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Introduction

Structural optimization methodology represents,
in aerospace research, a consolidated and almost a
mandatory tool to analyze some critical problems
generated by conflicting project parameters or
severe requirements needed.

As known, the optimization problem is set, in
mathematical terms, as:

Find the minimum [maximum] of an objective
function F(X) with X =(x; x5,..,x,) subjectto the
following constraints:
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Where the m functions g allowing functional
constraints for design are usually named as “state
functions”.

The traditional methods developed for solving
this probiem, as the simplexum method, gradient
and penaity function methods, Powell’'s method and
others are generally suffering from important
limitations with relative lack of robustness and/or
efficiency@@®

In fact, each of these methods stops as soon as
a minimum is found, without the possibility to
distinguish among local and global minima.

Additionally, severe limitations for objective and
state functions are set.

These must be often continuous, together with
their derivatives up to some orders.

For these reasons the use of Genetic Algorithm
based procedures is a more and more diffuse
practice in optimization problems.

With an absolutely different approach, emulating
natural laws of biological evolution, Genetic
Algorithms permit to overcome the above-
mentioned limitations and offer high probability of
convergence to the absolute minimum also if
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discrete andfor multiconnected domain based
mathematical functions are used™” .

The principal limitation of Genetic Algorithms,
expecially if used within F.E.M. or C.F.D. methods,
is an excessive amount of computing resources,
due to high number of loops needed.

To make this problem worse, there is often no
possibility to use a such type of approximate model
for objective or state functions, because a lack of
accuracy or again, highly time consuming activity
happens, with loss of utility.

The present paper, analyzing a specific
optimization example, shows a general Genetic
Algorithm based methodology, for Turbomachinery
design and F.E.M. rotating disks analysis.

In many problems of rotating disks design,
some difficulty occurs when traditional optimization
methods are used.

An example is objective or state function which
represents a quantity that may change geometric
location from loop to loop.

This happens,for example, when in shape
optimization process maximum stress is used as
state variable.

In such case, as project parameters change,
the stress peak position will be modified,
generating a poor state variable approximation.

For this situation, the preferred solution is to
define some key locations, monitoring stress in
topic elements, despite of the difficulty to reveal
and to choose enough of these points.

Of course, this solution is not possible for a
location dependent objective function which must
be naturally unique.

Another typical situation where some troubles
occur, when traditional algorithms are applied, is
using equality relations in constraints equations.

This happens, for example, when a 2D axial-
symmetric F.E.M. model is used to simulate an
highly cyclic-symmetric  configured geometry,
(presence of ovalized holes and/or 2D modeled
blades) and an equivalent distribution of element
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properties, according to an
determined foundamental
found.

In this case, two state variables for the same
quantity {frequency) are needed, with dummy, wide
enough ranges for smooth approximation, and
braketed on the desired value.

Otherwise, using one state variable with a very
small range centered on the target value, a function
approximation could be not realized.

The negative effect that occurs using this trick is
a great number of infeasible generated solution and

a low speed convergence process.
The use of a Genetic Algorithm in these critical

situations is a very suitable solution, because the
high number of analyzed configurations is balanced
by dramatic loss of efficiency of fraditional
algorithms and moreover the superior capability of
Genetic Algorithms in finding absolute optimum is
used.

experimentally
frequency, must be

The Genetic Algorithm Optimization

The suggested methodology is illustrated with
an example concerning the optimization design of
an aeronautical turbine.

The turbomachinery element object of study, is
an A.P.U. (Auxiliary Power Unit) turbine equipping
an high performance aircraft.

The desired objective is to maximize the low-
cycle fatigue life.

To achieve this goal, the objective function has
been defined as the radial stress peak in the disk
subject to centrifugal load®.

Project variables are geometric parameters
defined in critical areas, with modifying profile
shape capability.

The moment of Inertia lyy (with y symmetry axis)
has been defined as state variable to satisfy severe
start-up requirements.

Parametric Geometry

In Figures 1 and 2 respectively, the axial-
symmetric turbine shape and a detail of parametric
regions of interest for optimization are showed.

The stress peak to be minimized is found near at
two specific sectors on “Back-Face”
profile,respectively defined as "Upper Back-Face”
and “Bottom Back Face”.

In these two zones of the disk, if also small
shape modifications are made, a sensibie and fast
stress alteration takes place. ;

To reach a better high gradient stress control on

Back Face, the shapes have been modeled with

cubic spline curves, because with this type of

geometric entity, smooth profiles, according to the
scope of optimization and best stress distribution
are easily obtained.

BACK-FACE

Figure 1
A.P.U. Turbine axial-symmetric profile

The Upper Back-Face spline is formed by six
control points.
First and last point are a boundary for the

parametric profile, so they are fixed (not
parametric)
entities.
To define a
geometry, four
control points must A
be set.

This is done by
defining eight point
coordinates in
oblique axis
system with origin
onto A point, X axis
toward AB chord

direction and Y
axis parallel to B
turbine axis.

For

convenience, X is
defined as radial
direction and Y as

axial. The eight
coordinates  of  Figure 2:Upper Back-Face
parametric  points  parametric profile (AB curve)

must be organized
into an ordered and hierarchical system.

In fact, the connected spline points forms an
ordered list; if these points are made parametric,
the radial coordinate of a Pi point is needed to be
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not greater than next or smaller than previous P;
point coordinate.

Therefore Xi coordinates must be defined under
the following constraints:

X <X; <X, 1714 (3)

Y (i1 - x,) = x5 =|4B| (4)

i=0.4

If the one of the above conditions cannot be
verified, the spline would be trasformed into a laced
curve with one or more coincident knots and
therefore totally different than the needed one.

According to the last, a definition of radial
design variables as adimensional quantities is
required because if defined as relative increments,
a functional dependency condition would be taken.

The problem is solved by breaking the AB
chord with a middle point P1 guided by
adimensional and normalized variable X1.

The last of two segments obtained with the cut,
is broken too with X2 parameter, generating P2
point and so on, until the last division is made (see
figure 3.A).

Radial geometric coordinates of spline base
points therefore, are expressed by a recursive form

A Y
P1 X
!
=t
|
P3 7*
e
{
,J
A B C
Figure 3-A-B-C
as follows:
X, =0
x; = LX),
x; =(L-x)X; +x,
,\*.3=(L—x2)X3+x2 (5)
g =(L-x3) X, +x,
x5=1L1L

where x;,..xs are the radial geometric locations
of spline control points, X,..Xs are the radial

project variables with a normalized range [0,1] and
L is the AB chord length.

Also if no specific design limitation is really
needed for axial coordinates, these are
conveniently conditioned, so generated splines
cannot have concavity toward outer side.

This is done to avoid any clearly useless
configuration for the examined problem, with the
resulting low convergence speed (see figure 3.B).

Constraints for axial varables are made, for a
interior point coordinates, by using relative
increment parameters regard to exterior ones as
showed in the following expressions:

Yo =0

n=h

Y2 =4 +DY, (6)

y3=Y, +DY,

Yi=bh

Ys=0

So, the axial parameters projects are the

quantities:Y1, DY1, DY2 and Y2 (see figure 3.C).

Bottom Back-Face

Shape profile in the Bottom Back-Face is again
an high gradient stress region.

In this zone, a nearly-slliptical shape profile is
the only one allowed

by assembly and
functional

limitations, thus it
was modeled with a
one variable
parametric geometry
(Y6 parameter),
which consists of
three based points
spline  with both
extreme points fixed
and a parametric

middie point

allowing curve 3
eccentricity (see

figure 4). Figure 4: Bottom Back-

Face parametric profile
Mesh Generation

To achieve high quality results of an
optimization procedure, some fundamental
requirements for meshing operations are needed.

In first place, each generated mesh must have
no more geometric configuration, distortion
(principally shape and aspect ratio) than amount
permitted by the working ranges of element form

992



functions®(In this case F.EM. model is meshed
with  axial-symmetric, iso-parametric  quad
elements).

At same time, it is necessary to assure a
constant mesh density with configuration variations
and to avoid time consuming activity, if in a specific
non parametric zone an exceeding mesh than
analysis requirements is found, a coarse one must
be set.

Therefore an algorithmically generated mesh
has been used for F.E.M. modelling.

To avoid shape distorctions, the contiguous
patches to the parametric profiles are generated via
homotethic duplicates of spline profiles, with two
selectable modalities: the one defines homotethic
centre using two special coordinate systems
located onto A and B extreme spline points; the last
uses a varying homotethic centre according to
slope of tangency at ending of spline points (see
figure 3).

For each patch built near the parametric spline
profile, the number of mesh elements along the

Figure 5: Homothetic built patches

radial direction is chosen, for each loop, according
to the interesting arc length and the desired
(constant) mesh density.

For this one a calibration operation, allowing
punctual stress analysis into critical zones of the
disk, was preliminary performed.

The mesh built algorithm is finally completed
with a sub-procedure making selective thinning out
for zones far by those of interest, where a course
mesh is only needed.

Alternatively this sub-procedure can make a

substructure grouping for non-parametric regions.

Genetic Algorithm Definitions

The tecnique of Genetic Algorithms is a totally
different procedure than those usually employed
for “traditional” optimization methods.

Reaching objective function optimum is done, in
this case, with a simulation of typical evolution
process of biological systems, when put in
competition in a bounded environment™”

Time succession of various generations of
individuals, brings about a refining of mechanisms
which are used to achieve a specific purpose, until
a solution or a set of optimal solutions are
reached.

Definitions

Terms which are often used to describe the
previous analogy are shortly mentioned.

A possible solution formed by the n-vector of
design variables values is defined as “individual’
and the whole design parameter set forms the
“chromosomical” structure.

String expressed into the alphabet aliowing the
more extensive coding (usuaily binary), for project
variables, represents the “genetic’ structure of an
individual and the single digits (bits) are defined
“‘genes”.

A group of a usually fixed quantity of individuals
forms a “population”.

Temporary configurations of a population
during the evolutioning process represent
“‘generations” of individuals. '

The degree of adaptation, that is the
conforming of a generic string to the examining
problem, which therefore is the environmental
context, is measured with a fitness index.

Basic working

The evolutioning mechanics are based on the
following phases:

Strings belonging to a population are chosen to
form pairs with a fitness index proportional
probability.

With a specific “Crossover” operator, the
genetic patrimony of strings forming pairs are used
to create two new offspring individuals, wnth
blended genetic information inside.

Nextly, a “Mutation” operator is used to obtain
some randomly generated modifications for genes
forming strings, with the purpose to increase
variety into the population.

A “"Clonation” operator is finally used to copy
strings according to their fitness value into next
generations.
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The use of these three operators allows new
generations of an assigned starting population to
be formed.

Fitness, which is a objective function value
correlated quantity, is observed to become better
during the generation progress, according to a
near-exponential law.

At the end of process, the final generation bit
string is a nearly-optimum coded solution for the
given problem.

Genetic Algorithm implementation

To examine the above-mentioned problem, a
Fortran genetic algorithm based procedure has
been created and interfaced with F.E.M. Ansys
program,

The optimization algorithm is formed by the
following parts:

1) A starting, zero order randomly generated
population is created, with N binary strings
obtained by coding, scaling and merging project
variable values of generic attempting vectors.

Possible meaningful individuals, or known
feasibie solutions for the problem, may be added, at
this time, with the same modality , to the initial set.

For each individual of population, real values
assumed by design variables are achieved from the
scaled and codified ones with fixed resolution, from
genetic strings.

The scaling mechanism is illustrated below.

(x max (i ) ~ X min (i ))Vscaled (i )
2" -1

Vreal (= + X i (7) (7

Xmin(i) and Xmax(i) are the lower and upper
limits of project variable i.

Vscaled (i) and Vreal(i) are the scaled and real
values of project variable i.

r is the number of bits used for cadifying.

Note that the 2°r-1 term is just the codifying
resolution used for the xi variable.

2) For each individual of population built in this
way, the fitness function is evaluated.
For this case the fitness is expressed by:

FUX) =V g — RS(X)
RS(X) < Vmax (V X) (8)
with X = (x,%5,..,Xg)

Vmax is a number much larger than the
expected value of radial stress; Rs(X) is the

objective function, or the radial stress for the X
project variables vector based configuration.

This is done because Genetic Algorithms
always try to maximize internal fitness value while
for this situation, the minimum of the objective
function is needed.

Objective function is modified with a simple
penalty function to keep account of constraints
related by state variable.

In this case the single used costraint variable is
defined as the Moment of Inertia b

FCK) = W = RS 7

2
I-1_.
] e
max ~ { min ‘ (9)

k=1 Ui <7 < 1g)

min =

(-1 )
¢ (Imaxulminj (I>ImaX)

Where | is the actual value of Moment of Inertia
Ixx; Imin and Imax are the extremes of the allowed
variation range and k is a penalty coefficient.

This penalty is applied when any limit violation
of state variable Ixx range occurs, even if only the
upper limit may be really overcome.

To avoid infeasible solutions generated by very
slight violations of penalty functions, a bit smaller
value for state function upper limit is used than the
allowed one.

3) A population string sorting is made with the
fitness used as index.

This operation is optimized through a pointer
list structure.

4) a number M of pairs of individuals is chosen
with a random mechanism which returns a larger
probability as higher is the fitness expressed.

Fitness Scaling

The selection procedure for mating is
completed with a fithess scaling mechanism, to
avoid both a premature convergence, for initial
generations, due to few much higher fitness
provided strings that population mean and, near
the end of iterative process, a fitness levelling, due
to mean fitness increasing, with a modification of
the evolution process in a random walk into the
definition domain occurs.

The scaling model used is linear with raw-
fitness pre-processing, to avoid negative values as
follows:

F'=aF +b (10)
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with a and b obtained by the following
conditions:

/ ';l,\»'emge =F ~average

F ;r'law = h]:a,verage (1 1)

with 12<h<?2

(see figure 6)

To amplify fitness scaling effects, a choice
between two different mating methods has been
provided.

First allows no repeating of pairs built with the
same parents; on the contrary the second one is
abletodo it.

With the first possibility a much more exchange
of genetic knowledge present into a population is
allowed.

In fact, a generic string with a more greater
fitness value than that expressed by current
population mean, will not be able to create arbitrary
numbers of pairs together other strings with the
same characteristics, but must necessarily mate

A

: ScaledF itness

Flavg,

RawFitness

>

Fmin Favg Fmax

Figure 5:Fitness scaling
with others with a lower fitness value

On the contrary, using the second coupling
mode, a genetic structure exchange between best
strings is allowed.

5) A number of 2*M new individuais are
generated with a crossover operator beginning
from selected pairs.

Crossover Modality

Crossover operator has been provided with two
distinct working modalities: cut and bit-to-bit
crossover.

First mode makes a cut into the same position of
two binary strings of coded parents and obtains two
offspring individuals by sub-string swapping.

Second makes a random selection between
genes (bits) of parent strings.

In both cases two complementary offsprings
regard genetic knowledge are obtained (see Table
1and2).

1101111(0]1]0}1 parenti
oj1{1§0j0}1({0{0 parent2
1101110{0{110]0 offspring1
Oj7{71]1j0{1]0}1 offspring2

Table 1: cut crossover example

110111110411011 parent1
0{1{110]0|1]0]0 parent2
117]7]1{0]71]10}0 offspring1
0(0]1]0j{0]1]{0}1 offspring2

Table 2: bit-to-bit crossover example

8) Mutation operator is applied with random
inversion of bit values forming offspring strings.

The number of mutation is controlied by a
specific probability index parameter.

7) New individuals are arranged behind the
others forming the previous generation.

8) A new iteration is made returning to step 2.

For subsequent iterations than the zero order,
an extended sorting is made with the N+2*M
population individuals but only the best N are

retained.
This is really an alternative way to apply

clonation operator.

In this mode strings are not directly cloned into
next generation, according to a fitness
proportioned probability, but are “bequeathed” until
they become obsolete and so removed.

Envelope Parameters

Genetic Algorithm has been provided of a
simple envelope mechanism to modify dynamically
the working parameters when optimization is in
progress.

Domain formed by the number of generations of
the optimization process is subdivided into four
intervals through five control points.

For each of them it is possible to define
crossover modality, pair choosing mode, scaling
fitness parameters and mutation index.

These quantities change for every interval with
a linear law (constant for discrete values).
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N. OF GENERATICNS

Figure7: Optimization Parameters Envelope

Optimization Procedure

Optimization procedure has been executed
according to preliminary considerations with the
following parameters:

N. of Individuals=30
N. of Pairs=15
N. of Generations=28

Variables Min Max | Bit Depth
X1 0.15 0.6 16
X2 0.15 0.8 16
X3 0.15 0.8 16
X4 0.15 0.8 16
Y1 1E-6 2.0 16
DY1 1E-6 1.0 16
Y2 1E-6 1.0 16
DY2 1E-8 1.0 16
Y6 3.1 3.6 16
Table 3: Project variables data
Section 0 1 2 3 4
Mutation .01 1.015].015,.025| .045
Index
Choose 2 2 2 1 1
Pairs*
Fitness 16115 2 2 2
Scaling _(h)
Crossover 1 1 2 2 2
Type**

* With/without repetition= 1/2
** Cut=1; Bit to bit=2
Table 4: envelope parameters

This choice was made because a very small
population size must be used, due to high resource
consuming F.E.M. activity required to evaluate
objective and state functions.

To maximize process efficiency and avoid as
possible a premature convergence, the above-
mentioned parameters were chosen with the
purpose to involve, in a first time, the most part of
genetic knowledge present into the population,

avoé%irxg tﬁ’m& ggsséxg’f’ Wd ar'nsutatuon is allowed;

cut crossover is applied to keep the genetic
schemata integrity as much as possible and a
severe fitness compress scaling is done.

On the contrary, near the end of iterative
process, best strings become naturally advantaged
and an extensive use of mutation operator is made
to scan far sub-spaces of project variables domain.

So bit-to-bit crossover, amplified fitness scaling,
pairs formed by same individuals and a
progressive increase of mutation index are made
possible.

Analysis Results

At the end of the iterative process the project
variable vector obtained by decoding the best
string of last generation, represents the best
design set connected with the lower radial stress
value according to the requirements about the
Moment of Inertia.

Analysis results showed a great improvement of
radial stress peak value than the starting
configuration.

The stress peak was reduced of 11.24% with a
value of 0.8411 times than the initial set, and a iso-
stress distribution close to Back-Face parametric
profiles was also obtained.

The Moment of Inertia has been found greater
of 1.003 times than initial value, with a bit relative
increment of 0.87%

In figure 8 the genetic algorithm fitness trend is
showed.

A very interesting point is to compare these
results with others obtained by the use of the
penalty function based algorithm built into the
Ansys program.

Due to above-mentioned problems a first
optimization had realized a reduction of 0.92 times
only than starting stress value.

To obtain comparable results, the use of two
further sequential optimization processes was
needed.

For each of them, the default starting random
approximation sets were replaced with the best
design set and some feasible solution sets
obtained with a closeness to the optimum based
selection of the previous optimization process, with
the purpose to improve efficiency and
convergence speed.
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In addition to these actions, an increase of
penalty effects has been applied.

Despite these actions, a very high number of
iterations, absolutely comparable with those
generated by genetic algorithm procedure occurred
and a worst best design set was reached.

A radial stress peak value of 0.889 times only
than the starting one was reached with a moment of

inertia 1.008 times
greater.

In figure 9 a
comparison between

the final configuration
obtained with genetic

algorithm (continous
line) and initial profile
{dashed line) is
showed.

Finally, with the aid
of experimental local
stress-strain approach®
theory based diagram
for assigned material
and thermal condition
and using the stress

peak reduced value
obtained with the
genetic algorithm

procedure, a new nearly

100% increased value of
low-cycle  fatigue life
was determined.

Fig. 9: Best Design
Profile

Conclusions

in the present paper some problems involving
design optimization of rotating disks have been
discussed.

The advantage of using, in typically critical
analysis, a genetic algorithm based optimization
procedure was showed.

In particular, an example of an high
performance A.P.U. turbine disk optimization to
maximize low-cycle fatigue life with varying profile
shape into critical zones was showed.

For the purpose a Genetic Algorithm based
procedure interfaced with a F.E.M. analysis code
and a specific algorithmically controlled adaptive

mesh was created.
Genetic Algorithm was made to work well as

possible with a very small size of populations and
generations number.

At the end of analysis procedure, a final
configuration allowing a radial stress peak
reduction more than 11% and a relative increasing
of low-cycle fatigue life almost of 100% was
reached.

For comparision, the same analysis made with
conventional optimization tools showed high
inefficiency of non-genetic procedures to obtain
comparable results when used for critical situations
without a massive intervention of an expert user.

On the other hand, the objective difficulty to use
Genetic Algorithm and high time consuming codes
as F.EM. or C.F.D. programs together, when an
efficient method for approximate objective and
state function is not available is also highlighted.
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