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Abstract

A surface structure in supersonic flow having a
deformable support and subjected to a follower compressing
force, which preserves its direction tangential to the de-
formed surface, is a biself-excited system enclosing two
independent physical factors being the reason of self-
excited vibrations.

In the paper a study of vibrations and stability of
such a structure is presented by way of example of rectangu-
lar plate in one-side supersonic flow subjected to a follower
force. The plate is considered under assumption that the
conditions of rigid support are satisfied at the plate edges
parallel to the unperturbed flow direction. One of the re-
maining edges is clamped, while the second one has a de-
formable support.

A number of numerical calculations have been
performed. The analysis indicates a variety of phenomena
resulting from simultaneous action of the two independent
factors decisive for self-excitation of the structure under
consideration.

Nomenclature

W=W(x,y,t) - transversal displacement of the plate
x,y - rectangular coordinates of the plate
t - time
3

p-_Er"

12(1-v?)
h - plate thickness
E -Young's moduls
v- Poisson's ratio
P, - density of plate material
I - plate length
b - plate width
B=b/l
&, - damping of the plate material
N, N, - forces acting in the plane of the plate
k, ¢ - coefficients of elasticity and damping of the deform-

able support

ag po - sound velocity and gas density in unper turbed flow
M=Uy/a, > 1-Mach number of unperturbed flow

H=vM? -1

c,=8, /7%,

- flexural rigidity of the plate
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1.Introduction

Vibrations and stability of plates and shells in
supersonic flow have been considered in a number of pa-
pers ( cf. for instance [1],{2],[5] ). The effect of a follower
force, which preserves its direction tangential to the de-
formed surface of a structure has been investigated in
[31.[61.[7]

Plates of finite length in plane supersonic flow subjected to
a follower compressing force have been studied in [4], [8],
9.

In this paper vibrations and stability of a rectangu-
lar plate in supersonic flow,having a deformable support
and subjected to a compressing follower force, are consid-
ered. It is assumed that the conditions of rigid support are
satisfied at the plate edges parallel to the unperturbed flow
direction. One of the remaining edges is clamped, while the
second one has a deformable support. External and internal
damping and forces acting in the plane of the plate are
taken into account. The solution representing vibrations of
the plate in supersonic flow is obtained in a finite form
making use of the Laplace transformation.

Numerical analysis of the solution enables us to
determine the boundaries of stable and unstable vibrations
depending on the parameters of the problem.

2. Statement of the Problem

Let us consider autonomous vibrations of a rectangular
plate of length / and width b which is exposed to one-side
flow of a supersonic stream of gas whose unperturbed ve-
locity is U, > a, (Fig.1). Two directions of the flow velocity
U, are assumed, as it is shown in Fig.1 - that is the case (1)
or the case (2).

The conditions of rigid support are satisfied at the
plate edges parallel to the unperturbed flow directions for
y=0 and y=b. The edge for x=0 is assumed to be
clamped,while the second one, for x=/, has a deformable
support (Fig.1).

The plate is subjected to the pressure difference
Ap=Ap[W(x,y,1)] produced by the plate motion in the flow
and the plate edges are acted on by constant forces N, N, in
the plane of the plate. We assume that the force N, is a fol-
lower one which preserves its direction tangential to the
deformed surface of the plate. Internal damping of the plate
material is taken into account by means of the Voigt model,
similarly to the previous papers [1]- {5].
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We obtain the equation of motion in the following
form
2 2
D(H()O —?—)VZVZW-%- N, oW, N, oW
ot ox? oy* e
1
o'w
+p i = A,y

The pressure difference 4p[W(x,y,1)] is determined
on the basis of the potential theory of linearized supersonic
flow after neglecting the secondary part of the expression
for 4p (cf.[1],[2]). We can adopt the following approximate
formula

Ap[W(x,y,0)]=Ap ;=P y— P 1,=

::B&{[I“LJQZMOQW_]
7]

2.2)

which is valid for both directions of the unperturbed flow
( Fig.1). The boundary conditions of the plate are assumed :

2

for y=0 and y=b: = o VZV = 2.3)
Jy

for x=0: W= ﬂ =0 2.4)
ox

‘w w
and for x=/ g >+ o > =0 2.5)
ax Jy

3 317
D(l + Ho-j—t)lii VZ +2-V) ;;Vz} =
* xey 2.6)
= kW+c—02—W-/-
ot

The equation of motion (2.1), (2.2) will be written
in a dimensionless form assuming that the coordinates x,y
and the normal displacement of the plate }# are referred to
the plate length /, and time #-to the quotient /@, , where

2
D
w, =—7-[2— @.7)
Fy\hp,
We then obtain the equation
2 2
D(1+0—é,—jV2V2W+Sx—5——3pK+Sy g VZV
ot Ox ay 28)
by OW JOW W ’
1 5)6 5,2 7’2 51
where
N NI
0=0,m,, S,= Ix) , S, = 1’; (2.9)
C oy
y = 2P0 ‘;IUD"I (2.10)
o, M*-2
=ly,|6, 6=—"r—F—— 2.11
72 =7 ay M3 -1 @.11)

It should be noted that the coefficient vy, takes
positive values for the unperturbed flow direction (1)
(Fig.1) and negative values for the direction(2).

The boundary conditions (2.3), (2.4) and (2.5)
remain unchanged, while the condition (2.6) becomes for
x=1

3
[1+0ﬁj[a3w +2-v) ; 4W :|=

3 2
ot ox x Oy 2.12)
J ow
= ICPW + }’P _—57
where
3 3
K = L _lo, (2.13)

Equation (2.8) involves two independent dimen-
sionless parameters S, and » which can cause the self-
excitation of the system under consideration. For this rea-
son it is called a biself- excited system.
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-3, Salution of the Problem

The solution of equation (2.8) will be sought in the
form , ‘

W(x,y,t) =V,(x) sin(%y) e” 3.1

where the function V,(x) satisfies the equation
V" (x) + BV, (x) + bV, (x) + bV, (x) = 0 (32)

and the coefficients b, are defined by the formulae

b, ~( ;] —[Sy(’%) +7t4p2—i}'2p}(l+ip9)_l

4
1+ip8

2
e
1+ip8 Jéf

On applying the Laplace transformation to equa-
tion (3.2), we obtain the salution (cf. [1}-[4])

= (3.3)

V.(x)=v, K, (x)+v;K,(x) G4

where v,, v; are initial values of the derivatives of the func-
tion V,(x)

v =V (0),  vy=V,"(0) (3.5
It is already assumed in (3.4) that
V,0=V/0)=0 (3.6)
The function K,(x) is determined by the formula
4
K, (x)= Zc]. exp(s;x) 3.7
J=1

where the coefficients s; are roots of the characteristic equa-
tion

d(s) =5 +b,s? +b,5+b, =0 (.3)

and the coefficients ¢, are given by

¢; =-—'~1——— (4s +2b s; +b ) s j=1234 (39
d'(sy)

In order to determine critical parameters at the
limits of stable and unstable vibrations, we should take into
account the boundary conditions (2.5) and (2,12) for x=1.

Making use of (3.1), (3.4) and the mentioned
boundary conditions we obtain the frequency equation in
the form:

’ 2
- {K,’,"(l) - v(ﬁﬂ’f) K,:(l)}{(l +ipO) K;(1) +
2
Q- v)(%) K, (0]~ (c, +ipy , )K, (D} +

2
_{ K () - ‘{%) K, (1)}{(1 +ipO) K, (1) +

-2~ v)( ﬂ) Ky ]~ (x, +ipy , )K2(D}=0

(3.10)

and the function (3.4) can be written as

V,(x) =v,[K;(x) + oK, (¥)] (.11)
where
2
k(1) - v(ﬂj K
a=—"= A (3.12)
Vs

2
nr
— | K,()-K;{
‘{ﬂ) (D) - K7 (D

The solution representing the autonomous vibra-
tion of the structure under study can be written finally in
the form:

W(x,y,t) —sm( 3 jReal[V (x)e'P‘]

(.13)
= sin(% yjan (x) cos( pt+o, (x))
where
a,(x) = {ReV2 (x) + ImV2 (x)
vV (x) (3.14)
t __..__._.
80,00 = 1o s
On substituting
p=q-ig (3.15)

into (3.10) we can find, for given values of S, S,, 71,9, 8 K,
,%» natural frequencies g = q,,, m = 1,2,3,,, and their dec-
rements of decrease (&= &, < 0) for damped vibrations and
those of increase (& = g, > 0) in the case of unstable self-
excited vibrations. From equation (3.10) we can also de-
termine the critical parameters of self-excited vibrations Sy,
» 9er O Yior, 4o for given values of other parameters and &
= 0 . From this equation we can also find the critical pa-
rameters of divergence Se.r or 7., for g= =0
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4. Numerical Analysis of the Frequency Equation

In order to determine the critical parameters of the
biself-excited system under consideration, we shall examine
solutions of the frequency Eq. (3.10) in the vicinity of the
first and second natural vibrations of the structure.

On substituting (3.15) into (3.10) and splitting 4
into real and imaginary parts we obtain the equations
Red=0, ImAa=0 @.n

Values of the function V, (x) and its derivatives for
x = 1 which occur in (3.10) can be found in the course of
calculations and then real roots q can be determined sepa-
rately from the first and the second equation (4.1) in terms
of
G =S/7 ., 6=8/7 4.2)
and y, 6, 0, x,, 3, B,n in the case of harmonic (&= 0)
and nonstationary (& # 0) vibrations. From Eqs. (4.1) we
can obtain on the »;, g - plane and on the o;, g - plane the
lines of roots of Red =0 and ImA = 0 which are pre-
sented by way of examples in Figs.2 and 3.

Diagrams in Figs.2 and 3 have been determined for
g=0,=)=0=0,=n=1,5=0.1 and a number of
values of &;, 77, k, The intersection points of the lines
(4.1) determine the critical parameters of self-excited vi-
brations yicr, g OF Oxr, q., and the critical parameters of
divergence y;., or Gy, forq = 0.

The lines Red = 0 in Figs.2 and 3 show the course
of changes of the first and the second natural frequencies in

Table 1

0,0, v,=0, B=1, n=1, ©=0, 5=0.1
No Ox Kp Yier Qer
1| o] 10° | 670.218] 5.229
| o[ 10° |-670218] 5229
2 10 [ 10° | 6156021 5.109
21 0| 10° |-568.195] 4.953
31 0| 10° | 453.293 | 4.455
3] 0| 102 |-211.690 | 2.746
4 16 [ 10° | 191.244 | 2.166
4 1 6 | 10° [-191.2441 2.166
516 | 10° | 120267 o
55 16 | 10° [-120267] o
6 | 6 | 10° | 153.759 ] 2.206
6| 6 10° | -175.660 | 1.968
7161 10° 76.904| 0
716 | 10° [-120.150] o
8 | 6 | 10° 62.320 | 1.951
8 | 6 | 10° |-135450] 1.173
9 | 6 | 10° -8.095] o
9 |6 | 10° |-119.400] 0

Table 2 P v

6,0, v,=0, P=1, n=1, ©=0, 5=0.1
“No T Kp O or
' 0 10° | 4.847 0
1" 0 10° | 8.331 0
2 | +100 [ 10®° | 5519] o
2" | +100 | 10° | 7.746 0
3 1 +200 | 10° | 5857 2.273
4 | £300 | 10° | 4370 | 3.199
5 0 10° | 6351 0
5" 0 10° | 7.369 0
6 100 10° | 5.235] 2.361
7 | -100 10° | 5.506 0
7 | -100 10° | 7.779] 0
8 200 10° | 3.475 | 3.140
9 | 200 |- 10° | 0.838 | 2.615

terms of the parameters y; , o;, kx, which are decisive for
self-exicitation of the structure. The values of critical pa-
rameters obtained in Fig.2 are given in Table 1 and those
from Fig.3 - in Table 2.

From Fig.2 it is seen that for the rigid support
(K,=108) the course of natural frequencies and critical pa-
rameters are the same for both flow directions in Fig.1 and
there appears asymmetry for a deformable support. The
diagrams in Fig. 3 show that for deformable support the
force N, can act as a follower one and it is a reason of self-
excitation of the structure.

Making use of the results of analysis on the 3, ¢
and o, , g planes we can establish the diagrams of stability
and instability limits of the structure under study on the y,
o, plane for various parameters of the problem. They are
shown in subsequent Figs.4 to 7.

In Fig.4 the diagrams of stability limits are pre-
sented for the rigid support (x, = 10%) of a square plate (n =
B =1) and a plate of finite length and infinite width (n =
0). In this figure we can see the flutter limits and the diver-
gence limits for the first and second mode of vibration and
for bothrdirections of flow (Fig.1).

Flutter and divergence limits for plates with a
deformable support (x, = 10% are shown in Fig.5. The
square plate (n= /) and the plate of infinite width (n = 0)
are considered.

In Fig.4 we can see the symmetric course of dia-
grams for »; >0 and y; <0, while in Fig.5 the diagrams lose
their symmetry and the regions of divergence are shifted to
the interval y <0. The diagrams of stability limits for the
square plate with rigid support (x, = 10%) and deformable
one (x,= 10°) are given in Fig.6.

The effect of material damping ¢ = 0.05 on the
course of diagrams of stability limits is considered in Fig.7
for the square plate.

In the next Figs.8 to 11 modes of vibration of a
square plate are presented in the case of rigid support
(Figs.8 and 9) and deformable ones (Figs.10 and 11) for
both flow directions considered. Asymmetry of the modes
and moving nodes can be seen.
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2457



OO P i

300 : e e R e SRR B

lFIutter limit |

2001+ SN

Yy 100F

R

. —— vy ——
o -

-200
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Fig.8. The mode of vibrations for rigid supports and the flow direction(1)
(g=2.962, 11=290.45, v,=1, 8, 5=0.1,x,=10%, 1,=0, 6,=2.5, 6,=0, B=1, n=1)
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Fig.9. The mode of vibrations for rigid supports and the flow direction (2)
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Fig.10. The mode of vibrations for a deformable support and the flow direction(1)
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Fig.11.The mode of vibrations for a deformable support and the flow direction(2)
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