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Abstract,

This paper presents an efficient buckling analysis
method for a continuous array of plates, extending over
regular internal supports, which can be either curved or
straight. Practical examples include flight control surfaces
subject to local buckling between the internal rectangular
supports over which the plate is continuous. The
investigation includes a preliminary set of comparison
results for plates that are continuous over a regular array
of adjacent rectangular, circular, hexagonal, oblique
(skew) or triangular supports. The results may find
application in the design of super-plastically-formed and
diffusion-bonded panels.

Introduction.

This paper presents new buckling results for an
array of plates, continuous over either rectangular,
circular, hexagonal, oblique (skew) or triangular supports,
and for which few published results' exist. The analysis
procedure was developed" originally to investigate the
potential limitations of modelling an isolated plate or
plate assembly, as is often done in practice, to represent
the real problem where there is continuity over supports
along one or both in-plane directions. Previous results'>"
dealt specifically with skew plates and plate assemblies,
of which rectangular plates were the limiting case.

Analysis is based on classical plate theory (CPT)
and while longitudinal plate boundaries (or edges) are
modelled exactly, the transverse boundaries are enforced
by a sufficient number of point constraints that are
introduced by the method of Lagrangian multipliers,
which is described in a later section. These point
constraint were arranged to form skew supports in
previous work, but this arrangement may be modified to
give hexagonal, circular or triangular supports. The
support pattern repeats at intervals of the panel length, see
Fig. 1(a), since the analysis accounts for an infinitely long
plate, thus forming a series of plates joined end to end,
which typify the continuity found in aircraft wing or
fuselage construction.
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The results obtained for this investigation, which
are the result of an enhancement to existing theory'"®
and the associated computer code’, account for skew plate
assemblies that are continuous over supports both at
regular longitudinal and transverse intervals, compare
Fig. 1(b) and 1(c). As a result of this enhancement,
efficiency is achieved through a reduction in the size of
the computer model, i.e. requires less data preparation
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Fig. 1. Plate assembly (a) of width B, continuous over
skew supports, o, at longitudinal intervals a was later
modified (b) to allow for continuity transversely. The
enhancement (¢) allows for skew-transverse-continuity,
where x' = B.tana.
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and CPU time'®. This fact is demonstrated in Fig. 2,
which shows alternative ways of modelling the plate, and
is of particular significance in the context of the current
investigation, since many point supports are required to
define the various new geometries.

Formulation.

The analysis method used'"™” is based on the
Kirchoff-Love hypothesis. The general form of the

differential equation of equilibrium is given by:

=

Fig. 2. Buckling modes for (a) compression loaded,
hexagon and (b) shear loaded, circular supported plate
array. Bold lines illustrate the alternative model
configurations, i.e. the portion of plate assembly and
supports required, for both transversely- and skew-
transversely-repetitive analysis. Reference axes are
illustrated.
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where the Q_ij represent the transformed reduced

stiffnesses, the relationships for which are derived and
defined elsewhere’.

The solution permits orthotropic in-plane
material properties (so that A5 = A,¢ = 0) and uncoupled
anisotropic out-of-plane (i.e. flexural) properties, so that
B = 0. Balanced and symmetric laminates eliminate shear-
and bending-extension coupling respectively.

Figure 3(a) shows a component plate of width b,
together with the basic longitudinally invariant in-plane
forces which it carries. These are forces of N, Ny and Ng
per unit length, corresponding to uniform longitudinal
and transverse compressive forces and shear flow,
respectively. The deflections of the plate assembly are
assumed to vary sinusoidally in the longitudinal direction
with half wavelength A. The nodal lines of the deflection
pattern, shown dashed on Fig. 3(b), are perpendicular to
the longitudinal direction when all the plates of a plate
assembly are isotropic or orthotropic and are subject only
to N, and/or Ny. The nodal lines are then consistent with
transverse simple supports at the ends of each plate of the
assembly, and so exact results are obtained for such end
conditions if A is taken as A; = a/j, where the integer j =
1,2,3... and a is the length of the assembly. Skewed nodal
lines result when some of the component plates are
anisotropic or carry in-plane shear loads Ng. They are
inconsistent with transverse simple supports and so form
only approximate solutions for such supports.

Displacements at nodes, i.e. at junctions between
the longitudinal plates, are given by the real part of
Dj'exp(inx/A;), where i = J=1 , X is the longitudinal co-
ordinate and D;’ contains the four complex displacement
amplitudes for each node which correspond, in order, to
the y, w, v and u of Fig. 3(a). All possible types of mode
are included by permitting the junctions between
individual plates to flex'". The displacement amplitude v,
(y,) for rotation about the y axis (z-axis), which can be
set to zero for clamped conditions, is obtained by
differentiating the displacement function in the z (y)
direction, e.g. -inw/A replaces the displacement amplitude
for rotation about the y axis since
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Critical loads are the eigenvalues corresponding

to K;D; = 0, where D, is obtained by multiplying every
fourth element of D, associated with longitudinal
displacement, by i. This i takes account of a 90° spatial
phase difference between these displacements and others
which occur for plate assemblies consisting of orthotropic

(®

Fig. 3. (a) Loading and reference axis system for a
component plate of width b and; (b) skew mode with
half-wavelength A and the perturbation force (denoted
by p and m) and displacement amplitudes at the
longitudinal edges of the plate, which are multiplied by
exp(inx/A).

plates with no shear loading, i.e. Ng = 0.

Note that K; is a transcendental function of A and
load factor, which changes from being complex and
Hermitian to being real and symmetric when all
component plates are isotropic or orthotropic and Ng = 0.
Due to this transcendental nature, usual linear eigenvalue
methods are inapplicable. However for such exact
stiffness matrix  analysis the Wittrick-Williams
algorithm'® removes the possibility of eigenvalues ever

being missed despite the transcendental nature of the
problem. Therefore this algorithm was used to ensure that
for any value of A;, the lowest critical buckling load is not
confused with higher ones.

For skew plate assemblies, in which the
prismatic nature of the plate assembly is maintained,
point supports are used to produce the (skew) transverse
boundaries. They are enforced by the method of
Lagrangian multipliers, which was already present in the
theory because it was needed to overcome the problem
associated with shear loaded rectangular plates3.

To include such point supports the equations
become:
aK,D,+ehy, =0  (m=n+qM,q=0%122,..)

4
2 D=0
(%)
where H denotes Hermitian transpose and it is sufficient
here to note that y and e are the Lagrangian multiplier
vectors and constraint matrices defined later in eqns (11)
and (12) respectively, while K, and D, are defined
beneath eqn. (8). The equations apply to any infinitely
long plate assembly which repeats at longitudinal
intervals, to form identical bays of length a. The mode is
assumed to repeat over M bays, i.e. over a length L = Ma.
All modes can be obtained by simultaneously satisfying
these equations in turn for each of the integers n given by
-M'<n<M'
©
where M" and M' are, respectively, the integer parts of
(M-1)/2 and M/2. A complete solution is obtained by
repeating the computations which follow at sufficient
values of M. For the values of M chosen, the analysis
assumes that the nodal displacements and forces of the
plate assembly can be expressed, respectively, as the
Fourier series:
D,= Y Dexp (——ZIme)

m=—co

N

®)
where D,, and K,, are the D; and K; defined above, for A
= A Where A, = L/2m and m = 1, 2, 3,.... The total
energy of a length L of the panel is expressed in terms of
the stiffness matrices K. The governing equations are
now obtained by the method of Lagrangian Multipliers,
by which the total energy is minimised subject to the
constraints needed to represent the point attachments of
the plate assembly to the rigid point supports. Equation
(9) follows (It is similar in form to eqns (4) - (5) written
as a single equation).

2724



LK, E; |[Do
LK, el || D
LK__] E_I;{] D.]
LK, EY KD, =0
L EO El E-l E2 0 | PL

®
where negative signs indicate complex conjugates. This is
valid for any prismatic plate assembly with responses
which repeat over length Ma. The Lagrangian multipliers
will repeat over this length such that

T _
P =[PP, ,P],,.]

. (10)
with Py, = Py ;.\ Tepresenting the Lagrangian multipliers
in the interval ka < x <(k + 1)a.

The above equation is satisfied by the complex Fourier

series
M 2imjk
Px= X y~exp(
[l v M

(1D

The constraint matrix E,, can be expressed as

T _

Em - [e;I;l s e;rnl, eaz, ]

12)

€k is the constraint matrix for bay ka < x <(k + Da.

The solution given by the above includes all
modes with wavelength L, 1/2, L/3, etc. However, by
decoupling the equations and selecting m numbers that
produce repetition over Ma and not also over some
fraction of Ma, greater efficiency is achieved by avoiding
computation involving values of m not contributing to the
solution. Hence, because A, = L/2m and L = Ma, the
values of m previously defined in eqn. (4) give:
Ay = a/{(20/M) + 2q} q=0,%1,12,....

(13)

From eqn. (13), the A,'s are functions of M/n and
not of M and n independently. Therefore computational
savings are made by considering only those combinations
of M and n which share the same value of M/n. It is
convenient here to express the resulting relationships in
terms of the single parameter £ = 2n/M, so that eqn. (13)
can be rewritten as

a

(§+2q)

m

q=0,£1,12,....
(14)

Higher accuracy is achieved, at the expense of increased
solution time, by increasing both q,,,, the maximum
value of q used in eqn. (14), and also the number of £ in
therange 0 <€ < 1.

Transverse repetiti

Many plate assemblies exhibit repetitive cross-
sections which can be analysed by assuming infinite-
width and writing suitable recurrence equations. A brief
summary of a recent publication“ dealing with an
extension of this theory for skew plate analysis follows.

For skew plate assemblies, constraints must be
included in these recurrence equations such that the
continuity of the line of supports is maintained in adjacent
bays. This is achieved by introducing a constant
longitudinal shift (x') to support locations at the start of
each successive transversely adjacent portion. The
fundamental equations for the repeating portion become:

aK D +eHy =0 (m=n+gM, q=0+112..)
~m0 ~m0 ~m0._py ~
>e D =0
~m0 ~m0 ~
(15)
where

K =K +K" exp{-i(¢- 2nmx'/Ma)} +
~mll ~ml2

~m0

I~( i exp{i(¢ - 2nmx'/Ma)}
(16)

Equations (15) must be solved for the same
combinations of M and n, or values of £, as for plate
assemblies that are not transversely repetitive. However,
now suitable values of ¢ must be used for each
combination.

When a = 0°, eqn. (16) reduces to the previously
defined form (Williams and Anderson, 1985)

K =K +K" ep(ip)+ K exp(it)
~mll  ~mi2 ~ml2

~md

a7
and the values of ¢ can reasonably be restricted to those
which give modes which repeat across twice the width of
the assembly, so that, if P is the number of repeating
portions of width b within the assembly,

¢=ngP g=-P-1),.,-1,0,1,...P.

(18)
and the transverse half-wavelength A; is
Ay = Pb/g = ntb/d

19)

Because a # 0° is now the general case, x' # 0 in
eqn. (16) and so the mode repeats over twice the width Pb
of the assembly except that it is now moved along the
assembly by 2x', such that it is skewed by the angle «,
where x' = b.tana, see Fig. 1(c). Hence A is the
component, perpendicular to the longitudinal axis, of a
half-wavelength that is skewed by the angle a.

The theory presented above is now incorporated
in an existing 36,000 line, FORTRAN 77 computer
programg. The program also has an optional numerical
procedure2 allowing for transverse shear deformation, and
has been applied to some of the results that follow.
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Fig. 5. Skew-transversely-repetitive buckling factor
curves (k' = k.cos’a) for simply supported shear loaded
plates. Discrete results (O) represent finite width plates.

Results

Buckling factors (k = obzt/nzD) were obtained
using Poisson’s ratio v = 0.3 with parameters & = 0, 0.1,
02, ... .. , 0.9, 1 and q, = 10 in the computer model,
unless stated otherwise.

Previous results” for compression and shear
loaded arrays of continuous skew plates are shown in Figs
4 and 5 respectively. They also illustrate the comparison
with continuity along a single axis, i.e. plates of finite
width. Cusps denote a change in mode.

New results for hexagonal, circular and
triangular compression and shear loading geometries
follow.

Note: It is important to realise that the aspect ratio (a/b) is
not constant for the various geometries. The circular and
hexagonal geometries are further complicated by the fact
that their boundaries overlap, see Fig. 2. It can however
be seen that when centre-lines are drawn, see Fig. 2(a), an
oblique shape is produced, equivalent to that of a skew
plate with its centres at angle o = 30°. Hence the aspect
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Fig. 4. Skew-transversely-repetitive buckling factor
curves (k' = k.cos’a) for simply supported compression
loaded plates. Discrete results (O) represent finite width
plates.

ratio is defined as the longitudinal centre-line length a
divided by the skew-transverse centre-line length b.

The triangular array is a special case and is
defined by a square planform into which the internal
supports forming the triangular arrangement are
positioned, see the buckling modes in Fig. 6.

The circular supported plate array requires more
point constraints to satisfactorily define the geometry.
The number of terms q,,,,, required for good convergence
are shown in Table I.

Table 1. Buckling factor (k = cbzt/nzD) results for
Circular, Hexagonal, Triangular, Skew and Square
geometries. Convergence results are included. All plates
have aspect ratio a/b = 1, see preceding note.

Geometry Load 5 10 20 25 30
Circular  Comp. - - 9.940 9.933
16.79 16.76




Fig. 6. Buckling modes for (a) compression and (b)
shear loaded plate array with triangular internal
supports.

To allow comparison with the few results in the
literature, an option within the computer code® was used
to obtain the following results for an array of continuous
plates with triangular internal supports using transverse
shear deformation theory, see Table 2.

Table 2. Transverse shear buckling results and Classical
Plate Theory results for compression loaded square plates
(a/b = 1) with triangular internal supports.

t/b k
Wang et al.’® 0.05  16.6074
Liew and Wang® CPT  18.055
Author 0.047  17.1280
Author CPT 17.99

Concluding remarks

An efficient buckling analysis method for a
continuous array of plates, extending over regular internal
supports has been presented. The results include both
curved (circular) or straight (hexagonal, skew, triangular
and square) supports.

Despite the limited number of results in this
preliminary investigation, the merits of using internal

supports other than rectangular would seem, in certain
cases, to be of significance, especially in applications
where Super-Plastic-Forming processes are available for
fabrication.

Futher work

Clamped results have been shown to give good
agreement13 with other results in the literature for skew
plates. This agreement should also apply to the other
geometries investigated in this paper.
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