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ABSTRACT

In this paper two different Artificial Neural Network
(ANN) applications are presented. An ANN is an al-
gorithm that try to reproduce the working mechanism
of the human nervous system in terms of knowledge,
learning and adaptation to the external environment.
It can be used in two different way : as simulator and
optimizer. As a first application the ANN’s have been
used as simulator to determinate the SEA Coupling
Loss Factor (CLF) for selected tipologies of plate as-
sembly, e.g. line and I-beam junctions, in the attempt
to assess the ANN capability in estimating the CLF
when junctions not treatable theoretically are under
investigation. A box structure was also designed to ap-
ply ANN simulation on a global structure as a further
check on the validity of the procedure. In a second
application the ANN’s have been used as optimizer to
estimate, directly from experimental curves, the Aug-
mented Hooke’s Law (AHL) characteristic damping
parameters. An analytical test-case was considered
to validate the metodology and then a polystyrene
plate was used as an application based on experimen-
tal data.

NOMENCLATURE
A by Subsystem (i) Surface Area and Thickness
E;, P; Average Total Energy and Average
Power Input for subsystem (i)
w Radiant frequency
L Junction Length
U Coupling Loss Factor between Transmitting

(7) and Receiving (j) subsystems
8 Assembly Configuration Angle
w0, B AHL damping parameters

1 INTRODUCTION

An ANN is an information-processing system that
has some characteristics in common with biological
neural networks; they have been developed as a gener-
alization of mathematical models of human cognition
and they try to reproduce the behaviour of the brain,
in terms of knowledge, learning and adaptation to the
externa) environment (1),
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From a technological viewpoint, neural networks
are of interest because they offer a computational ap-
proach that may prove to be a very effective way of
solving certain problems that are difficult to face by
conventional means. These latter require an explicit
representation of the mapping between input and out-
put. Expert systems, for example, work firstly by
making the problem-solving procedure explicit as a
set of rules, then implementing these in a program.
Such an approach works well as long as the rules that
implement a procedure can be defined; however, of-
ten it is very difficult. ANN’s offer an alternative ap-
proach to explicitly formulated input-output mapping
(2) 3). moreover, the ANN structure is suitable to
be implemented in parallel-architecture machines, so
to overcome the typical limitations of the sequential
architecture of traditional computers. The high tech-
nology currently available is well-suited to implement
ANN'’s on specialized hardware.

The ANN’s applicability field is extremely interdisci-
plinary. They are used in:

e Signal Processing,

Control,

L J

e Structural identification,
e Pattern Recognition,

Speech Recognition and Production,

L J

e Business.

In the present paper an ANN was used as a simu-
lator to estimate the SEA parameters. High frequency
analysis can not be performed by using the usual de-
terministic methods (FEM) because of computational
cost which dramatically increases with frequency, spe-
cially for large and complex structures. Amonga num-
ber of alternative techniques the most promising ap-
pears to be Statistical Energy Analysis, which repre-
sents a procedure to evaluate the flow, the storing and
the dissipation of energy in a complex system, mod-
elled as an assembly of subsystems (). The fundamen-
tal SEA parameters are: the modal density (number
of modes per frequency band, modes/Hz), the dissi-
pation or internal loss factor (classical damping pa-
rameter), the input power (average power introduced



in the driven subsystem) and the coupling loss fac-
tor (the ratio between the power transmitted and the
power stored by the transmitting subsystem). Wave
approach is the basic analytical method commonly
employed to determine the main SEA parameter, the
Coupling Loss Factor. Starting from Cramer (®), many
researchers have dealt with the subject, and theoret-
ical solutions are now available for many subsystems
and junctions.

Heron and Langley have developed models to cal-
culate the CLF’s between beam networks (8), plate
networks () and curved shell networks (®). Recent
works from Heron, carried out within the Brite Eu-
Ram project RHINO (Reduction of Helicopter Inte-
rior NOise), allowed further improvement of plate net-
works analysis with the extension to the frequency
range in which the dynamics of the beam junction is
accounted for and can therefore be introduced in the
theoretical model. This represents a consistent step
forward toward definite affirmation of SEA as a pow-
erful and reliable prediction method.

Lack of theoretical models is still evident in some
areas, however, as in the treatment of composite and
orthotropic structures (flat and curved sandwich pan-
els), direct excitation of beam junctions, and so on.
For this reason the search for alternative techniques
is still valuable to support and integrate theoretical
methods. Experimental (®) and numerical (19 tech-
niques can be efficiently used to derive the CLF and
the other SEA parameters, when complex system are
under investigation and no theoretical means are avail-
able for their treatment.

The numerical approach, based on FEM data ma-
nipulation, is more suitable for the estimate of the
CLF because it is less expensive than the experimen-
tal one, but even when confined to a couple of subsys-
tems it cannot be regarded as an efficient and conve-
nient overall prediction tool on its own. The amount
of data to be treated would be enormous if a new anal-
ysis had to be performed for each junction when small
differences exist between them.

Interpolation and possibly, extrapolation, from data
aquired for a finite number of accurately selected sam-
ples should be permitted by employing an ANN algo-
rithm, and the behaviour of a particular structure pre-
dicted in adequate detail. Sample selections should be
carried out according to their complexity, complete-
ness and capability of describing the widest range of
possible configurations and systems.

A preliminary assessment of ANN capabilities for
the estimation of SEA CLF’s was summarized in an
early paper (1), A consistent data base was created
to deal with a selected class of structures within a
chosen range of applicability. The potential of the ap-
proach was highlighted by studying an assembly ty-
pology composed of two flat and isotropic plates con-
nected via a line junction. The accuracy achieved in

estimating the CLF was satisfying and the number of
test cases necessary for an adequate training of the
ANN was such that the employment of numerical ap-
proaches for the estimation of CLF samples when ap-
plied to real and complex structures was considered
feasible. In this paper a further investigation is re-
ported concerning plates connected via I-beam junc-
tions to assess the capability of an ANN algorithm
in estimating SEA CLF for junctions more complex,
where an higher number of parameters are necessary .
to characterize the assembly. Furthermore, a box-like
structure was designed to assess how the behavior of
an entire structure could be affected by local errors
occuring in the estimation of the CLF’s via ANN.

An ANN was also used as an optimizer to evalu-
ate the Augmented Hooke’s Law (AHL) damping pa-
rameters (12), For vibration and noise control inside
aircraft, the use of highly damped structures and/or
materials has a basic role in noise levels reduction;
in any event, material damping cannot be neglected
when sound transmission and vibration levels need to
be predicted or analyzed with a high level of accu-
racy. Therefore, as precise as possible modelling and
prediction of material damping is necessary.

Several methods to incorporate material damping
into structural models have been used within the en-
gineering community, but those kinds of models do not
preserve the fundamental frequency-dependent behaviour
of the real materials.

The AHL damping model was developed to take
material behaviour into account. The AHL method,
formulated in the frequency domain, consists of an
augmented Hooke’s law where material damping is
introduced by adding frequency dependent, complex
anelastic terms to the material modulus matrix of
Hooke’s generalized law. In this theory the material
damping is defined by some parameters that can be es-
timated directly from experimental curves, through an
uncoupled modal receptance model (!3), using an ANN
optimizer. Being the parameter values completely un-
known in a real case, an analytical model, with fixed
values, was used to validate the developed approach.
After that, a polystyrene plate was considered as an
experimental case.

2 ANN BACKGROUND

The main element of an ANN is the Artificial Neu-
ron, called Processing Element (PE), characterized by
a non-linear function called ” activation function” (often
a sigmoid-type). PE’s are located in different layers:
Input, Output and a certain number of Hidden layers.
Every PE is connected to the others by means of com-
munication channels characterized by coefficients de-
fined as Inierconnection Weights. Therefore, an ANN
is characterized by:
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- A pattern of connections between the neurons
(called the architecture);

- A method of determining the weights on the con-
nections (called the learning algorithm);

- An activation function.

A scheme of the ANN is shown in Figure 1, where
1s put in evidence also the back-propagation algorithm
scheme. At the beginning of the learning phase, the
weights are randomly defined, and during this phase
they are iteratively updated until a distribution that
minimizes the error between the calculated outputs
and the real ones is obtained.

The typically used expression for the error is:

N
E=05) (On - 03)* (1)

h==1

where N is the output number, Oy, is the calculated
and O} is the target value. Input presented to the
neural network, I; (i=1,..,P), is filtered by a number
of weights, so that the hidden and output layer out-
put, H; (j=1,..,M) and Op, (h=1,..,N) respectively, are
computed as:

M
JJ‘j:ZV;'in‘i'aj == szf(mj) (2)
i=1

N

Th = ZthHj +7h
j=1

=  On=f(zr) (3)

6; (j=1,..,.M)and y» (h=1,..,N) are a kind of thresh-
olds. The learning algorithm that proved to be the
best for multi-layer ANN training, is the so-called
”Back-Propagation”. At every iteration the W, and
Vi; interconnection weights between the neurons of
different layers and the 6; and v thresholds are mod-
ified according to the expressions:

Winlk +1) = Winh) +agies ()
Gk +1) = 0(0) + oz (%)
V)= Ve bogies (@
e+ 1) = 1) +og s (™

‘ where « is the ”learning rate”. Further details on
the architecture and the learning mechanism of ANN’s
are widely present in literature (1) (14),
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3 SEA BACKGROUND

SEA is based on the explicitation of power balance
between different subsystems, expressed in terms of
algebraic equations. Each subsystem is representative
of a number of modes grouped according to the mech-
anisms by which they store, dissipate and exchange
energy with other subsystems or "mode groups”. For
a two subsystems model the equations can be written
in matrix form as

(B} =R ©

SEA parameters can be obtained theoretically ()+(8)
when possible, or experimentally (*) and numerically
(10), In order to perform a feasibility study on the use
of an Artificial Neural Network , a specific class of sub-
system assembly was firstly selected, composed of two
plates coupled via a line junction. The exact theoret-
ical solution is available for this type of assembly (7,
and could have been used to create the Coupling Loss
Factors data-base necessary to check the accuracy of
the ANN predictions for assemblies not included in
the data-base, but a simpler approach was used in
its place, based on the beam network theory (9), as
explained in (! which was considered good enough
to provide the information required on the ANN effi-
ciency.

A preliminary study was carried out to define the
more important parameters for the ANN investiga-
tion, according to the theoretical expression of the
CLF’s. It is evident that such an approach would
be impractical for the complex assemblies the pro-
posed method is addressed to, but it was reported to
demonstrate how SEA CLF is dependent only upon
the global characteristics of the connected subsystems
and junction, meaning that the number of parameters
is not very large and not difficult to predict; the entire
process might be efficiently tackled in principle by an
ANN algorithm.

To recap, the following parameters were identified
in (11) as significant for the ANN training:

e Subsystem parameters

71 + 1712
=12

1) Physical properties : Elasticity modulus,
Poisson modulus, Mass density

2) Geometrical properties: Thickness, Surface
area

¢ Junction parameters :
between plates

Lenght, Relative angle

o Analysis parameter : Frequency.

The feasibility study was carried out keeping one
of the subsystems unchanged, as well as the trans-
mitting subsystem’s physical properties. In total, five



parameters were considered for the investigation: hj,
Ay, w, 8 and L.

The application range was selected to include a
wide range of possible configurations by defining ap-
propriate lower and upper limits for each parameter,
as illustrated in Table 1. Indication were also given
on the sensitivity of the ANN training on the typol-
ogy and number of samples to be selected.

The data base created was quite comprehensive
and the results accurate enough to proceed on with
the next and natural investigation, the treatment of
a more complex junction like, for example, a beam-
junction. Although theoretical solutions are now avail-
able for this typology of junctions when isotropic plates
are employed, they represent a more consistent bench-
mark to assess and eventually validate the ANN tech-
nique.

In the step by step approach chosen to gradu-
ally update the ANN data-base, only I-beam junctions
were considered, which can be characterized by means
of the geometrical properties of the beam section (both
flanges and web thickness and width). Strictly speak-
ing, six new parameters should have been added to
those selected for the assembly typology investigated
in 1) but as a starting point only scaled I-beam were
assumed and only complanar plates were investigated.

The exclusion of the configuration angle from the
parameter list was motivated not only by the evi-
dence that the typology of junction under examination
is generally employed between complanar plates, but
mainly by the fact that the configuration angle is the
less demanding parameter for what concerns compu-
tational effort if a numerical technique (1%) is selected
to create the CLF database. '

The upper and lower limits were kept unchanged
for the subsystem parameters if compared to (1), while
the frequency range was raised up to 8.5 kHz. Four
differentely scaled I-beam junctions were chosen for
the ANN training (Table 2), and each one was identi-
fied as a single ANN training parameter.

In section 4 indication is given on the procedure
chosen to select the samples for the ANN training and
the box-like test case designed for the purpose of as-
sessing ANN efficiency is also described.

4 SEA FEASIBILITY INVESTIGATION.

RESULTS ANALYSIS

The investigation concerning the SEA Coupling
Loss Factors prediction via the Artificial Neural Net-
work is reported in this section. The more influen-
tial parameters characterizing the assembly typology
were chosen as ANN inputs, while the CLF’s were se-
lected as the natural output. The general approach
can be split into two main phases: the learning phase
in which a fixed number of samples is presented to
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the ANN for the CLF estimation, to allow the weights
and thresholds to be updated via equations (4)+(7)
until a satisfying error is detected with respect to the
exact CLF values; and the simulation phase in which
the ANN is employed to estimate the CLF for config-
urations where the main parameters are different from
those employed during the training phase.

The feasibility study is performed to assess the
ANN capability in predicting the CLF and in particu-
lar to extrapolate and interpolate what was learned in
the back-propagation phase. As explained in the pre-
vious section, five parameters were selected to char-
acterize the chosen assembly typologies, composed of
two flat isotropic plates connected via either line or
I-beam junctions.

An application range was defined for each param-
eter as well as the sample number and relative values,
as reported in Table 3. The samples were selected by
randomly combining the aforesaid assembly parame-
ters, so that 24 samples were chosen for both typol-
ogy of junctions to create the data base for the ANN
training. For what concerns the line junction typology
simulation, reference is made to ().

Parameter lower limit | upper limit
Junction angle (deg) 0° 90°
Thickness (m) 0.001 0.003
Area (m?) 0.6 1.
Junction length (m) 0.6 1.
Frequency (Hz) 500 8500

Table 1 : Parameters typology and range for Line
Junctions.

Type | Beam 1 | Beam 2 | Beam 3 | Beam 4
LFW | 0.015 | 0.0225 | 0.03 0.04
LFT | 0.002 | 0.003 | 0.004 |0.00533
UFW | 0.015 | 0.0225 | 0.03 0.04
UFT | 0.002 | 0.003 | 0.004 |0.00533
WH 0.02 0.03 0.04 | 0.0533
WT | 0.002 | 0.003 | 0.004 |0.00533
Legenda:

LFW = Lower Flange Width
LFT = Lower Flange Thickness
UFW = Upper Flange Width
UFT = Upper Flange Thickness
WH = Web Height

WT = Web Thickness

Table 2 : I-Beam junctions for ANN training



The simulation phase for the I-beam data base was
performed within the investigation carried out on a
designed test box constituted of 10 isotropic and flat
plates (Figure 2), whose physical and geometric char-
acteristics are listed in Table 4. Line junctions were
assumed for all connections except for those between
plates 1-2, 4-5, 7-8, for which I-beam junctions were
chosen, as reported in Table 5.

The comparison was made between theoretical and
ANN estimates for all I-beam and line junctions se-
lected for the box, in order to evaluate the accuracy of
each single CLF. The mean average error detected in
the simulation phase was 7% for the line junctions and
9% for the I-beam junctions. Percentage errors higher
than 10% occured for some of the junctions (Plate 8-1,
Plate 8-5, Plate 8-7) at each analysis frequency.

The dynamic response of the whole structure was
evaluated, then, in terms of SEA parameter, assum-
ing plate 1 of the test box as the driven subsystem.
In Table 6 the differences between the exact and ANN
predicted average velocities for each plate at the var-
ious analysis frequency are reported. The accuracy
is quite good despite the aforesaid discrepancies high-
lighted in predicting some of the CLF’s.

A sort of compensation effect seems to drive the
process so that the single error is averaged out and
the overall behavior is effectively driven toward the
correct one. In conclusion, the mean percentage error
of the trained ANN appears to be the most meaningful
parameter to look at during the training phase to cor-
rectly estimate the dynamic behaviour of a complex
and global structure.

Plate | Area |Thickness | Damping
1 0.85 0.002 0.02
2 | 0.6375 | 0.0012 0.03
3 0.68 0.002 0.02
4 0.85 0.0028 0.03
5 0.85 0.002 0.025
6 |0.71243| 0.0015 0.02
7 0.7 0.002 0.02
8 0.8 0.0011 0.03
9 0.7 0.002 0.02
10 0.8 0.0027 0.03

Table 4 : SEA Box - Plate charateristics

I-beam properties | 2-1 4-5 8-7
LFW 0.0255{0.0315}0.0375
LFT 0.0034 | 0.0042 | 0.0065
UFW 0.0255| 0.0315 | 0.0375
UFT 0.00340.0042 | 0.005
WH 0.034 | 0.042 | 0.05
WT 0.0034 | 0.0042| 0.005

| Legenda : See Table 2 {

Table 5 : SEA Box - Igeam properties

Parameter Learning values

Junction angle(deg)(*) 0,5,10,15,30,90

Thickness (m) 0.001,0.002,0.003

Area (m?) 0.6,1.

Junction length (m) 0.6,1.

Frequency (kHz) 0.5,1,2,2.5,4.5,6.5,8.5

I-Beam type(**) Beam1,Beam?2,Beam3,Beam4

Plate | 1.5KHz | 3.5KHz | 5.6KHz | 7.5KHz | 9.5KHz
1 1.80e-2 [ 4.62e-2 | 1.23e-1 | 1.61e-1 | 1.61e-1
2 5.56e-11 3.29¢-1 | 1.79e-1 | 3.50e-1 | 4.64e-1
3 2.96e-1 | 1.86e-1 | 3.56e-1 | 6.08e-1 | 7.63e-1
4 1.53e-1 ] 2.13e-1 | 4.67e-1 | 6.04e-1 | 5.36e-1
5 1.27e-11 9.19¢-2 | 4.3%¢-1 | 6.35e-1 | 6.64e-1
6 4.90e-1 | 8.94e-2 | 1.71e-1 | 2.66e-1 | 2.12¢-1
7 | 457e-1]|2.86e-1|4.86e-1|8.97e-1| 1.19
8 2.52e-2 | 1.03e-1 | 5.07e-1 | 8.07e-1 | 9.71e-1
9 2.17e-1 | 2.72¢e-1 | 3.06e-1 | 2.19¢-1 | 1.90e-2
10 | 7.20e-2 | 8.50e-2 | 1.30e-1 | 1.28e-1 | 7.73e-2

(*) For line junction only
(**) For I-beam junction only

Table 3 : Learning values.

418

Table 6 : SEA Box response - dB difference between
theoretical and ANN predictions

5 AHL BACKGROUND

The AHL method is formulated in the frequency
domain as an augmented Hooke’s law in which mate-
rial damping is introduced by adding frequency depen-
dent, complex anelastic terms to the material modulus
matrix of Hooke’s generalized law (2). Important ad-
vantages of the AHL formulation are:

e it can directly be implemented as a complex
valued constitutive matrix in any finite element



code incorporating complex node variables, com-
plex element (material) properties, and a com-
plex equation solver;

o spatial (i.e. element) and frequency dependent
damping can be directly introduced in finite el-
ement models.

To take into full account the implications of the
AHL theory, accurately measured elastic modulus E
and Poisson’s ratio v should be used in the estimation
process. This is due to the fact that the AHL the-
ory correctly predicts the frequency shifts of the un-
damped eigenfrequencies wy, to corresponding damped
resonance frequencies wy,q. This is generally true and
thus also, e.g., in anisotropic, highly damped cases.

In the studied isotropic and homogeneous case an
uncoupled modal receptance model (!3) can be used.
The undamped eigenfrequencies of this model are de-
termined (indirectly) by the static, elastic parameters
E and v together with the geometry and boundary
conditions of the object. Undamped frequencies wy,
and corresponding three dimensional mode shapes and
damping weight factors x,, can, and must be, accu-
rately determined using, e.g., a three dimensional FE
model to take full advantage of the AHL theory.

It should be noted that all the elastic parameters
E, v,wm, xm and corresponding mode shapes have to
be known with good accuracy to make it possible to
separate clearly the damping properties (the damping
functions) from the elastic, static properties (!3).

In order to estimate the AHL damping parameters
an ANN is employed as optimizer. In this approach,
experimental FRF’s are used as input to the ANN
and the damping parameters are estimated in a way
to obtain the best-fit of the same curves. The back-
propagation algorithm has to be a little changed in a
way described in the following paragraph.

6 ANN FOR AHL DAMPING

ESTIMATION

Some modifications of the Back-Propagation algo-
rithm are necessary to use the ANN as optimizer. The
used ANN has a traditional architecture, except for an
additional layer, that does not belong to the neural
network properly said: it represents a mathematical
model of the treated phenomenon.

The number of hidden neurons is twice the out-
put number. The learning rate value, «, depends
on the application and is updated during the Back-
Propagation, as a function of the previous error in the
following way:

T (9)
1+ omae Z (ﬁf,)

7
1

Q5 =
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Of course each neuron has its own learning rate.

The inputs to the ANN is made up of both recep-
tance real and imaginary part, in the same frequency
range; the outputs are the AHL damping parameters
depending on the material.

The output parameter values are given as input
to the structural layer and the receptance real and
imaginary part are calculated. The Squared Error (1)
is then computed and the weights are updated through
the expressions (4 to 7). A

The activation function is a customized sigmoid
function appropriate for the full range of output val-
ues. Its expression is:

where K is the upper limit and p is a measure of
the function slope; the lower limit is 0 (due to the
necessity of having positive output values).

Because the range of output values is not known
beforehand, to define K at the beginning is not possi-
ble; it is determined during the learning process along
with the weights and the slope p.

Of course, each neuron has its own K and p, so
that the used formulas are :

Kn(k+1) = Kp(k) + avn(k) (10)
Kj(k+1) = K; (k) + av; (k) (11)
where 7;, and +; are the error gradients computed as:
OF 0F Of
= = 12
T = 8Ky ~ 90y 0K, (12)
N
6F of
v = ==Y (6aWjn)== (13)
77 OK; :4:41 " BK;
In the same way, for p :
ph(k + 1) = ph(k) + aa’h(k) (14)
pi(k +1) = pj(k) + ag; (k) (15)
where o}, and o; are still error parameters :
dE  OF Of
= = 16
Th = Bpn  0O0n Ops (16)
N
oF of
;= o— = S Win)=— 17
gj apj };( h Jh)apj ( )

In the next paragraph a validation of the nets is
presented.



7 ANN VALIDATION BY

ANALYTICAL TEST CASE

In this paragraph a validation of the AHL/ANN
approach is presented. The used data have been ob-
tained by an analytical test case.

Some FRF’s were obtained from a plate FE model,
characterized by a known AHL damping. From FEM
calculations the natural frequencies w,, and the x,
factors were found.

Firstly, a frequency range from 50Hz up to 100Hz
was considered, where 6 modes were found; then a big-
ger one, from 50Hz up to 200Hz, with 13 modes. The
ANN worked for a number of 10,000 learning cycles,
approximately; it tooks 7 seconds, to complete 100 cy-
cles, this time depends on the number of the sampled
frequency-steps.

The damping material parameters estimated val-
ues are about the same for the two chosen ranges and
quite close to the true values as shown in the following
table:

Damping Parameter | True value | estimated value
U 4e+3 4.23e+3
p 2e+4 1.25e+4
B 150 Hz 130 Hz

The highest error occurs for ¢ value, but this was
expected because the effect of this parameter on the
FRF is small. In figures 3 and 4, the comparison be-
tween the true and simulated modulus of the recep-
tance is plotted. The curve-fit is very good and the
squared error is about 0.02.

The knowledge of the exact natural frequencies
seems necessary to achieve good results.

In the next paragraph the AHL/ANN approach
will be applied to experimental FRF’s where of course,
the damping parameter values are unknown at all.

8 RESULTS FOR RECTANGULAR

POLYSTYRENE PLATE

A polystyrene plate was used to obtain some ex-
perimental FRF’s to be fitted by the ANN’s and to
estimate the AHL damping parameters.

A FE numerical model was performed and the nat-
ural frequencies and the x,, factors were calculated.

Two different frequency ranges were chosen to per-
. form the curve-fit of the FRF: from 50 up to 100 Hz
(6 modes), and 40 up to 200 Hz (14 modes). About
12000 cycles were necessary to obtain a good fit; the
final squared error resulted about 0.15 .

In Figure 5 the true and simulated curves are plot-
ted. The obtained curve-fits look very good, but the
damping parameters true values are unknown, so it is
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not possible to have a comparison with the estimated
values.

Insteated, a comparison between the loss factors,
n, calculated by Half Power Bandwidth Method and
by AHL, is plotted in Figure 6. The estimated 7 is a
good approximation of the experimental one; this lets
think the estimated are close to the real values.

9 CONCLUSIONS

The feasibility investigation relative to the use of
an Artificial Neural Network for the estimation of SEA
Coupling Loss Factors is reported in the first part of
this paper. The overall aim is the development of a
numerical technique able to provide information on
the CLF concerned with actual structure connections
for which no theoretical methods are available yet.

As a preliminary study on the efficiency of such a
numerical tool, both line and I-beam junction typolo-
gies were considered and the ANN was opportunely
trained to deal with such connections. A semplifi-
cation was introduced for what concerns the I-beam
typology by assuming only scaled models. A consis-
tent application was performed on a box-like structure
composed of 10 isotropic flat plates connected via the
mentioned junction typologies. The results were en-
couraging and a dependence of the structure dynamic
responce on the mean percentage error of the trained
ANN was highlighted.

Further investigations are necessary on more com-
plex assemblies to fully validate the technique, but the
quality of the results of the present investigation are
promising for future applications. The next step will
be devoted to assemblies where the full characteristics
of different beam junctions are accounted for when
they are employed to connect either flat or curved
plates.

In the second part of the paper a methodology to
estimate the Augmented Hooke’s Law (AHL) damp-
ing parameters using Artificial Neural Networks was
presented. The validation through an analytical test
case was also reported as well as a first application on
an experimental test case.

The analytical validation gave good results and the
percentage error with respect to the true values was
found to be in the range 5-13%. ’

A polystyrene plate was chosen as the first experi-
mental test case; the results obtained proved the good
applicability of the ANN when employed for damping
parameters estimation.
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