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Abstract

in this paper, it will be demonstrated how genetic algo-
rithms can be used with experimentally determined fre-
quency response function data to identify finite-element
models of structures for dynamic analyses. The concepts
will be demonstrated with a simple 2 degree-of-freedom
simulation and then actual identifications will be given for
a beam and a large truss structure. A modified genetic
algorithm is then described and its performance in the
identification of a tailplane is demonstrated.

1. INTRODUCTION

In order to have a finite-element model (FEM) of an air-
craft structure that is tractable for dynamic analyses, we
must take the aircraft structure, as depicted in Figure 1a,
and represent it as a much simpler structure, such as that
shown in Figure 1b.

FIGURE 1a.

FIGURE 1b. Finite-element representation of an air-
craft structure.

Over the past 3 decades, there has been a growing body of
research dedicated to finding the best means of creating
such dynamic finite-element models, the results of which,
adequately describe the true behaviour of the structure.
Such research has typically been based on taking experi-
mentalily determined modal frequencies and mode shapes
and adjusting the mode! to give better correlation, with
the constraint that the modifications are kept to a min-
imum (eg. Kabe()); no such constraints will be applied
here. The updating of the mathematical model can be
carried out on the mass and stiffness matrices without
regard for the physical properties of the structure, or on
the physical properties themselves, from which new mass
and stiffness matrices will be determined. The coordinate
system used may be a reduced, or modal, system, or the
physical coordinates may be maintained.

The solution process employed is typically non-linear due
to the high degree of dependency of one parameter on
one or many of the others. For such a problem, iterative
solutions are usually required. These iterative procedures
usually fall into two general classes:

i. calculus based approaches, and

ii. naive processes.

A calculus based approach depends upon having a sound
mathematical understanding of the system under investi-
gation and being able to estimate the local derivative of
the objective function with change in various combina-
tions of parameters. Naive processes, on the other hand,
only require that some sort of cost function can be deter-
mined for any likely set of parameters, and so are a much
more general class of procedures.

Naive procedures can be broken into two categories:
i. enumerative, and
ii. guided random.

Enumerative techniques and purely random searches, are
usually prohibitive in terms of processing time. Guided
random techniques, however, are generally started with
random elements, but they ‘learn’ as they progress. With
this ‘learning’, they attempt to approach optimal solu-
tions whilst still employing the use of stochastic elements.
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In this paper, the results of a technique by which a finite-
element model can be identified from experimental data
will be shown. The method, which is based on the arti-
ficial intelligence tool of genetic algorithms, involves di-
rectly determining the optimal mass and stiffness prop-
erties of the finite-elements, which comprise the mathe-
matical model, in physical coordinates. The identification
problem involves estimating the physical properties such
that some measure of the errors between experimental
data and those produced by the mathematical model are
minimised.

2. GENETIC ALGORITHMS

Some introductory reading focussing on the philosophy of
genetic algorithms (GAs) can be found in Holland®® and
Forrest®. Good introductions to the technical aspects
of GAs can be found in Whitley*) and Beasley et al(®).

The idea for genetic algorithms came about from a re-
alisation that, according to Darwinian evolution, nature
finds relatively optimal solutions in a naive way to the
problem of how to exist on earth. That is, natural evo-
lution does not occur by looking ahead and attempting
to determine which features will improve the fitness of a
species, but rather tries out different features and those
which prove beneficial are preferentially selected. This
preferential selection, through an increased likelihood of
mating, leads to a higher probability that a fit individ-
ual's genes will be spread throughout the species over
subsequent generations. The observation that the forces
of nature are really the impetus behind a massive highly
non-linear optimisation routine led workers to consider
whether mimicking natural evolution on computers could
be used to solve the relatively much simpler optimisation
problems found in engineering. The optimisation problem
faced by nature is obviously huge, with the number of
possible specific features that an organism can exploit to
survive, n, forming an n—dimensional search space where
n is tending towards infinity. This search space is also
full of local optima, or niches, as is evidenced by the vast
array of life on earth from viruses to amoeba to plants,
insects, fish, reptiles and mammals. in contrast, the types
of optimisation problems that arise in engineering seem
trivial. We do not have millions of years to come up with
a good solution, but our fitness landscapes are not as
complex as those in nature.

Genetic algorithms are based on starting with a randomly
generated population of individual possible solutions scat-
tered over a pre-determined search space (the region in
which the true answer is thought to lie). The relative
fitness of these individuals is determined and a stochastic
selection process biased towards the fitter individuals is
used to select parents for mating. In mating, attributes
of the parents are mixed to form offspring which may, or
may not, be fitter than one or both of the parents. In
forming offspring, occasional random mutations can oc-
cur which also have the possibility of leading to a fitter

individual. The process of selection, mating and muta-
tion is repeated over a number of generations to allow
the solution to evolve towards an optimum.

These algorithms were first rigorously analysed by
Holland® who mathematically analysed why genetic al-
gorithms work and developed the concept of implicit
parallelism. Implicit parallelism describes the manner in
which, by starting from an initial random population and
then evolving in a manner which results in many diverse
individuals, many possible solutions spaces are searched’
at the same time. Holland argues that it is this feature
which makes GAs such a powerful analytic tool for finding
global optima.

An example of the power of genetic algorithms to search
a large solution space is given in Holland®. Here, it is
described how workers at General Electric and Rensselaer
Polytechnic Institute used a genetic algorithm in the de-
sign of a high by-pass ratio jet engine. In searching for
the optimal design of a jet engine, approximately 100 pa-
rameters are varied. Traditionally, this has been done by
an engineer changing various parameters, running a sim-
ulation and observing the effect the changes had upon
the engine's performance. This process would typically
take up to eight weeks before a solution would be settled
upon. Using an expert system which is based on rules
learned through previous experience and is capable of es-
timating the effects of changing one or two variables, an
engineer can come up with a design in less than a day
which would have twice the improvements derived from
the manual method. Such expert systems, however, be-
come stuck and cannot predict the changes that occur
when many parameters are changed at the same time.
Using expert system solutions in the initial population,
a genetic algorithm was run over two days and resulted
in half again as much improvement as the expert system
results.

In many respects, the problem of the optimal design of
a jet engine is analagous to the parameter identification
problem for dynamic finite-element models. The tradi-
tional way in which dynamic finite-element models are
improved is for an engineer to compare experimental re-
sults with those from the FEM. Various parameters in
the FEM are then updated until a satisfactory solution
is found. Also, the changing of one parameter within
the FEM may exhibit a high degree of influence on the
optimal value of other parameters. It may be thought
that genetic algorithms are not applicable to these sorts
of problems because they are optimisation tools whereas
in the identification of physical properties, we are search-
ing for the one—and-only solution. It must be remem-
bered, however, that in such highly non—linear identifica-
tion problems, guaranteeing that an answer is the one-
and-only global minimum is impossible. Given this, we
must be satisfied with the improved result that a non-
linear identification technique will give us.
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3. ldentification of Physical Parameters
in Dynamic FEMs

One of the most fundamental questions to be consid-
ered when looking at such problems concerns whether
modal or frequency response function (frf) data should
be used. As has been shown in Dunn("), modal data give
a much more attractive search space for non-linear iden-
tification techniques, whereas frf data typically result in
a search space which leaves traditional non-linear iden-
tification techniques very dependent upon good initial
estimates. The apparent attractiveness of modal data,
however, is misleading, the reason being that modal data
has already been subjected to an identification procedure
resulting in reduced data which is likely to be biased by
the modal identification procedure. Also, when looking
at modal responses, we are observing the structure in a
regime where it is subject to the greatest effects from
geometric and structural non-linearities. As the aim here
is to identify a linear model of the structure and the de-
sire is to work with data that are unbiassed, this paper is
concerned with the use of frf data.

3.1 Simulated Two Degree of Freedom System

To illustrate the problems which arise when working
with frf data, consider a 2 degree-of-freedom (dof)
mass/spring system loaded by a known sinusoidal exci-
tation, as shown in Fig. 2.

FIGURE 2 Two degree-of-freedom mass/spring sys-
tem used in simulation.

For this problem, we will consider the two spring stiff-
nesses as being unknowns. A problem with two unknowns
serves as a good illustrative example because the search
space for the two unknown parameters can be plotted as
a surface over which the solution process must search in

order to find the optimal solution. This surface has been
plotted for the above system in Fig. 3. Figure 3 is a plot
of the error, =, found by taking the simulated measure-
ments, z, for k; = ko = 10N/m and comparing them
with =/, which is found by varying k; and ko, over the
region sampled. ¢ is given as

n

e=Y -7 1)

i=1

where n is the number of frequencies tested. The fre-
quencies used here were w = 0.4 - 2rad/sec in steps of
0.4rad/sec, therefore, n = 5. Given that the aim here
will be to minimise the error, ¢, the surface shown in Fig.
3 can be considered to be the inverse of the fitness func-
tion such that the maximum fitness is found when ¢ is
a minimum. It should be noted that as such measure-
ments are directly related to the compliance, rather than
the stiffness matrix, the search space is formed in terms
of 1/k.

FIGURE 3 Landscape of search region for frf data
from the simulated 2 dof system represented in Fig.
2 (the + symbols show the search paths taken by a
stochastic hill-climbing algorithm).

As can be seen in Fig. 3, the landscape over which the
problem must search is far from simple. For a prob-
lem described in this manner, gradient based techniques
will always tend ‘downhill’. Given the structure of ridges
shown in Fig. 3, it is clear that gradient based techniques
starting on the wrong side of these ridges will never ap-
proach the optimal solution. The crosses marked on Fig.
3 show the paths taken by several runs of a naive gra-
dient technique known as stochastic hill-climbing (Juels
and Wattenburg(®).

Now let us investigate how a genetic algorithm can be
used to tackle to problem of identifying the two spring
stiffnesses for the problem depicted in Fig. 3 using
the same simulated measurements as were used in the
stochastic hill-climbing approach; ie. the landscape of
the search space is as shown in Fig. 3. In Fig. 4, every
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point searched in a random search of 2500 attempts is
shown. This can be compared with the search shown in
Fig. 5 which is for a genetic algorithm. For the genetic
algorithm, the population for each of the 50 generations
was 50, thereby leading to 2500 evaluations of ¢ as de-
scribed in eqn(1). Each of the runs for the stochastic
hill-climbing algorithm shown in Fig. 3 was stopped af-
ter 2500 evaluations. For mare details on the specifics of

the genetic algorithm used here, the reader is referred to
Dunn(®,

The random search depicted in Fig. 4, clearly samples
the search-space fairly evenly and shows no interesting
features, as is to be expected. In Fig. 5 we can see
that the region about the actual solution (0.1,0.1) is well
searched by the genetic algorithm resulting in a greater
likelihood of fmdmg the optimal solution.
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FIGURE 4 Points tned in a random search for the
spring stiffnesses of the system depicted in Fig. 2
from simulated data.
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FIGURE 5 Points tried by a genetic algorithm in at-
tempting to identify the spring stiffnesses of the sys-
tem depicted in Fig. 2 from simulated frf data.

3.2 12 Degree of Freedom Representation of a3 Beam
Using Experimental Data

A uniform rectangular cross—section beam was loaded, as
shown in Fig. 6, with broad band noise and the transfer
functions between force input and translational acceler-
ations were measured at six evenly-spaced points. This
beam was modelled as a 12 dof beam, as shown in Fig.
7. The aim of this task: using a finite—element model
in which the geometry of the structure is known and the
node locations specified, find the physical characteristics
of the beam elements which will best reflect the exper-
imental data. The knowledge that the beam is uniform
will be used, meaning that the properties for each of the
six beams are taken to be the same.
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FIGURE 6. Loading arangement for rectanular beam.

FIGURE 7 Depiction of the finite-element model of
the beam shown in Fig. 6. The model has 12 dof
with each node having the freedoms shown for node
6.

For a single built—in beam element with lumped mass with
the freedoms as shown in Fig. 7, the equation of motion
can be written as

(ol sl e i{ed- i)

where m is the lumped mass at the end of the beam, I is
the mass moment of inertia at the end of the beam, e is
the Young's modulus, 4 is the area moment of inertia of
the cross—section of the beam and [ is the length of the
beam element. For the case where the geometry, force
inputs and some displacements are known, the unknowns
in the above equation can be taken to be m, I and ei.
Given that this problem has been specified as identifying
the physical properties of six identical beam elements, the
unknowns for this problem are the same as for a single
beam depicted by eqn(2). If we now consider the full
finite-element equation as



(~w*M +K) {z} = {F} 3)

where M and K represent the full finite-element mass and
stiffness equations respectively, {z} is the vector of dis-
placements and {F} is the vector of force inputs. Rewrit-
ing eqn(3) and multiplying the displacements by w? to
make the accelerations the subject

{i} = —w? (~’M +K) 7 {F} @)

Equation (4) being for a 12 dof finite-element model, is
a matrix equation representing 12 individual equations.
Given that only the six translational accelerations were
measured here, the measurement vector {#} is incom-
plete. If we represent the reduced vector encompass-
ing only the measured freedoms at the jth frequency as
{X"}; and the modelled results for a given m, I and ei
for the same freedoms as {X'}; we can write the objective
function as

N =n
min (g (m, I, ei)) = ZZ l«?i,j(m, Lei)-X/;| (5)

=1 1i=1

where N is the number of measured frequencies and n is
the number of measured freedoms used in the optimisa-
tion process.

The question to consider before implementing a genetic
algorithm based on the objective function given in eqn(5)
is: at which frequencies should measurements be car-
ried out to obtain the stated aim of identifying a finite-
element model which represents the linear structure? As
modal frequencies are approached, for a given force in-
put, the amplitude of the response grows dramatically.
With this growth in response, structural and geometric
non-linearities have a much greater influence on the mea-
sured results. Whilst such influences are certainly of im-
portance when considering a structure’s modal response,
when trying to create a model which best represents the
linear characteristics of the structure, measurements near
modal frequencies should be avoided. Based on this phi-
losophy, an identification was carried out using a genetic
algorithm on the mass/beam model represented in Fig. 7
giving the results presented in Fig. 8. Clearly, the iden-
tified model is a very close approximation to the actual
structure within the frequency band of the test.

- The identified properties are given in Table 1. It should
be noted that neither the force transducer nor the ac-
celerometer were calibrated, so the identified parameters
have no dimensions. In searching for the solution, the
initial search space was set very widely and subsequently
reduced for better resolution when the genetic algorithm
quickly indicated the region of the actual solution. Table
1 shows the reduced bounds of the search space and the

results for 100 separate runs of a genetic algorithm with
a population of 50, each run for 50 generations and the
resolution between the bounds is 8 bits.

For the results presented in Table 1, it should be noted
that of the 100 runs, each consisting of 50 generations,
the optimal solution was found 18 times. It should also
be noted that there is no guarantee that this solution is
the true optimal solution.
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FIGURE 8 Frequency response function for the beam.
The dots show all of the measurements taken, the o
show the measurements used in the genetic algorithm
and the solid line shows the frf of the identified model.

el m I
x10% x10° x10~*
1/bounds (1-3) (2-6) (2-8)
opt. solution 1.27 4.17 2.01
mean solution 1.27 4.17 2.03
std. deviation 0.8% 0.6% 2.1%

TABLE 1 Results for finite-element beam properties based
on the measurements shown in Fig. 8.

If the finite-element model is an adequate representation
of the structure within the frequency range of the test,
then as many measurements as were used in Fig. 8 are
not required to determine only 3 unknowns. The extra
measurements are useful from the perspective of noise
rejection, but these measurements are not subject to a
great deal of noise. To test the hypothesis that far fewer
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measurements may be sufficient, measurements at only 4
frequencies below the first mode at the free end of the
beam were used; the results are presented in Table 2 and
Fig. 9.

The results presented in Fig. 9 show that, at least up to
the second mode, the finite-element model is a sufficient
representation of the beam. Comparing the results given
in Table 2 with those in Table 1, we see that ei and
m are essentially unchanged whereas that for I is very
different. Given that the results in Fig. 9 clearly show
that the identification is a sufficient representation of the
structure within the frequency range measured, we can
conclude that I has very little influence on the behaviour
of the structure in this regime and, consequently, such
measurements are not sufficient to determine I.

el m I
x103 x 109 x10*
1/bounds (1-3) (2-6) (2-8)
opt. solution 1.24 4.22 6.74
mean solution 1.23 4.17 6.15
std. deviation 2.0% 3.3% 29.4%

TABLE 2 Results for finite-element beam properties based
on the measurements shown in Fig. 9.
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FIGURE 9 Frequency response function for the beam
when only the frf measurements at the end of the
beam for 4 frequencies below the first mode are used.
The dots show all of the measurements taken, the o
show the measurements used in the genetic algorithm
and the solid line shows the frf of the identified model.

3.3 Identification of NASA 8-bay truss

Research at the NASA Langley Research Center on dam-
age detection for large space structures, led to the com-
pilation of a comprehensive set of measurements for the
8-bay truss depicted in Fig. 11. Full experimental details
are given in Kashangaki(19),

The finite-element model identification of the truss
was carried out in the same manner as that for the
beam in the previous section, though here, the truss ele-,
ments are assumed to carry only tensile and compressive
loads and no bending loads. The identified parameters
were: the product of the Young's Modulus and the cross-
sectional area for the diagonal elements and the fongerons
and battens respectively; the mass of the beams for the
diagonal elements and the longerons and battens respec-
tively; and the lumped mass representing the node balls
and instrumentation at each node of the truss. The model
identified by the GA produces the results shown in Fig.
10 using only the transfer function measurements of the
accelerations in the direction of loading with respect to
the load input at the 8 nodes numbered in Fig. 11.

amplitude of transfer function

‘
10 20

frequency Hz

FIGURE 10. Frequency response function for the 8—
bay truss. The dots show all of the measurements
taken, the o show the measurements used in the ge-
netic algorithm and the solid line shows the frf of the
identified model.
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FIGURE 11. NASA 8-bay truss showing point of application of load and
nodes from which measurements were used for the updating procedure.

The previous identification was carried out on the struc-
ture in an undamaged state. Damage was then simu-
lated in the truss by removing elements and repeating
the experiments. The aim of the identification here was
to repeat the identification of the truss, as described pre-
viously, with the added unknown that 1 element may be
missing, and if so, which one. For the damage cases anal-
ysed, the element properties are determined well, but solv-
ing for the missing element is not necessarily so straight-
forward. For the case of element 1ll, as shown in Fig. 11,
the GA quickly identifies the missing element; therefore,
it can be concluded that for the given loading with the
measurements from the 8 nodes, as described above, the
information is sufficient to uniquely identify the system.
A number of runs of the GA for the case with element |
missing, however, shows that there is little difference be-
tween the objective functions for element | or 1l missing;
therefore, the given measurements and loading are insuf-
ficient to determine the damage uniquely. Nevertheless,
the region in which the damage has occurred is narrowed
down to one of two elements.

4. Aerospace CT4 Tailplane

The test article used here was the tailplane of a CT4 - a
propeller driven military trainer. The structure is of a tra-
ditional aluminium construction involving two spars, ribs
and a riveted skin. The tailplane was mounted on springs
and loaded at its tip as shown in Fig. 12. The loading
consisted of band limited white-noise (0~100Hz) and ac-
celerations were measured at the six locations shown in
- Fig. 12 with a ‘roving’ accelerometer. The transfer func-
tion between the accelerometer readings and the mea-
sured load input was determined. It was these transfer
functions that were then used in the model identification
process.

Three configurations consisting of the tailplane arrange-
ment with different added masses (Table 3) were tested.
The mounting, loading and added masses were such that
no torsional modes were excited.

measurement points
/ ! N\ ~,
5 6 7

/

1 2 3 4 8 9 10 11

= =
FIGURE 12 Tailplane arrangement showing the point
of load application, the spring mountings and the po-
sitions where measurements were taken and masses

could be added.

Configuration Added Mass
1 20kgatl & 11
2 0.2kg at 1 & 11, 09kg at 4 & 8
3 1.2kg at 1 & 11, 0.575kg at 2 & 10

Table 3 Added masses for the three configurations.

The objective function for the tailplane identification is as
described in eqn{5), though the model to be determined
can be depicted as shown in Fig. 13. The unknown
parameters are:
— the stiffnesses of beams 1 & |,
— the magnitudes of the masses i & ii,
— at which node should the change in stiffness occur,
— at which nodes are the masses best placed, and
— the stiffness of the mounting springs.
These unknowns lead to a search in 8-dimensional space.
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FIGURE 13 Diagram showing lay-out of finite-
element model and the node positions where the
masses, i and i, and the beams, 1 and II, can be
placed.

4.1 Modified Genetic Algorithm

The basic form of the GA used here is as has been de-
scribed in detail in Dunn®; a modification which has
been found to be of use in this problem is described as fol-
lows. As GAs progress through generations from the ini-
tial randomly selected population, it is typical that there
is a rapid improvement in the cost function, followed by a
progressively slower rate of improvement. If this solution
is heading for a result remote from the global optimum,
then, even though there are mechanisms within a GA
which allow the possibility of still finding the global opti-
mum, it can take a very long time. A technique which has
been used here involves taking advantage of the features
found during the apparently rapid initial convergence by
carrying out quick solutions n times, and then for the
(n + 1)st time, the previous n solutions are added to
the initial population. The aim of such a technique is
that the initial solutions will have some attractive fea-
tures which, in the subsequent runs where all of them are
brought together, will be shared between these solutions
via the mechanism of crossover. The resulting popula-
tions will then hopefully have individual solutions which
will be made up of the attractive aspects of the previ-
ous solutions. This method is analogous to a technique
described in Goldberg and Richardson(!!) which has mul-
tiple subpopulations with occasional migration, thereby
simulating partial geographical isolation.
This was implemented for the problem described here as
follows:
— run the standard GA 10 independent times with
a population of 30 for 30 generations; the initial
population of 30 is randomly created
— take the 10 solutions from the previous step and
a randomly selected population of 30 and run the
GA now with a population of 40 for 30 generations
— take the 11 solutions from the 11 previous GAs
s now with a population of 41 for 30 gen's

— take the 14 solutions from the 14 previous GAs
........... now with a population of 44 for 30 gen's.

After all of this, 15,300 cost function evaluations had
been carried out. The standard GA as described in
Dunn® was run for various populations and numbers of

generations. Carrying out the identification on configu-
ration 1, as shown in Table 1, the comparison of results
from each of these techniques is shown in Table 4 where
it can clearly be seen that the additional complexity of
the modified technique is worthwhile.

Objective function ;

pop. gen’s func. evals. best mean std. dev
modified GA 15300 167 194 035
100 153 15300 196 5.06 1.96
153 100 15300 258 336 0.89
300 51 15300 234 382 0.88
51 300 15300 215 3.02 071
30 500 15000 273 347 042
500 30 15000 334 381 033

Table 4 Comparison of the modified GA with more stan-
dard single run GAs. Each form of GA was run 8 inde-
pendent times.

4.2 Predictions based on the identified model

The identification was carried out on the tailplane in con-
figuration 1 as shown in Table 3. The frequencies used in
the cost function determination and the frf predicted by
the identified model are shown in Fig. 14 (Note: only the
data for the measurements at node 1 are shown, though
measurements at nodes 1 to 6 were used).

The aim of the identification was to determine a model
which will predict the structure's dynamic behaviour un-
der different conditions. Adjusting the identified model to
account for the known changes in mass distribution, the
predicted frf and the measured response for the tailplane
in configurations 2 & 3 are shown in Fig. 14.
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FIGURE 14 lIdentified and predicted dynamic be-
haviour of the tailplane loaded as shown in Fig. 12.
Note: the dashed line represents the identified and
predicted response of the finite-element model and
the solid line shows the measurements.

5. Conclusions

It has been shown how genetic algorithms can be suc-
cessfully employed in the identification of simple finite-
element models for dynamic analyses of aerospace struc-
tures. A modification to the more standard genetic al-
gorithm has also been described and its efficacy in iden-
tifying the finite-element model components for a light
aircraft tailplane has been demonstrated. Further work
in this topic includes extending the procedure to a full
aircraft structure, investigating how to optimise the mea-
surement points used in the identification and investigat-
ing the applicability of related techniques, such as simu-
lated annealing, to these problems.
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