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Second Piola-Kirchhoff
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Thickness of the core and
of upper or bottom face
layers, respectively
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Initial geometric imperfec-
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Curvilinear system of
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Eq. (28), respectively

Boundary layer solution
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The dimensionless ampli-
tudes of the transverse

deflection and of initial
geometric imperfection,

respectively
Kronecker delta

The end-shortening in the
z; direction

Poisson’s ratios tangential
and transversal to the
isotropy surface

Partial differentiation with
respect to coordinates z*

Covariant differentiation
with respect to the
metric tensor g;; and aqg,
respectively

Introduction

As the concept of high-speed, highly flexible and

light structural weight aircraft capable of operating in
a hostile flight environment gathers more impetus, the
specialists are more and more challenged with a variety
of new technical problems involving its design.

Such new problems are generated, among others,
by the fact that the advanced supersonic and
hypersonic flight vehicles are likely to experience,
during their operational life, high temperature and
pressure gradients. As a result of these severe
environmental conditions, high compressive stresses
acting on the edges of the constituent panels
are induced. For this reason, the study of the
postbuckling behavior of flat/curved structures under
complex loading conditions is a matter of considerable
importance in the design of supersonic/hypersonic
aircraft.

Of great promise toward the successful solution of
a number of technical challenges raised by the design
of advanced flight vehicles is the ongoing integration
of advanced composite material systems. A typical
laminated composite structure which was used in
aeronautical industry in the past and is of great
promise in the design of next generations of high-speed
and launch vehicles is the sandwich type construction.
In its simplest form the sandwich type constructions
can be viewed as a structure composed of two thin, stiff
layers (face layers) separated by a thick mid-layer of
low density material (core layer), and in a most general
form, as a multi-sandwich construction constituted of
a number of thin layers interspersed with thick layers
constituting the cores.

As the present authors of this article are aware,
in the available studies devoted to the modeling of
sandwich-type structures the continuity requirement
for the interlaminae transverse shear stresses is
generally not fulfilled and consequently, the study
of the postbuckling of sandwich type structures was
performed by violating this requirement.

A number of recent survey papers [1,2] and
specialized papers dealing with the linear behavior of
laminated composite structures (see Refs. 3-8) reveal
that the violation of this requirement can result in
unavoidable errors in the accurate response prediction.
Moreover, these errors can be even exacerbated in
sandwich type structures where the materials of
the face layers exhibit large stiffness properties in
transverse shear while the core layer features high
flexiblities in transverse shear. This feature, resulting
in large jumps in transverse shear properties across
the interlaminae surfaces, is likely to increase the
errors incurred by the violation of the static continuity
requirement.

Although the specialized literature contains
a number of important contributions related to
the foundation of the linear theory of laminated
composite plates/shells based on the fulfillment of
the interlaminae continuity requirement of transverse
shear stresses (ICSS) (e.g. see Refs. 3, 5, 9-13 for
the theory of plates and Refs. 4, 6-8, 14, 15, for the
theory of shells), to the best of the authors’ knowledge,
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an assessment of the implications of the violation of
this requirement upon the postbuckling response of
sandwich-type structures has not yet been addressed.
This absence is certainly due to the fact that such a
study requires an adequate geometrically non-linear
shell model, which, to the best of the knowledge of
these authors was developed in a very few papers only,
(see Refs, 11, 13, 15-17). The clarification of this issue
constitutes one of the basic topics of this work.

In the study of this problem, a number of non-
classical effects having a significant influence on the
snap-through phenomenon will be also incorporated
and their effects highlighted. Among these, there are
the initial geometric imperfections, the in-plane edge
restraints and the shell curvature. The implications of
the non-fulfillment of the ICSS upon the postbuckling
response will be analyzed by comparing the predictions
based upon the shell/plate model developed in Refs.
18, 19 with their counterparts obtained in the context
of a theory fulfilling this requirement.

Towards the goal of elucidating this problem, as
a basic pre-requisite, the basic equations associated
with a simple discrete-layer geometrically non-linear
shell model fulflling both the kinematic and static
interlaminae continuity requirements will shortly be
presented. For the sake of convenience, in the
forthcoming developments this model is labelled as
Model II while the one violating the ICSS requirement
as the Model 1.

Notations and Preliminaries

Although the numerical illustrations will be
applied to three-layer sandwich-type shells/plates, for
the sake of generality, the theory is developed for
the case of a symmetrically laminated construction,
the constituent material layers featuring monoclinic
symmetry properties with respect to the global mid-
surface of the structure.

One assumes that the layers are in perfect bond,
implying that no slip or debonding between two
contiguous layers may occur. The points of the 3-D
shell space are referred to a set of curvilinear normal
system of coordinates z*, where z* (a = 1,2) denote
the tangential coordinates, z° (2% < |h/2|) being the
normal coordinate to the reference surface o selected
to coincide with the mid-surface of the mid-layer while
h denotes the uniform wall thickness of the structure.

The present study will be accomplished in the
context of the shallow shell theory (henceforth
abbreviated as the SST).

In light of its underlaying assumptions (see
e.g. [20]), we may appropriately consider that
g (=05 —2°0g) — 65 and (u7'); — &
(1a,b)

where pg and its inverse (u‘”l)g play the role of
shifters in the space of normal coordinates (see
Refs. [21,22]). In Egs. (1), 65 and bj denote the
Kronecker delta and the mixed curvature tensor,
respectively. In addition, by virtue of the same
assumptions, we may obtain for the SST

af af
g —a", gap —* Gag, (2a-¢)
p=|ugl=1-2°H + K(z*) — 1.
In Eqs. (2), ¢“(gi;) and a®?(aag) denote the
contravariant {covariant) space and mid-surface
metrics while H and K denote the mean and Gaussian
curvatures of o, respectively.

In the above and forthcoming equations, the usual
summation convention for the repeated indices is
implied, where the Latin indices range from 1 to
3 while the Greek indices have the range 1,2. In
addition, subscript or superscript k& in the brackets
“<>" accompanying any quantity defining the
geometry or mechanical properties of the laminated
composite, identifies its affiliation to the kth layer.

Transverse Shear Stress Distribution

In the absence of shear tractions on the outer
bounding surfaces of the shell 8 = =+h/2, the
following variation of transverse shear stresses across
the thickness of each kth layer is postulated (see Refs.
8,12),

a3 A L3 — po3wd
0%k (27,2°) = EGS

) E @)+ B2 ),

3
In Eq. (3) f(z®) is the function characterizing the
variation of 0®® across the shell thickness. For the
present case, f is represented as an even function in the
thickness coordinate in the sense of f(z®) = f(—z%),
and in order to fulfill the free traction condition on
z3 + h/2, in addition, one assumes (see Fig. 1)

f(h<1>) = f(h<2m;|-1>) =0. (4)

As concerns F, (= F,, (z*)), these are yet unknown
functions determining the shape of variation of
0°® in the surfaces parallel to the mid-surface;
B2, (= B, (z¥)) are functions to be determined
upon fulfilling the ICSS, namely

52?» (373 = h<k>) = Sﬁ_b ($3 = h<k>) . ()
Following further the procedure outlined in [8], with
the help of Egs. (3) and (5) it can readily be shown

that the variation of transverse shear stresses assumes
the form

5% (@*,2°) = [BRL1 (%) + ABL] Fu(). (6)
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In Egs. (5) and (6) S denote the transverse shear
components of the second Piola-Kirchhoff stress tensor
S* while

k
AZE == f(h) [EZS - B3] (D)
=2

As shown in Ref. 8 and easily to be inferred from (7), in
the case of mild variations of transverse shear moduli,
implying E2%® ~ E23“3, and hence A23¢® — 0,
fulfillment of the ICSS becomes quite redundant. As a
result, fulfillment of the static continuity condition has
to be enforced whenever the materials of the laminae
exhibit significant jumps in transverse shear moduli
from layer to layer.

Representation of Tangential Displacement
in the Thickness Direction

Assuming that the structure features a stress-free

[}
initial geometric imperfection V3 (2, 2%) (= v3 (z¥) ),
considered to be positive downwards, and adopting
the concept of small strains and moderately small
rotations (Ref. [23]), the 3-D strain-displacement
relationship in Lagrangian description is:

2ei5 = Vi +Vii+VaVap +VapVay +VapaVays, (8)

where V; (=
components.

Vi (z¥,23)) denote the 3-D displacement

In Eq. (8), (-);); stands for the covariant derivative
with respect to the metric of the 3-D space.

Postulating that
Vs (2¥,2°) = vs (2¥), )

from (8) one can extract the 3-D expression of
transverse shear strains expressed in terms of
displacement components as

2ex3 = Vays + Va|a- (10)

Employment in (10) of the relationships connecting
covariant derivatives of space and surface tensors
specialized for shallow shell theory (see Refs. 19), of
constitutive equations for e$F>

e§§> = ZF,\fsz;SZiw (11)

as well as of Eq. (6), yields ;>

33 3
Visk = aFgs [BEL 1Y) + ASE) By

Vi = b Vs 12)

In Eq. (12), F3353 denotes the compliance components

of EX33, fulfilling B3 FSs = 65/4.

Integration of (12) in the interval [0,2%] and
employment of (9) yields:

VR = VX5 — dBugpy + Fy [6]J0(2°)

+ 423 Fgiz A0 (13)

In Eq. (13), V:b (E —V—fb (:c“’)) are arbitrary
functions of integration whereas

Jo (%) = / " f(a%)dt (14)

Upon fulfilling the kinematic interlaminae continuity
conditions, from Eq. (13) one obtains

F<k>
VY~ =wx—45¥>Q F sgna®,

(k=1,2...m) (15)

where vy, (= vy (z¥)) denotes the tangential displace-
ments of the mid-surface of the laminate, sgnz®(= 1
for 23 > 0 and = —1 for 23 < 0) denotes the signum
distribution, while

k
<k> QY _— . <i> Au3v3
Q.)\ = Z h<1> (FA3y3A<i>

i=1

i—1> 4373

S GNP
(16)

Furthermore, it may readily be shown that

<k> ntv)\ =<2m+2-k> Q:YA and <m+1> Q:YA =0. (17)

Equation (13) reveals that in the context of this
theory the tangential displacements assume a non-
linear variation in the thickness direction.

Representation of Tangential Strain
Components in the Thickness Direction

With the help of Eqs. (13) nad (15) and after
invoking the relationship between covariant derivatives
of three-dimensional and surface tensors, from Eqgs. (8)
one obtains

1
¥ eap =~ T'Usjap + 570 (°) (Fals + Fla)

k 3v3 k 3v3
+20% (PSR ALy + Fis ASCF, )

~2 (%> QY By +<5 AL Fy ) sgna’

+ % (vaw + vgja — 2ba5v3) .
(18)
Equation (18) reveals that the tangential strain
components feature a variation through the thickness
similar to that of tangential displacement components,
Eq. (13)
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Constitutive Equations

It is well known (e.g. see Ref. 24) that the
3-D elasticity theory implying small strains but large
displacement gradients can be described by linear
constitutive equations relating second Piola-Kirchhoff
stress tensor with Lagrangian strain tensor.

As a result, using the usual procedure of
postulating that transverse normal stress component
$% is in constitutive equations negligibly small
compared with the other stresses, followed by the
elimination of the transverse normal strain component
e33, for a material featuring monoclinic symmetry
properties the 3-D constitutive equations are

§°8 =fehwre,,,

19a,b
Sa3 =2Ea3w3ew3, ( )
where [ p—
wp
afwp . pofw
B = EEPYP — E3333 (20)

Further, use in conjunction with (19), (6) and (8) of
expressions defining, in the context of the shallow shell
theory, the stress resultanta N°# and Q*3, and the
stress couples M8

(v, ury =2 |
[

hemt1s B 5 3
Zmi1> (1,2°) dz

h<r>
+2Z/ S%8, (1,2%) da?, (21a)
herirs>
hem41>
- 2/ S<m+1>
h<r>
+2Z / S da?, (21b)
r=1"Y Rert1>

results in the 2-D constitutive equations which are not
displayed here.

Equations of Equilibrium

The previously displayed kinematic equations
contain five unknown functions, namely kinematic
va(z¥), vs(z¥) and Fy(z*). As a result, in order to
generate the governing equations expressed in terms of
these functions, five 2-D equations of equilibrium are
needed.

They are obtained by taking various moments of
the equations of equilibrium of the 3-D non-linear
elasticity theory

[sff (5;‘ +Vi+V iu,)] = 0. (22)

Employment in Egs. (22) of the approximation proper
to the SST followed by consideration of moments of

order zero and one of the equations corresponding to
1 = 1,2 and of moment of order zero of the equation
corresponding to ¢ = 3 results, with the help of (9) in
the 2-D equations of equilibrium:

Nl =0, M)y - Q=0
bpaN? + N (vs,g + B3,5) la + Qe+ p3 = 0,
(23a —¢)
where p3 (= p3(2¥)) denotes the distributed

transversal load.

Upon expressing N®¥ in terms of the Airy’s
potential function ¥(= ¥(z¥) as

N8 = v PPy, (24)

where ¢*# denotes the 2-D permutation symbol,
equation (23a) can be identically satisfied. In this
case, the compatibility equation associated with the
membrane strains €,4 has to be included as a primary
equation of the nonlinear boundary-value problem. It
is

1 1o
" [eagimr + 5 VslapUsiar + §U3lwkv3|aﬁ
1 o
+§v3|1rX03|aﬂ + bapvsiza] = 0. (25)

Governing Equation System

For the problem to be studied in the present
paper, a most convenient representation of governing
equations is in a form representing the extended
counterpart of the classical von Karmén-Mushtari-
Marguerre large deflection shell theory. To this end
and in order to simplify the problem without impairing
upon the generality of the conclusions, a special
type of anisotropy of the constituent materials will
be considered. This anisotropy is of a transversely-
isotropic type, where the surface of isotropy is parallel
at each point to the mid-surface o.

For such a material, the expressions of the
3-D elasticity moduli are presented in Ref. 22. The
ratio E/G' constitutes a measure of the transverse
shear flexibility of the material. Adoption of Love-
Kirchhoff shell model requires that E/G' — 0, this
reverting to the conclusion that in the context of the
classical shell model the constituent materials feature
an infinite stiffness in transverse shear (i.e. that G' —
00).

Following the procedure developed in a number
of previous papers [18,19] and in the monograph [22],
upon expressing F*(z¥) in terms of a new potential
function ¢(z¥) as

1
KF* =~ ¢**$|, — Dus|3’ + £ (T+L+8)ps|"
- [pr (U3|wp + '83|wp)]]a - bprwp‘a,
(26)
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and using the representation for N*# given by (24),
two governing equations are obtained as:

Dus|35 — ¢ {byw¥ag + (Vsjwp + Vsjup) ¥jap

T+L+S
- —E"_(bpw‘l’laﬁ + ‘I’|aﬁ('03|pw
o - T+L+S
+ v3jp0))lg } — (P2 — —x —psla) =0,
(27a)
and Ti+L1+8
+
- T—F——dls=0. (278)

In addition, the compatibility equation (25) expressed
in terms of ¥ and v3 becomes:

. 1
(b + c)wm +3 (vslfus|3 — vs|)usl4)

+ (Bal7vsl2 - algual2) (28)

+ (2Hus|y - Bvs |},) =0.

In these equations T (=Ti+7T2), L(=L:+Ls),
S(=81+8;) and K are stiffness quantities whose
expressions are recorded in Ref. 8; (-)|]2 and ()|gg
denote the 2-D Laplace and biharmonic operators,
respectively; 2H (= bopa®? = (1/Ry + 1/Ry))
denotes the mean curvature of ¢ where R, denote the
principal radii of curvature of o.

It should be mentioned that the linear Eq. (27b)
defines the boundary layer effect. Its solution is
characterized by a rapid decay when proceeding
from the edges towards the interior of the shell.
Although uncoupled in the governing equations, the
unknown function ¢ remains coupled with the other
two functions, ¥ and v, in the equations expressing
the boundary conditions (in number of five at each
edge).

As was shown previously [18,19], for simply
supported boundaries, the function ¢ could be rendered
decoupled in the boundary condition, and as a result,
the boundary layer equation (27b) in conjunction
with the associated boundary conditions admits the
trivial solution ¢ = 0. In such a case Eq. (27b)
can be exactly discarded and, as a result, the order
of governing equations reduces from ten to eight,
implying a reduction of the number of boundary
conditions from five to four.

Postbuckling of Flat and Doubly Curved

Shallow Panels with Rectangular
Planform

The postbuckling behavior of simply-supported
doubly curved panels with rectangular planform on P
will be analyzed. We will refer the points of ¢ to a
Cartesian orthogonal system of coordinates assumed

to be parallel to the panel edges. We consider that
the panel is subjected to a system of uniform in-plane
biaxial compressive edge loads L1; and Lay whose ratio

is Ly (5 1";22/1";11) .

Depending upon the in-plane behavior at the
edges, two cases, labelled as Case A) and Case B) will
be considered:

Case A) The edges are simply supported and freely
movable in the direction normal to the
unloaded edges in the plane tangent to the
surface at the panel edges.

Case B) The edges are simply supported. Uniaxial
edge loads are acting in the direction of
the z;-coordinate. The edges z; = 0,4
are considered freely movable, the remaining
two edges being unloaded, their in-plane
motion in direction normal to the edges
being prevented. In the present case edges
29 = 0, £ are referred to as immovable.
It can be shown that the representations for v3 and

o
U3

{ vs gza) } = { {mn } sin Ay sin pp,ze,  (29a)
v3 fm.n

where

(myn=1,2..))

(29b)
fulfill exactly the out-of-plane BC’s. The in-plane
BCs are satisfied on an average. To this end, the
potential function ¥ is represented as:

Am Emufly, pn =nn/ls,

U(z,) = ¥1(za) — % ((xz)szn + (21)° iazz) . (30)

Here ¥, (= ¥, (z.)) is a particular solution of Eq. (28)
(determined in conjunction with (29)) while L,; and
Ly, denote the normal edge loads (considered positive
in compression).

In the case of the panel loaded in the direction
of the z;-coordinate only, the remaining edges being
unloaded and immovable, (that is of the Case B), the
condition for the immovable edges z2 = 0, £ may be
expressed in an average sense (see [22]),

£y ¥.2
/ / vz,gd{l}l .d.’Ez = 0. (31)
0 0

This equation provides the corresponding Ly, for
which the edges zz = 0,f2 remain immovable.
Galerkin’s procedure applied to the Eq. (27a) yields
the equation governing the postbuckling behavior
of laminated composite curved panels subjected to
biaxial compressive edge loads and a pressure field.
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This equation as well as the expression of ¥y {z,) are
not displayed here.

The obtained equation enables ones to illustrate in

-~ <} o

the plane (L11 vs. §+6 or p vs. §+4) the postbuckling
behavior of curved and flat panels. However, another
representation of the postbuckling behavior enabling
one to correlate the theoretical findings with the
experimental ones is established in the plane (L;; vs.
A;), where A; denotes the average end-shortening in
the direction of the coordinate z;.

This is defined as

1 21 £2
Al = -————/ / 1)1,1d.’E1d£E2. (32)
6tz Jo Jo

The explicit expression of this quantity is not displayed
here.

The goal of this paper is to ascertain the effects
brought by the non-fulfillment of transverse-shear
stress continuity requirement upon the postbuckling
response of a three-layer sandwich-type flat/curved
panel compressed by a system of compressive edge
loads and subjected to a lateral pressure p3(zq).

In the numerical ijllustrations (= fi1/h) and

[+]
60 (E f 11/ h)
deflection and initial geometric imperfection in the

first mode associated with the central point of
the panel. The dimensionless pressure coefficient

P (= ps (61/2,¢2/2) £ /(Dh) is evaluated at the center
of the panel where its maximum occurs.

denote the normalized transverse

Numerical Illustrations and Discussion

The numerical illustrations include comparisons of
the postbuckling response obtained in the context
of Models I and II. Throughout these numerical
illustrations it was considered a square (¢; = £, = ¥)
projection of the panel on the plane P and, unless
otherwise stated, it was assumed that the thickness
of the core layer is twice as thick as that of the face
layer (i.e. tc = 2t;) and that the panel is uniaxially
compressed. Herein indices f and c¢ denotes the
affiliation of the respective quantity to the face and
core layer, respectively.

In the absence of any specification about the
character of in-plane boundary conditions one
should consider the edges freely-movable (i.e., Case
A). The postbuckling response of geometrically
perfect/imperfect three-layer flat panels compressed
by uniaxial/biaxial edge loads predicted in the context
of Models I and II are displayed in Figs. 2 and 3.

Notice that Lg (E L / Eu) = 0, corresponds to a

panel uniaxially compressed by L1;. The results reveal
that with the relative increase of the transverse shear

flexibility of the core layer material, from the slight
underestimation of the load carrying capacity (LCC),
Model I starts to slightly overestimate the LCC. The
results also reveal that this trend occurs for both the
perfect and geometrically imperfect panels.

Figures 4 and 5 enforce and extend this conclusion
to the case of a circular cylindrical panel. The results
obtained for this case displayed both in the plane
(f}n, é+ 50) and (En, AI) reveal that, depending of
the relative degree of transverse shear flexibility of the
core layer material, in the deep postbuckling range the
degree of underestimation/overestimation of the LCC
is even exacerbated.

Figures 6a and 6b obtained for the case of circular
cylindrical sandwich type panel bring into evidence the
effect played on the postbuckling response by the ratio
tc/ty, where t, and t; denote the thicknesses of the
core and of face layers, respectively.

The results reveal that in the case of the
core material featuring a large transverse shear
flexibility, the decrease/increase of its thickness while
maintaining the total thickness as a constant valued
quantity, results in an increase/decrease of the LCC.
At the same time the results also show that until a
certain value of the thickness parameter ¢./ty, Model
I underpredicts the LCC, and with the increase of
that parameter beyond a certain critical value (in the
present case that specific value corresponds to t./ts
= 10), the opposite trend becomes valid. Moreover, it
is seen that with the increase of the core thickness in
the detriment of the thickness of faces, an increase
of the intensity of the snap-through bucklings is
experienced.

Figures 7 and 8 obtained for a slightly geometri-
cally imperfect circular cylindrical panel highlight the
effect played by the ratio of transverse shear moduli
G./G'; and implicitely by the relative transverse shear
flexibility characteristics of face and core layers.

Figure 7 reveals that when the core layer features
a rather moderate transverse shear flexibility (E. /G,
= 10), Model I features a weak sensitivity to the
variation of the E¢/G%.

The same figure also reveals that for transverse
shear flexibilities of the faces larger than those of
the core, a deterioration of the LCC is experienced
and that Model I provides an overestimation of,
load carrying capacity predictions. Moreover, the
increase of transverse shear flexibility of the faces is
accompanied by a deterioration of the LCC and by an
increase of the intensity of the snap-through buckling,.
However, the opposite trend appears to be valid when
the core layer material features higher flexibilities in
transverse shear than those of the faces.

_ Figures 9a and 9b depict in the planes (I:u, 8) and
(L11, A1), respectively, the postbuckling response of
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a geometrically perfect circular cylindrical three-layer
panel subjected to a pressure field of intensity  and to
uniform compressive loads applied on its curved edges.
It is also supposed that the straight edges can be freely
moveable or immoveable.

The depicted results reveal that for low intensities
of transverse load the immoveability of straight edges
appears to be beneficial from the LCC standpoint
and that the predictions obtained within the Models
I and II coincide. However, with the increase of
the transverse load, the immoveability of those edges
yields a deterioration of the LCC in the sense that
instead of getting a monotonous increase of the LCC
(trend valid in the case of moveable straight edges),
in the case of its immoveable edge counterpart, a
relatively large limit load is featured followed by a
strong snap-through buckling.

The results also reveal that in this case Model I
underestimates the LCC as compared to Model II.

Finally, Fig. 10a and 10b compare the post-
buckling predictions for an initially imperfect circular
cylindrical sandwich panel obtained in the context of
the Models I and II, of the classical shell theory, and
of the first order transverse shear deformation theory
(FSDT), this one extracted from Model I (see Refs.
[18,19]).

In addition to the well-known fact that the classical
shell theory grossely overestimates the LCC, the
results reveal that in the case of larger curvature ratios,
(as is the case analyzed here) the difference between
the postbuckling predictions provided by the Models
I and II increase. It should also be noticed that the
result outlined in a number of papers based on Model I
(see Refs. [18,19]) according to which the postbuckling
predictions based on HSDT and FSDT (with the shear
correction factor K2 = 2/3) are in better agreement
than in the case of the consideration of K% = 5/6,
should be changed when dealing with the Model II. In
this latter case, the predictions provided by the FSDT
with K% = 5/6 are closer to the ones provided by the
HSDT associated with Model II.

Conclusions

A parametric study intended to bring new elements
on the problem of implications on the postbuckling
response of flat/curved laminated composite and
sandwich panels induced by the violation of the ICSS
was undertaken.

In order to accomplish such a study, a simple
geometrically non-linear model of laminated shells
(referred to as Model II), fulfilling both the kinematic
and static interlaminae continuity conditions as well
as the ones at the external boundary surfaces of the
shell was devised and used.

As was diagramatically shown, depending upon
the relative transverse shear flexibility featured by
the materials of the core and face layers, Model I
(which violates the ICSS requirement) can provide
under/overestimations of the load carrying capacity
of the panel. Depending upon the degree of jump
of transverse shear flexibilities and of the thickness
of layers featuring larger transverse shear flexibility
ratios, the resulting implications can be extremely
significant

It was also numerically verified what was
conjectured in (Refs. 13,15), namely that the
Model II provides results in better agreement with
FSDT when K? = 5/6 is considered. Certainly,
there are still many other cases in which Model II
should be used when more accurate predictions of the
LCC are needed. Nevertheless, in studies involving
determination of failure conditions in the postbuckling
range of sandwich structures, wherein prediction of
local response characteristics is of prime importance,
Model II turns out to be the only structural model
able to provide reliable results in the matter.
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Fig. 2a Comparisons of the postbuckling response of
geometrically perfect/imperfect flat panels
(fl/fz =1, tc/t_f =2, fl/h = 20,

(E/G"y = 3, (E/G"). = 15, Ef = E,,
v = v = 0.3) under uniaxial (Lg = 0)
and biaxial (Lg # 0) compressive loads as
predicted by Models I and II.
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tangential

immovability /moveability of straight edges
on the postbuckling response of uniaxially
compressed geometrically perfect circular
cylindrical panels (¢;/h = 30, £,/R; =
Kz/Rz = 0.3, tc/tf = 2, (E/G')f =
(E/G"). =15, Ef—Ec,V——V = 0.3).
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Fig. 10a Influence of the modelling on the post-
buckling predictions of geometrically perfect
circular cylindrical panels subjected to
uniaxial compressive loads (£;/h = 10,
Z;/Rl = 0, Aeg/Rg = 05, tc/tf = 2,
(E/G"Yy = 3, (E/G"). = 60, E, = Ejy.
The numbers in brackets denote the values
of transverse shear correction factor.
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