conditions 6,=1,=0:

1 - det|C|

G = — ¢ e = Cl e
x — x 2 x 11 %x (3)
Cn Cp Cy3 ~ Cys
The coupled strain €, dependence on o, is:
— c.c,-C,C
ey = Cq12 o.x = 13 23 12 33 or (4)
det|C|

(for Y,, see relation (2)).

Considering the boundary conditions € =Y,=0,ie all de-
formations not in load-direction are constrained, relation (1)
reduces to:

e = CSe )

x

and the induced stresses’ o, and T,, dependence on o, can
simply be calculated:

— - C13
6, = —0, ; T, = —0 (6)

In fig. 3 the variation of tension stiffnesses le (coupled
displacements constrained) and C,f(free deformation) are
shown depending on fibre orientation.

By constraining the coupled deformations a stiffness in-
crease of up to 100% for the single layer is within reach
when using GRP material. The increase is dependent on the
magnitude of elastic coupling of the material. Such an
increase is not seen in CRP, because of its smaller coupling
behaviour as shown in the paragraph above. However, with
an increase of stiffness additional stresses will be induced.
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Fig. 3: Tension stiffnesses C,; (coupled deformations
constrained) and C (free deformation) of a single GRP
layer versus fibre orientation

Assumptions for the theory of thin-walled composite

beams with elastic couplings
Most authors (like Chandra and Chopra®” | Wu and Sun®

and Bauld and Tzeng®) base their theories on the theory of
thin-walled beams by Vlasov® and Gjelsvik'¥ . All these
theories are based on the same fundamental assumptions.
The reason for this is, that all these theories are developed
from basic theories for isotropic material. Composite
materials are different in some important aspects, but to
apply the theories, a lot of assumptions made for isotropic
materials can be transformed for composite materials.
Three basic assumptions are;

1) The cross-section of the beam does not deform in its own
plane. This means inplane deformation of the cross-section
is neglected and the strain in contour direction is neglected
in comparison to the normal strain in direction of the beam-
axis.

2) By doing that the normal stress in the contour direction is
neglected in comparison to the normal stress in direction of
the beam-axis.

3) The cross-section of the thin-walled beam consists of
several straight segments. Any of these segments behave
like a thin plate and are governed now by linear classical
laminate theory.

Assumption 1) was introduced by Viasov®® and is valid for
isotropic material. This assumption is important to
formulate simple kinematic correlations for the cross-
section. There are theories which take into account
nonlinear kinematic effects’'? but they are limited to beams
with solid cross-sections and very difficult to handle and
change for thin-walled beams.

Beams of composite materials especially those with elastic
couplings have a strange deformation-behaviour including
a bigger inplane deformation of the cross-section than that
of isotropic materials. The stacking sequence and fibre
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orientation of the laminates is decisive for the inplane-
behaviour. Using a high proportion of 0°-plies causes a high
stiffness against inplane deformation. A good theory for
composite beams should satisfy all variations of laminates.
This leads automatically to a better understanding of the
complex properties of composite materials.

Chandra and Chopra® have used CRP I-beams with
stacking sequences [0/90], in the web and [0/90] in flanges
with two layers of different fibre orientations at the bottom
and on the top to get an anisotropic behaviour of the I-beam.
The specimens used in this analysis are GRP C-beams with
different fibre orientations [+ea], or [+a/-a]s to show the
limitations of the theories and their fundamental
assumptions.

A finite-element-analysis of a tip bending loaded C-beam
with stacking [+45], shows a high inplane deformation (fig.
4) at the modelled ideal fixed bearing end (that means the
beam can deform in its own plane at this end ). Fig. 4 is not
true to scale to get a better image of the inplane deforma-
tion.

|
|
== = undeformed shape '
e (eformed shape |

Fig. 4: C-beam under tip bending load. Qualitative defor-
mation of cross-section at the ideal clamped end (not true
to scale).

This is an indication that the validity for assumption 1) must
always be checked.

Modified Plate Stress Field
The plate stress field of a general composite laminate
including all strains and resulting moments is:

nx ex
n, g 4, 4, 4,
n 4B ||y
A TS Al B 1.0t 41 = 4, 4, 4,
m, B|D K,
m, K, 4, 4, 4,
-
m,, x, Y]
B, B B, D), Dy, Dy
[B] = B12 Bzz Bz3 ; [DY = D Dzz Dzs
B, By, By, D3 Dy Dy

Ay, By and D;; are defined in the appendix.
The sunplest way to take into account assumption 1) and 2)
and neglect €, K,n and m_ is to eliminate line and row 2
and 5 of equation (7). By doing that the coupling effects

induced by the strains € and x_ will be neglected. This
plate stress field is used by Chandra and Chopra in their
theory®.

By skillfull convertation of equation (7) it is possible to ful-
fill assumptions 1) and 2) and take into account the induced
influence of €, and x, on the other strains. It is assumed
that the normal stresses in direction of the contour line (cor-
responding to »n, and m ) are zero. The normal strains €,
and k_are so small as to be neglected regarding to the in-
plane deformation. This is important to fulfill assumption 1)
and to use the known kinematic correlations. But with
regard to their influence on other strains they are not small.
This assumption was made by Wu and Sun® and is used
here in combination with the theory of Chandra and
Chopra®.

With condition n and m,, are zero in equation (7) €, in line
2 and k, in line 5 are described in dependency on e , v,
x_ and x_. These two correlations are substituted in the
other four lines and one gets:

nx sx *
Bl _A___inB_“_ Yy [4"] = 4, 4,
m B K ’ - * *
* B | D ¥ 43 A
mxy ny (8)
. B, By . Dy, Dy
[8°] R HERE *
B;, B 13 Y33
with
2 2
4 = 2A12B12822 A4,D,, ~ B4,
1t 1 3
D,,A4,, - By,
4 =4 A, (By,Byy=A,,D,,) + B, (A, By, ~45,By3)
13~ 3 2
D,,A4,, -~ By,
—y 2A23B22B23 Azsbzz —BzzAzz
A33 =gt 2
DzzAzz B;,
B =B 4,,(By,D\;,~B,,D,,) + B,(B,,By;, ~4,,D,)
117 ®n 2
D4y - Bzz
B = A4,,(B,, Dy =B,y D)) + B,,(B,,B,;~4,,D),)
13 13 2
DzzAzz B,
B =B 23(By Dy, =B, D) + (Bn 22 45, D,,)
31 7“3 2
DzzAzz B,,
B = " 4,,(B,,D D)) + B, (B,,B,;-4,,D,,)
33 7 P33 z
DzzAzz
2
2B,,B,,D,, -D14
x _ 12722 D,, 124022
D, 'Dn B2
D,,4,, ~ By,
D = + B,,(B,, D3 =By Dy,) *+ D1y (ByyByy —4,,Dy5)
13~ Y3 -
DzzAzz Bzz
2B,,B,.D,, -BiD,_ -Dx4
* _ 22223 232 23422
D33 ‘Dss + 2
D,,4,, - By
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It is to be noted that the submatrix [B*] is not symmetric
any more and consists of four different stiffnesses. The
whole stiffness-matrix, however, is symmetric.

This modified plate stress field (8) will be applied to the
theory of Chandra and Chopra® to get better results for
composite thin-walled beams containing a low inplane-
deformation stiffness. The results will be compared to the
results obtained with the original theory.

Theory of thin-walled composite beams with open cross-

section and elastic coupings by Chandra and Chopra
The theory of Chandra and Chopra is based on the theory of

Vlasov and Gjelsvik as mentioned above. The derivation of
the theory is quoted shortly here. For details see ©. Some
basic steps which are necessary for understanding are
outlined here.

Three different coordinate systems are used: an orthogonal
Cartesian coordinate system (x,),z) for the beam (fig. 5); the
orthogonal coordinate system (n,s,x) for any plate segment
(fig. 6); and a contour coordinate system s with s along the
contour midplane line of the cross-section, starting from any
selected origin (fig. 7) (note that the coordinate systems are
different compared to®).

general plate segment

Fig. 5: Coordinate system of beam with generalized beam
forces

The seven generalized beam forces are also shown in fig. 5.
The torsional moment M; consists of St.Venant Torsion T
(warping unconstrained) and warping torsion T, (warping
constrained) which is related to the warping bimoment B; .

Fig. 6 Stress and moments resultants acting on any general
plate segment and plate segment coordinate system

zZW

Fig. 7: Contour coordinate system and definitions of beam
displacements and rotation

With kinematic correlation from geometric considerations in
fig. 6 the plate displacements v(x,s) and w(x,s) will be
related to the beam displacements ¥, W and ¢, . The axial
displacement u(x,s) is determined from the known shear
strain-displacement relation. This results in the following
equations:

u=U+yg +zQ,+0q,
v = VcosO + Wsinb + @ r €))
w = ~VsinO + Wcosb +q @,

with
w:—fsrds ; (Py:sz_W/ ; (pz:ny_V/
Equations for the membrane strains € _and y_ and bending
curvatures k_and x__ in the plate result:
g = U/+2(P/ +y(p/+w‘p//
y z x

Yo = Y, 5in0 +v, cosd

/ /s Ve / 10
x, = @,cos0 - @ sind - g ¢, + v, 5in0 - v, cosB
K, = -2 (p:

Note that the shear strain y_ will be taken into account.
The generalized beam forces and their equilibrium
equations can be derived by applying the principle of virtual
work similar to that used by Gjelsvik !? but now including
the transverse shear deformation of the beam. For this
several energy distributions are developed:
a) The external work done by the shell and plate forces
during a displacement of the cross-section:
w, = f(nxu tn,vomow ! tqw —mn(px)ds +

c 11)

C Y (mdw-mi) (

branches

or by substituting the kinematic relations of the displace-
ments «, v and w from (9):
W,=NU+QV + QW+ M_¢ +B_ @+

+M +M@ +F +F 12)
y(py z(pz nyz zyxy
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with the generalized beam forces
N = f n, ds

g, = f (nxJ cosO —qxsine)ds +
Y (mx’s sin® - m | sin@i)

branches

Q, = f(nnsinﬁ +qxcose)ds -
-y (m:‘ costV/ - m | cosei)

branches

M= [(n,r-q,9-m,)ds -

- Y (mlq?mliq?)

branches

B, = f(nx(o-qu)ds

~

13)

M, = f:(nxz+mxcos6>ds
M, = f’(nxy—mxsin(?)ds
F,= —fsmxcoseds

F, = f‘mx sin6 ds

Important are the following known simplification 9
-_— / . Pt / . - . e /
Qy‘Mz,Q,‘My’MT‘Ts+T¢.,’Tm" -B;

&m ) a4
q | ds

'2fs"'xsds 3 T, = f’( n_r+ 6;

b) the external virtual work done by the applied loadings on
the plate:

T, =

w, = pU+qu+qu+mT(px+bT(p:+
+my(py+mz(pz +'f;/sz+szxy

P, 4, 4, my, by, m, m, f, and f, are generalized load

intensities on the beam, derived from loadings on the shell
)

15)

c) the strain energy using the relations between beam forces
and shell forces:

z

1 / I
I =—|NU+T,@,+B. @, +M @ + M@ +
2( y T vt 16)

+G, Yy * G Yt F, YL F.YL )
with
an

d) the internal virtual work which is obtained from strain
energy can be simplified to:

/
Wi = —TS(px‘Gnyy—Gzsz

y

G, = fsn“coseds ; G, = f‘n“sinﬁds

18)

There are six equilibrium equations which are obtained
between the acting generalized loads and the resulting beam
forces by considering a beam element and equating the
external work to internal work for any virtual displacement:

N +p=0
M/ om0

Vi / / _ 19)
B +b,-Tg-m =0
F/+G, =0
F/+G, =0

The 9 generalized beam forces are related to the 6 genera-
lized displacements. Using modified plate stress-strain rela-
tions (8) and plate strain-beam displacement relations (10) a
system of differential equations can be derived:

K Ky Ky K K K K K K | [g]
| | K K K K K K K K | o]
Mt Ky Ky Kys Kyg Ky Koy Ko (P:
B, K, K;s Ky Ky K;; K (P;/
Ts|= K5 Ky Kg; Kgy Ko (P: 20)
g Koo K Ko K | |1
F' symmetric K, Ky Koo Y:/ci
F: Ks:; Ks; Y’;y
K, _ | Y |

The coefficients K ; are given in the appendix.

For a beam made of general laminates having an unsymme-
tric cross-section the stiffness matrix {K*} is completely
populated. Some coefficients will be zero if any kind of
symmetry is used relating to cross-section and stacking
sequence of laminates and if the coordinate system is
chosen judiciously.

C-beams under bending and torsional loads

Analytical solution
Three different composite GRP C-beams are chosen as

specimens with identical geometry but different ply-
stacking of the branches. Their geometric data are summed
up in table 2, the cross-section is shown in fig. 8 with its
point of reference laid at the intersection of cross-section
contour-line with axis of symmetry.

Cases Cross-section Stacking
flanges b = 30 mm

C1 web h = 56 mm [+30/-30]¢

C2 wall-thickness t = [+45/-45])¢

C3 1.2 mm ( 4 layers) [+45],

Load condition Length / Load

tip bending load | 777 mm | Q=19.8N

torsional load 800 mm | M;=1.34Nm

Table 2: Geometric data of GRP-C-beams
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h=56 mm

[
L

30 mm

b=

Fig. 8: Cross-section of C-beam with point
of reference

There are two loading conditions considered (fig. 9). Tip
bending load with free warping at the tip and a clamped end
and torsional load at the middle section of the beam with
fork bearings at both ends. The fork bearings take no forces
in axial directions so warping is free. In the second case
only half of the beam can be considered. Because of
symmetry warping is constraint at the loaded middle
section.

12 -
-
Y $ >¥ torsional load
z

P /

3 v
d

y$—>x
4

Fig. 9: Considered load conditions for GRP C-beams

tip-bending load

Because of symmetric stacking sequences (all stiffness-
coefficients BU are zero), the symmetric cross-section, and
the chosen reference point the system of differential equa-
tions (20) reduces to:

Ky 0 K3 0 0 (K0 0 0 |[y)]

w|| K0 K0 0 &DEKL 0 ||g

Mi Ks*s 0 Ks*s 0 0 0 K;9 (P:

B, Koy 0 0 (Kp)Kg 0 |lg!

Tg)= Kg 0 0 0 Ky |lg|@D

gy K 0 0 0 [|Y,

F: symmetric K, 0 0 Y:/rz

'F y) Kg 0 Y’;"
Ko, RE

The coefficients put in parenthesis are zero for C-beams C3.
The remaining coefficients are given in the appendix.

Tip bending load. For the tip bending loaded C-beam the
only acting load is:

) =@,
All other loads are zero.
For a beam subjected to tip bending or tip torsional load the
variation of shear-strain is zero (yiy = y:z =0). Comparing
this with equilibrium equations (19) and the differential
equation system of the C-beam (22) one can obtain:
N=0=K UK\ +KysY, =0
x / = [ *
M=0=K,, 9, +K,, @, *Kp¥,,=0
g * x« ]/ x / g
My=Ql(x‘I) =Ky u'+ K3 (Py+K35 ¢.=0 ,(x-D)
/ x « M * / * /
BT—Ts=0 =’K24(P, +K4, @, ~ K5 (py—KSS(‘px: 0
/ L/, « * *
F, =G, =Ky @, +Ky@, = KIGU/+K66ny
/ * N * [ « / PR/ %
F =G =K@, +Ko@, =Kp 9+ K79, + Ko7 Y,

(22)

This system of six equations has to be solved with respect to
a differential equation in ¢_ and its derivatives by substi-
tution. Because there are still seven unknown coefficients
more equations are needed. One gets them by derivating N,
M, and M .. Now there are three more equations and one

more unknown coefficient U”:
N'=0 = K\ U"+K,0,=0
M/ =0 = K, +K,, ¢/ =0 23

/ ~ * * x ~
M,=Q, =~ KIZU//+K33(‘Py + K@, =0,

The remaining differential equation of 3rd order is:
K@+ Ky @ + Ko @) + Kp, 0,(x-1) =0 (24)

The constants Kj; are functions of stiffness coefficients KU .
With the help of the mathematical program MATHCAD 6.0
PLUS the differential equation has been solved by using the
following boundary conditions:

Clampedend: ¢ (x=0) = 0
(p;(x:O) = 0 (warping constrained)
Loading end: (pi/(x=l) = 0 (warping free)

Now the differential equations for other beam displacements
can be achieved by substituting in (23). For (pt/ one can find
in general form:

O = K,0 + K@l + Ky @, + K, 0, (x-1) (25)

Integrating (26) the bending slope @, can be determined.
Remembering W/ = Y.~ @, onecan find the corresponding
boundary conditions and the solution for the deflection W.

For brevity the complete calculation is omitted here.

Torsion load. The acting torsion load at the middle sec-
tion of the beam is:

m,(1/2) = M,

With the same procedure described above for the bending
load-case one gets a similar system of nine differential
equations:
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N:0=’K1:U/+K1‘3(P;+K1‘6ny:0
L x / *
M=0=K,,0,+K,,9,*K;;Y,, =0
_ * / * / LI
M=0=K;U+K;; 9, +K;5¢,=0
/ 7 LN/ * x [ x / 7
Br-To=M_ =K, @, Ky, @, ~Ky59,~ K559, =M
/ LN/ « * *
F, =G, =Ky, * Ky @, =K16U/+K66ny
/ LN/ LN/ * [/ * I *
F =G =K@, +Kss @, =K,;9,*K ;@ + K75 Y,
N'=0=K U"+K\q,=0
=0~ K0/ el <o

/ * LN *«
M, =0 ='K13U//+K33(Py+K35(px =0

(26)

The remaining differential equation in ¢_ is:

" W / -
K@, + Kg, @, + Ky, + KpyM, =0 @n

and the equation for deflection W is obtained in the same
way as described above.

Finite-Element Analysis
To verify the analytical results a finite-element analysis was

made using the program ANSYS. The C-beams were
modelled with SHELL 91-elements, a layered 8 node shell-
element. The flange width was divided into two elements,
web height into three elements. For the bending load
condition 294 elements were used (see fig. 10), for the
torsion load condition 140 elements (only half of the beam
is to be modelled).

Fig. 10: Finite-element modell of composite C-beam

To take into account the restrictive assumption of rigid
cross-section and neglecting stress and strain in contour-
direction additional boundary conditions were used in the
model. With a special command every cross-section of the
C-beam spanned by nodes was defined as a rigid section.
For free deformation of the beam, these conditions are not
considered. Thus a comparsion of old and modified theory
with finite-element analysis is possible.

Experimental Analysis
The analysed C-beams are made of the GRP material in

table 1. The specimens were built by employing an auto-

clave molding technique. Their laminated branches have
identical stacking sequences. For that the fabrication of the
specimen was simple by laying-up the glass-epoxy layers
around a C-formed metal mold and compressing them by
applying vacuum.

The three C-beams were tested separately for their structural
response under tip bending load and torsional load at the
middle section of the beam.

In fig. 11 the set-up for bending test is shown. For secure
clamping at one end a special device was built. At the tip
the web was reinforced with a small stiff plate for spreading
the load. The load is obtained by using weights. In order to
avoid buckling in the flanges the bending load was applied
in the positive z-direction. The structural response was
measured in terms of bending and induced twist at the tip.
These were determined by measuring the displacements of
the cross-section by means of two electronic detectors
positioned in contact with one point of the contour line via
a support plate.

Displacement m m
detectors

Spreading \
load plate ~ Detector
support
plate

Cable

Weight carrier
Weights

loading end clamped end

Fig. 11: Bending test set-up

«— Pulley _ pisplacement
{o 94/ detectors \ﬂ
{ = m 1 ¢
{ \ ]
\ Detector
Cable support bar
F
Clamped cross section
¢ Weiaht carti Weights
eight carrier
el
=]

loading middle section

fork hearing end

Fig. 12: Torsion test set-up
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Fig. 12 shows the set-up for torsion test. At both ends fork
bearings are used which allow warping. The torsion load
was obtained by two weights, one via a pulley. For
measuring displacements the same set-up was used like as
with the bending test.

Results and Discussion

In the following six figures the results for the three different
GRP C-beams and the two load conditions are given. The
spanwise plots of both analytical solutions (theory of
Chandra and Chopra®® typed as theory a, modified theory as
theory b), the solutions of finite-element analysis (with
boundary condition rigid cross-sections typed as FE a, free
deformation of cross-sections as FE b) and the experimental
result at the loading points are shown.

First of all it is to be noted that there is a clear difference
between both theories. The theory by Chandra and Chopra®
implies a too high a stiffness. The results of the finite-
element-analysis correspond very well with the respective
theory for the C-beams with the stackings [+30/-30]5 and
[+45/-45], and well with the stacking [+45], at least with
the modified theory. By choosing the correct boundary
conditions the finite-element-method allows a good
simulation of such restrictive theories.
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Fig. 13: Deflection of tip bending loaded GRP C-beam
C1 with stacking [+30/-30]
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Fig. 14: Deflection of tip bending loaded GRP C-beam
C2 with stacking [+45/-45]
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Fig. 15: Deflection of tip bending loaded GRP C-beam
C3 with stacking [+45],

The experimental results correspond with the modified
theory in spite of small differences. The bending and
torsional stiffness decreases from stacking [+30/-30] via
[+45/-45] to [+45], as expected.

In spite of branches containing elastic couplings because of
their laminate stacking, no significant coupled-deformation
(twist at bending load or deflection at torsion load) could be
noticed. The reason for this is the special geometry of the C-
beam that allows no geometric coupling. The CRP I-beam
analysed in © has a clear bending-torsion coupling because
of the distance between the anisotropic flanges. They lay
perpendicular to the load direction and thus cause the
bending torsion coupling. In case of C-beam only the web
lays perpendicular to the load direction. Both flanges are too
stiff and constrain the coupling of the web.
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Fig. 16: Twist of warping torque loaded GRP-C-beam
C1 with stacking [+30/-30]
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Fig. 17: Twist of warping torque loaded GRP C-beam
C2 with stacking [+45/-45]
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Fig. 18: Twist of warping torque loaded GRP C-beam
C3 with stacking [+45],

The almost exact confirmation of the modified theory by the
finite-element analysis with C-beams that have stackings of
[+30/-30]s and [+45/-45); is an indication for the
importance of the inplane deformation behaviour of thin-
walled beams. With the modified plate stress field (8) it is
possible to take into account these inplane-warping effects.
The limitations of the modified theory can be seen in fig. 15
and 18 showing the results for the C-beam with stacking of
[+45],. The deviation between analytical and finite-element
results is caused by high tension-shear coupling of the
single branches. Because of this the low inplane stiffness
perpendicular to the fibre orientation can not be taken into
account, even with the modified theory. Here a nonlinear
procedure is necessary.

Conclusion
The theory by Chandra and Chopra® for linear analysis of
thin-walled beams with open cross-section made of general
composite laminates (thus containing elastic couplings) is
modified to take into account the inplane-deformation of
cross-section. The effects of elastic coupling range from
inplane couplings of laminates to couplings of beam
displacements because of beam geometry and have a
significant influence on the inplane-deformation. Finite-
element-analysis as well as experimental results confirm the

modified theory and at the same time show its limitations.
Especially laminated beams with no or low proportion of
fibres in axial direction can be exactly calculated with the
modified theory. Beams containing segments of laminates
with a high inplane coupling can not be exactly calculated,
even with the modified theory.

References

@ Bank, L. C. and Kao, C. H.
“The Influence of Geometric and Material Design
Variables on the Free Vibration of Thin-Walled
Composite Material Beams”
Journal of Vibration, Acoustics, Stress, and Reliability in
Design, Vol. 111, July 1989

@ Librescu, L., Meirovitch, L. and Song, O.
“A Refined Structural Model of Composite Aircraft
Wings for the Enhancement of Vibrational and
Aeroelastic Response Characteristics”
AIAA-93-1536-CP

©® Bothwell, Ch. M., Chandra, R., Chopra, 1.
“Torsional Actuation with Extension-Torsion Composite
Coupling and a Magnetostrictive Actuator”
AIAA Journal, Vol. 33, No. 4, April 1995

 Bauld jr., N. R. and Lih-Shyng T.
“A Vlasov Theory for Fiber-Reinforced Beams with
Thin-Walled open Cross Sections”
Int. J. Solids Structures, Vol. 20, No. 3, 1984

® Vlasov, V. Z.
“Thin-Walled Elastic Beams”
National Science Foundation and Department of
Commerce, USA

©® Chandra, R. and Chopra I.
“Experimental and Theoretical Analysis of Composite I-
Beams with Elastic Couplings”
AIAA Journal, Vol. 29, No. 12, December 1991

™ Chandra, R. and Chopra, 1.
“Structural Modeling of Composite Beams with
Induced-Strain Actuators”
AIAA Journal, Vol. 31, No. 9, September 1993

® Wu,X.and SunC. T.
“Simplified Theory for Composite Thin-Walled Beams”
AIAA Joumnal, Vol. 30, No. 12, December 1992

® Kaiser, C. and Francescatti, D.
“Some basic reflections on elastic couplings of
composite beams”
Proc. of the Symposium Calculation of Composite
Structures using Numerical Methods, Technical
University Munich, Chair for Lightweight Structures,
March 1996 (in German)

(9 Gjelsvik, A.
“The Theory of Thin-Wailed Bars”
John Wiley & Sons, New York, 1981

(1 Laulusa, A., Bachau, O. A. and Theron, N. J.
“Theoretical and Experimental Investigation of the
Nonlinear Behavior of Composite Beams”
La Recherche Aérospatiale, No. 4, 1995

977



__Appendix K4;=—2f(m3;;—n,;q)ds;
The elements of the stiffness matrix [4BD] of general plate :

stress field are calculated with classical laminate theory as g » f cosO (w4 1'3 - }3;l q)ds;
follows: s

- Ko = [ sinf(wAd;- B, q)ds;
k a7 13~ By
Aii = Zcij (hk+l hk) f‘ ) .
e K =f (w B, sin0 - D g sinB ) ds;
Bl” = l zclfk (hkz*‘l hkz) * ! * *
Yo2ia K49=—f(wB“cosG—D”qcose)ds;
1 X~ k(3 3 .
by =3 kEC; (n- 1) K, =4f D, ds; K= 2[ B,,cosOds;
-1

. . . = - -2| D 0ds;
C,.]'.‘refers to stiffness matrix of k™ layer of any laminated Ksy zf By sind ds; Ky = f 135100 ds

plate §egmept cor}tamfng m layefs with h,,, @d h.as its Ko =2 f D,,cos0 ds;

coordinates in »-direction from midplane of laminate.

- The coefficients of symmetric stiffness matrix [K*] g - f Al cos?0ds: K. = f A" sin0 cosO ds:
* * . . . * * 66 33 ? 67 £33 4

(Ky =K, ) will be calculated with stiffnesses 4, B, and

D, from (9): ' Ko =f B,,sin0 cosB ds; Ky = ~f B, cos*0ds;
K =[4,ds; K, =[(yA,; - B, sin0)ds T . L
u f n 12 f oo K77=fA33sin29ds; Koy =f B,,sin’0 ds;
s s

Ky, = fs(zA;, + B, cosB)ds; K, = fs( w4, - B, q)ds; K - ‘f B, sind cos0 ds;
Kis = -2 fsB'; ds; Kyg = f,A;B cosB ds; Kgg = f ‘Dl*l sin?0 ds; Ky = —f D/, sinB cosOds;
K= fsA s sin0ds; Ky = fsB,*, sin6 ds; . - st;l o s

For the:analysed C-beams the stiffness coefﬁcientsK,.; can

K= —fB;l cosO ds;
K be calculated to:

22 _—.f [y(}’A;l —-BI*ISine) - Sine(yBl*l —D;‘Sine )]ds;
s

\ . . . . Kl*l = (2b +h)A1; > K1; = bzAl*l > 15 = hAxs
K23=fs[y(zA“+B“cose)—sin@(zB”+Dncos6)]ds; K, - ﬁ(bﬂ“ﬁ)f!ﬁ LK - BB e D,
Kz’;:fs{y((oA,*,-B;q)~sin9((oB,*,—D1*,q)]ds; K - bhAs, 5 Ki = 26D,

K, =—2fs(yBl"3-Dl;sinB)ds; K, = %béAl*l +hD,
K2;=f:(yA1;cos9-B;lsinecosﬂ)ds; K = -2hD), ; Ky = -hD),
Kz’;=fs(yA,;sin6—B;lsinzﬂ)ds; K, = E;—BAS . ( % . _g_bz) Dy
Kz’;=fs(y31’;sin6-Dl*,sinze)ds; K} - —%ifi{; . K, = 5D,
K2;=—f:(yB;lcose—Dl*lsinecose)ds; K, =4(2b+h)D;, : Ko = hDy 3 Ko = hds,
K,, =fs[z(zA;,+B;lcose)+cose(zB;1+D;1cos6)]ds; Ky =2bA,, ; Kg =2bD;, 5 Ky = hDy)

K., =f [z(wAl", -B,q) +cosO(wB,; - D,|q )]ds;

K5 = —ZIS(ZB;; +D,;cos0 ) ds;

Ko
'

—f (z4,5c0s0 + B, cos?0) ds;
Ky, = f:(zAlg sin@ + B,, sin6 cosO ) ds;
K, :f (z B,;sin0 + D, 5in0 cos ) ds;

Ky, = —f (z B, cos + D, cos?0 ) ds;

~
1

44 fs[“’((‘)Al*l"B;ﬂ) —q((oB;,—D;lq)]ds;
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