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Abstract

An efficient finite element formulation and solution procedure are developed to analyze a nonlinear fluttering
isotropic homogeneous plate in unsteady transonic potential flows. The nonlinear governing equation of plate motion
are derived from the Lagrange’s energy equations in which all forces are presented in term of the plate transverse
displacements. Plate stiffeness , stability stiffness , geometrical stiffness and mass matrices are formulated using
rectangular elements. The unsteady aerodynamic pressure at each of the elements nodal point are computed based
upon the velocity potential obtained from the solution of the unsteady three-dimensional transonic small disturbance
Sflow equations. An iterative linearized approach is employed for the solution of the nonlinear flutter equation. The
plate stability behavior are analyzed from the response parameter of the complex eigensolutions. Effects of
aerodynamic damping , plate mass distribution , boundary support conditions and initial in-plane forces are

investigated.

Introduction

Phenomenon of a fluttering plate is a self-
excited oscillation of an external relatively thin skin
exposed to an airflow along its surface. Linear plate
flutter analysis indicate that there is a critical value of
the airflow dynamic pressure above which the plate
become unsteable, with motion amplitude grows
exponnetially with time. An extensive review of works
done on linear plate flutter by Dowell is given in ref. 1,
meanwhile Dugundji’ presented the theoretical
considerations of ( linear ) plate flutter at high
supersonic flows. At present , a great quantity of
literature on linear plate flutter are available.

In reality, it is possible that the flutter
oscillations will have a large amplitude in which the
geometrical nonlinearity effects , mainly due to midplane
stretching forces , could restrain the motion of the plate
and bound it into a limit cycle oscillation. For accurate
assessments and investigation of plate under undergo
this kind of motion , the analysis based on nonlinear
structural theory with appropriate aerodynamics model
must be used.

Several analytical techniques have been
developed to investigate nonlinear fluttering plate. Most
of them usually use the Galerkin’s method in the spatial
domain , the modal approach with direct numerical
integration , the perturbation method and the theory of
harmonic balance commonly use in nolinear dynamics
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analysis. Each of these methods has their limitations ,
such as the complexity of mathematical manipulation
required , isotropicality and edge boundary conditions of
the plate. Lately, finite clement method gaining
widespread acceptance because of its flexibility in
handling geometry , boundary conditions , elastic
properties of the plate and flow angularity and the
increasing capability of computers hardware. Olson® and
Sanders® , are among the first who developed finite
element methods for two and three-dimensional linear
plate flutter analysis. An extension of this method into
nonlinear oscillation of two and three-dimensional
isotropic plate is given by , among others , Mei’ , and
Sarma® , for isotropic plate and by Dixon’ , for laminated
composite plate. Temperature effects has also been
considered by Xue and Mei as reported in ref. 8.
Rectangular or triangular elements are commonly used
for simplicity of the finite element formulation.

At present, all of the plate flutter analysis ,
linear and nonlinear , employed a linearized quasi-steady
aerodynamics theory in which the aerodynamics pressure
on the surface of the plate are calculated based upon the
inviscid potential flow equations. Olson use Lighthill
linearized piston theory with flow Mach number
considered are approximately -above 1.6 Yang’
developed a finite element procedure using the exact
two-dimensional linearized theory ( strip theory ) for
plate flutter analysis in supersonic flows. The use of
linearized quasi-steady theory limits the analysis to high
supersonic or low subsonic speeds with small oscillation
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amplitude. On the otherhand , the most critical speed in
plate flutter is the transonic - low supersonic regime'’
In this speed regime, flow unsteadiness and phase lag
between structural motion and aerodynamic response
( due to the presence of shock-waves ) have a stong
influence in the aerodynamic force characteristics. A
nonlinear aerodynamics theory is required to take into
account these two flow parameters which could not
represented completely in the linearized potential flow
equations.

A finite element analysis of large amplitude
fluttering plate in transonic potential flow is presented
here. The governing nonlinear equations of motion are
derived from Lagrange potential energy equation in
which all forces are formulated in term of transverse
displacements of the rectangular plate elements. The
plate is conditived to be isotropic, homosoneuos the
aerodynamics pressure on each of these elements are
computed based upon the velocity potential obtained
from the solution of the unsteady three-dimensional
transonic small disturbance flow equation. A linearized
iterative approach is employed for the solution of the
nonlinear flutter equations. The plate stability behavior
are analyzed based on the response parameters of the
complex eigensolutions. Effects of aerodynamic
damping, mass distribution , boundary support
conditions and initial in-plane forces are investigated.
Comparison are made to the available results wherever
possible.

Governing Equations

Plate structure of length a, width b, thickness h,
and mass per unit volume m , is represented by a flat
panel with airstream flowing over the upper surface in
the positive direction of x . at free stream Mach number
M, as shown in figure 1. Air flow effects in the lower
surfaces is neglected. Plate edges are either simply
supported or clamped. Using rectangular elements with
six degree-of-freedom per node , the plate is discretized
into a certain number of clements. The element nodal
displacements vector consists of two components , which
are the bending ( out of plane , wh ) and membrane ( in
plane , wpy ) displacement components . Bending
displacement is comprised of w, wx , wy , wxy and
the membrane component is comprised of u and v .
Strain energy U of the isotropic homogenous plate is
written as

y=-2 j}{ {Az }dA+———jj {(u + ; w2) «1—(vy +-;—w3,)}2dA—
%I;)-j {(ux += wx) +(vy +%w§)} (Wxx + wyy) dA

[ 8

(1]
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in which the nonlinear strain components are formulated
using the nonlinear relations as

[2.a}

- L o2
Sx—ux +3‘Wx—‘ZWxx

Bmuy + Wl - 2wy, [2b]

The kinetic energy T is given as function of the plate
motion velocity as

T=-;—mjg (82 +9% +97) av [3]

where symbol ( ~ ) denotes derivation with respect to
time. Virtual work AW of the aerodynamic pressure due
to virtual displacement Sw is given by expression

8W = [[ ap(x,y,1) dw(x ;1) dA [4]
A

The total aerodynamic pressure on the surface of the
plate Ap (x,y,t) at transonic free-stream Mach number
are obtained from the solution of transonic small
disturbance ( TSD ) equation. The plate equations of
motion are obtained from Lagrange’s energy equation
which is

In this equation Qj represent the plate generalized forces
derived from the virtual work done by the
aerodynamic surface pressure. The governing equations
are formulated following the simplification procedure
adopted by Sarma , as explained in ref. 5 , which can be
written in matrix form as

(MK} + {[K L]+ Nu[ K JHw) +B[A] =0 (6]

where [M] is the mass matrix ,
stiffness matrix ,

[K.] is the linear
[Kxe] is the nonlinear stiffness matrix
, {X} is the acrodynamic force matrix , p is the dynamic
pressure parameter , B = q/D, and D is the bending

stiffness coefficient of the plate. Displacement vector
{w} contains all nodal degree of freedom in the plate.
The in-plane { membrane ) force , Ny , is defined as

=_'211 (w2 +w2)aa [7]
A

Elements of the aerodynamic force matrix, [K] will be

derived later in the following chapter.



The solution of equation | 6 ] is determined by assuming
that the platc motion at the stability boundary is
harmonic and can be written as

(W = {wo e [8]

The vector {w,} is in general complex, vector so does the

plate motion frequency parameter, 2 = o + i®. The
variable represent the damping coefficients and ©
represent the motion frequency. These two coefficients,

o and @ , will determine the characteristics of the plate
stability. Substituting the assumed response into eq. [ 6 |
results in the governing nonlinear eigen value equation
which then be written as

{e MKy [+ N K J+B[AJ o} = 0 (9]

in which k is the motion reduce frequency .

Generalized Aerodynamic Forces

The total aerodynamic pressure, Ap (x,y,t), can
be expressed, assuming that the load superposition
principle is valid, as the sum of the contribution due to
each mode shapes, hj (t). Therefore, the finite state
representation of the pressure is written as

ol y.)= El Bpy(s v t)h (1) [10]
i

where Ap; (x,y) represents the total pressure at discrete
point (x)y) due to the wing displacement in the j-th
mode. Using this relation, the generalized aerodynamic
forces for mode -j can be formulated as.

Qj =—q}§l hy(t) J{érﬁg—(—’—}ihi(x,y) dA

[11]
in which q is the flow dynamic pressure

The motion generalized forces are then, deduce from
equation (11) as

{Q =[a] {wo} [12]

[13]

where Ajj may be considered as the generalized force
coefficients from the pressure induced by mode-j acting
through the displacement of mode-i. This aerodynamic
force coefficient is a function of reduced frequency, k ,
and usually has complex values. The total acrodynamic
pressure for the-ji-th mode, Apj x,y,1), it selft is
evaluated based on the velocity potential at each

“rectangular element from the solution of the TSD flow

equations,
Api(xv.t)=q [ Cp, (x¥:1)= Cp (x, y,t)] SA

Where Cpu and C, represents the upper and lower
surface pressure coefficient, respectively. The coefficient

is defined as

Cp, (%,7:1) = =20 =20 - (1-M? o} - 47 [14]

where ¢ (x,y,t) is the velocity potential. For the plate
flutter problem, the aerodynamic flow at the lower
surface are neglected that Cpl is equal to zero .

Numerical evaluation of the velocity potential, ¢
, from the TSD solutions employs an approximate
factorization (AF) implicit finite difference algorithm
developed by Batina'' , which is proven to be more
efficient, accurate and stable compare to other methods.
This algorithm consists of a time linearization step to
determine an estimate values of the perturbation
potential coupled with Newton iteration to provide time
accuracy of the solution. Detail about this method is
given in ref. 12 . Once the velocity potential are obtained
for each element for each mode the aerodynamic force
matrix for the whole plate can be formulated.

Solution Procedure

The governing equation of motion , equation
[ 9], degenerates to the equation of nonlinear vibration
problem when B = 0, and to that of a linear plate flutter
problem when the membrane force Nx = 0. This
equation [9] is a complex eigenvalues problem in
which the eigenvalues , k , are obtained for a given value
of acrodynamic pressure coefficients. With the increase
in the B values , the two eigenvalues coalesce to the
critical value, k¢ . The critical dynamic pressure , Ber
at the stability boundary is considered to be the lowest
value of P at which coalescence occurs among all values
of the eigen-frequencies of the motion.

An iterative procedure and equivalent
linearization technique is employed in determining the
eigenvalues , k , which is can be described briefly as
follows. The linear flutter equation ( with Nx = Kyp =0
) is first solved ,

{K[M]+[KL]+[3[A]}{WO}=O [15]

where {w o} represents the linear mode shape

normalized by its maximum components. The iteration
process is started by approximating the first
displacement vector as
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{wo}= a{Wo}eQ‘

where a is the normalized oscillation amplitude of the
plate. An equivalent nonlineear stiffness matrix , [ Ky.]
, and the nonlinear stretching force , Nx , are then
calculated from eq. [ 7 ] . The nonlinear flutter solutions
are obtained from the linearized eigenvalue equation of
the form

fiilM] + [KL ]+ NKy ]+ B[A fwo}, = 0 [16]

where «j and {wo }i are the eigenvalue and eigenvector

at the i-th iteration. This iterative process can be
repeated until a convergence criterion is satisfied , which
are the maximum value and frequency norms of the
response. Convergence of the solution is considered
achieved whenever any one of these norms reaches a
value of 107 The whole procedure is repeated for
several values of dynamic pressure parameter. The
critical value of « is determined from the coalescence

point in the B versus k plots.

Calculation Results

Various numerical examples of plates with
hinged-hinged, clamped-clamped, clamped-hinged, and
hinged-clamped side conditions have been worked out
using the linearized approach proposed. Plate structure
with two sides free and the other two hinged and/or
clamped ( Case A ) are modeled as a 9-elements plates ,
meanwhile plate with all of its sides hinged and/or
clamped ( Case B ) are modeled as a 12-clements plate.
To study the accuracy of the elements modeling for plate
in Case A , calculation is also carried out using beam
elements modeling. Plate elements are assumed as beams
which are wide enough that the elastic stiffness of the
beam could be replaced by the elastic stiffness of the
plate elements, which is

k =El - D = Eh*/12 (1-v?)

This beam model was proposed by Olson® and Sarma®
and used for flutter analysis of plates with hinged-free
and clamped-free side conditions ( cylindrical
deformations ) which was shown to be accurate.
Numerical results for the first two eigenvalues at =0,
and for the coalesence ( critical values ) for the four types
of the plate boundary conditions of Case A are shown in
"~ Table 1. The four-elements beam model give , in
general , a closer natural frequency values to the exact
values compared to the plate-element model. This should
be the case since the exact values are calculated based on
beam model . Comparison of results for the four different
side conditions with their exact values shows a larger
differences are obtained for plate with stronger side

conditions ( clamped - clamped ). It is seen that the
approximate results using the nine-elements plate model
and four-clements beam model are in very good
agreement with the exact results given in ref 3.
Therefore, nine element plate model was used in all
flutter analysis of case A plate presented.

For plate in case B ( plate with four side
conditions ) , good accuracy results of the plate natural
frequencies are obtained for model using at least 16
plate-elements, as shown in Table 3. Therefore , for the
plate in case B , a 16 clements plate modeling was used
for further flutter analysis.

A. Plate with two side - conditions

Plots of the non-dimensional eigenvalues versus
dynamic pressure for a clamped-clamped and hinged-
hinged plates are given in Figure 1. This plot is typical
for any other side conditions. Complete aeroelastic
behavior of the plate is characterized by plotting the
(complex) eigenvalues variation with increasing
(nondimentional ) dynamic pressure , from which the
motion frequency and damping factor are obtained as,

£

o = (o +in)foy = (—%gA + K‘.) +i (kg /2%;)

A typical plot is shown in Figure 2. Flutter instability ,
for the case of negligible aerodynamic damping , g
equal to zero , is defined to set in when the two
undamped natural frequencies merged. For cases where
some damping is present, instability set in at a somewhat
higher value , as indicated in Figure 3 , which is when
the real part of the complex eigenvalue is equal to zero ,
o = 0. As discussed earlier, due to the nonlinear behavior
of the plate, this flutter instability is not catashtropic.
Response behavior of the plate characterized by a limit
cycle oscillation with corresponding frequency © = («x
< ) . The critical eigenvalues and non-dimensional
dynamic pressure of the plate at point of instability for
the four types of side condition is summerized in Table
2. Plate with clamped condition of both side has the
highest values of critical frequency and dynamic pressure
, with the clamped-free plate has the lowest of the two.
The clamped-hinged and hinged-hinged plate stand in
between. Comparing with the exact solutions, the 16-
elements plate model analysis gives a lower of both
values values., but the difference is not more than 4% in
dynamic pressure and 5.5% in eigen-frequency. Both
results shows good agreement with numerical results
given by Sarma® and Mei’. Typical plate deformation
mode at the instability boundary is shown in Figure 4 for
both clamped-clamped and hinged-hinged plate. The
flutter speed of the plate increase almost exponentially as
its thickness increased, as shown in Figure 5.
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B. Plate with four side - conditions

For plate in case B , four type of side-conditions

are considered, which are : all side are hinged or
clamped ( SSSS or CCCC), one side is clamped and the
rest are hinged ( CSSS ), and two opposite side are
hinged with the other two are clamped ( CSSC ). The
first two natural frequency and the critical response
frequency and dynamic pressure at the instability point
for zero aerodynamic damping are given in Table 3. In
general, the numerical results of this analysis are in good
agreement with the results given by Sarma® . It is seen
that the change in end-condition from hinge to clamp
cause an increase in both critical dynamic pressure and
eigen-frequency. This increase is more significant for the
case in which the clamped side-conditions is
perpendicular to the flow direction ( CSSS ). Shape
of the plate deflection when the instability set in are
shown in Figure 6 , for SSSS and CSSC side-conditions.
Variation of the response frequencies and damping factor
are shown in Figure 7 for zero aerodynamic damping
conditions. Typical plots are observed for different side-
conditions. It can be seen that instability ( zero damping
condition ) of plate with stronger side-conditions occur at
higher dynamic pressure and eigen-frequency. Effects of
aerodynamic damping ( g1 ) on critical dynamic
pressure of a plate is also studied. It was observed that
an increase in g, value will increase the critical
dynamic pressure significantly but almost has no effect
on the critical eigen-frequency of the plate.
Figure 8 shows a typical time response of the plate. At
point slightly below instability , response tend to
converge and as it is approacing the instability point,
amplitude of the response increases ( slowly ) and built a
limit cycle type of oscillation. This process continue until
a critical dynamic pressure is reached which corresponds
to a given limit cycle amplitude. Variation of the critical
flutter speed with plate thickness is shown in Figure 9.
This results suggest that the plate flutter speeds increase
exponentially with its thickness.

Conclusions

A nonlinear finite element procedure for panel
flutter analysis in transonic flows has been developed.
Several numerical calculation has been performed which
shows the effectiveness of the formulation. Based on the
preliminary result obtained , the following conclusions
may be made.

a. The generalized aerodynamic forces based
on the three-dimensional transonic small disturbance
solution can be used in the flutter analysis of plate in
transonic flow regime. It gives an accurate prediction of
the air-load forces on the top surface of the plate. The
finite state formulation of the aerodynamic forces
employed in this analysis is simple and straightforward.
this can be considered to be an improvement over the

Jarge number procedure available that use simple
aerodynamic theory with restricted range of applicability.

b. The finite element procedure used in this
study directly solve for the flutter frequencies. and
response mode shapes. No natural frequencies and mode
shapes calculation needed, such as in the method of
modal analysis.

C. Present results shows that flutter
characteristics of nonlinear plate in nonlinear transonic
flows are similar to that of nonlinear lifting surface .
Flutter of nonlinear plate is not catastrophic which is
characterized by a limit cycle type of oscillation. ’
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Figure 1. Variation of eigenvalues with respect to flow
dynamic pressure : a). Hinged-hinged plate,
b). clamped-clamped plae.

Table 3. Critical values of dynamic pressure and eigen-frequency
for plate with four side-conditions.
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Figure 4. Plate deformation mode at the instability point.
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