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Abstract

Vibration tests of thin-walled aluminium cylindrical
shells were performed to validate theoretical analy-
sis methods. For this purpose a vibration test setup
was built with noncontacting excitation and response
measurement systems. In the development of the
setup the main attention was paid to the design of
the excitation system which consists of two self-built
acoustic drivers and a pressure synchronizer. Two ca-
pacitive displacement transducers were used to mea-
sure shell responses which were positioned at two cir-
cumferential positions. This enabled the measure-
ment of traveling waves. The test setup was placed
in a compression test bench. With this test setup
the vibration tests were performed for several com-
pressive load levels and excitation levels. The results
showed the known phenomena which were predicted
by the analysis methods and were observed in ear-
lier experiments. Other phenomena which are not
modelled in the analysis methods were also detected.

1. Introduction

Cylindrical shell structures employed in aerospace
structures are often forced to vibrate at a high re-
sponse level. The vibrations may disturb the proper
functioning of other systems in the spacecraft and
even may cause severe damage. To suppress these
vibrations or to reduce them to an acceptable level
their characteristics must be understood.

Extensive studies have been performed on vibra-
tions of shells with various kinds of materials and
structure, from isotropic to anisotropic ones. At low
response levels the vibration characteristics, i.e. the
natural frequencies and corresponding mode shapes
can be predicted with the linearized governing equa-
tions. Various parameters which affect the natural
frequencies have been identified, such as boundary
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conditions, axial loads, and geometric imperfections.
At large response levels the nonlinear terms in the
governing equations can not be neglected and hence
the analysis has to be carried out in a more compli-
cated manner.

At the Delft University of Technology an exten-
sive program is carried out in which buckling and vi-
brations of thin cylindrical shells under compressive
loads and with imperfections are being studied by
theoretical analysis. Despite the progress made, not
many vibration experiments have been done as yet
[16]. To validate the theoretical analysis of nonlinear
vibrations of cylindrical shells [5, 15], experiments
on isotropic shell vibrations were carried out. This
paper presents and discusses the test setup and some
results of the vibration tests. The observed nonlinear
response behavior is compared with the theoretical
results.

2. Analyses Review

Symbol Boundary Conditions
SS3 W=0 M;=0 v=0 N,=0
C4 W=0 W_,=0 ov=0 u=0

Figure 1: Definition of shell geometry and boundary
conditions

Figure 1 shows the geometry and the coordi-
nate system of a cylindrical shell, where the curvi-
linear coordinates z, y, z and the corresponding dis-

2434



XYz

«xFigure 2: Vibration modes of cylindrical shells. (a) For linear analysis, (b) The shell contraction term, and

X.y.z

(c) The nonlinear analyses

placements u, v, and W are shown in their posi-
tive directions. The boundary conditions which de-
scribe the displacements and the stresses are listed
in the corresponding table (SS3=simply supported,
C4=clamped).

The Governing Equations

The geometry of the shells introduce nonlinear rela-
tionships between the components of strain and de-
formation. Donnel’s shallow shell theory is used in
the analysis, which is sufficiently accurate for defor-
mation patterns with a number of full waves in cir-
cumnferential direction larger than 4. The in-plane
inertias and damping forces are neglected in the for-
mulation for simplicity.
The governing equations for an isotropic shell are
the compatibility between strain and deformation:
1, 1 1
gr V' = g3

and the equilibrium of forces in radial direction:

Ly (W, W +2W) (1)

ER3

— 4 1 -
12(1 — 12) VW = —=F o +Lnp(F, W+ W)

R
+p— phW,y, (2)

where F is Young’s modulus, v is Poisson’s ratio,
* is the two-dimensional biharmonic operator, F is
the Airy stress function, W is the initial geometric
imperfections function.

x.Y.2

Modelling of the Response

The analysis was carried out by introducing displace-
ment functions in the governing equations. The vi-
bration modes used in the linear analyses of cylindri-
cal shell are:

W = A(z,t) cos % (3)
where [ is the number of circumferential full waves
and A(z,t) is a function of axial position & which de-
pends on the boundary conditions and time t. Fig-
ure 2.a illustrates the mode shape of a shell with
S$53-$S3 boundary conditions. The term A(x,t) in
equation 3 for this case is A(t)sinmwrz/L with m
is the axial half waves number. The figure shows
mode shape for m=1 and [=6 which further referred
as mode (1,6).

The analysis of large amplitude shell vibrations by
using nonlinear theories with the modes described in
equation 3 resulted in the conclusions that the nonlin-
earity is strong and of a hardening type [4, 18]. This,
however, was not confirmed by some observations.
Another mode that describes the contraction of the
shell is introduced in addition to the first mode fol-
lowing the formulation of Evensen [6]. The extended
response model is given by the following equation:

W = A(z,t) cos % +C(z,1) (4)

Figure 2.b illustrates the contraction mode,
which for the $83-SS3 shell is C(t)sin® mrz/L, and
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figure 2.c the extended mode shape. The frequency
of the contraction mode is twice as much as that of
the flexural bending mode, as shown in figure 3. By
using this additional mode, the analysis resulted in a
softening nonlinearity.

Another phenomenon predicted and observed in
the experiments is the occurrence of traveling waves
although the excitation forces were configured to
drive only the standing waves. This indicated that
another mode which is identical to the directly ex-
cited mode contributes in the response due to the
nonlinear coupling, and that the ” coupled” mode has
90 deg phase difference in time with respect to the
directly driven mode. To take account of this phe-
nomena in the analysis, another term is introduced
in the response model, yielding:

!
W:A(x,t)cos—l%-FB(x,t)sin%+C(x,t) (5)

Figure 4 illustrates the modelling of the traveling
wave response as contribution of two identical mode
with phase difference principally 90 deg in space and
time.

Cross-sectional view of shell displacement

... undeformed shell

--- deformed shell

at maximum

-.- deformed shell

at another maximum

... averaged radius of
deformed shell which

resemble shell contraction

... motion due to shell contraction
-.- motion relative to contraction

__total motion of A

Displacement

0 0.5T T L5T 2T
time ringmode.m

Figure 3: Cross sectional view of the nonlinear vi-
bration modes. The time history plot shows that the
axisymmetric term oscillates twice the frequency of
the asymmetric term

Results of Analysis

By using the response model of equation 5, the analy-
sis shows resonance response of the driven mode with
a weak softening nonlinearity. Within a certain fre-
quency range around resonance, the companion mode
contributes in the response due to nonlinear coupling

J——
Figure 4: The traveling waves response as combina-
tion of two independent modes which differ 90 deg in
circumferential position and time. The solid lines are
the driven mode, the dashed lines are the companion
mode, and the dotted lines are the total response

and the amplitude of the companion mode can be as
high as that of the driven mode.

The presence of axial loads shifts the natural fre-
quencies to lower values. They do not change the
nonlinear behavior of the response however they may
affect the stability of the response.

3. Experiment

To verify the results of the numerical analysis, the
conditions assumed must be realized in the test setup.
In the analysis a sinusoidal forcing function with con-
stant amplitude is used. The force is configured such
that only one mode is excited and the other ones are
isolated. The axial force is constant and distributed
evenly along the shell circumference. The parame-
ters of the analysis are the excitation level, the axial
compressive load, the boundary conditions, and the
initial geometric imperfections.

The Requirements of The Test Setup

The following conditions employed in the analysis,
were to be realized in the test setup:

1. The axial compressive loads must be dis-
tributed evenly along the shell circumference.

2. The excitation system must deliver sinusoidal
driving forces with constant amplitudes within
each frequency range of interest. The force lev-
els must be sufficiently high to let the shell vi-
brate in the nonlinear region. The forces must
excite only the driven mode in order to show
the nonlinear coupling between the driven and
companion mode. '
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3. The response measurement system must be
able to detect the response in the form of a
standing wave as well as a traveling wave.

The parameters of the analysis which were cho-
sen in the measurement were the axial loads and the
excitation levels. No attempt was tried to realize dif-
ferent boundary conditions assumed in the analysis
to the test objects. The influence of imperfections
will be measured in future tests.

The Test Objects and Boundary Conditions

The test objects were thin-walled cylindrical shells
made by machining a seamless aluminium tube to
specified dimensions. They were manufactured on
a mandrel with the aid of an accurately machined
steel mould. In the experiments the shell ends were
encased in aluminium end rings to enable the appli-
cation of axial compressive loads. The rings were
attached to the shell by placing each shell end into
the circular channel of the ring and filling the ring
with melting cerrobend which solidifies when cool-
ing down. A firm attachement was obtained since
the cerrobend expands slightly during solidification.
These boundary conditions were approximated as
C4-C4. Figure 5 shows the sectional views of this
assembly.

Before assembling the shell with the end rings, the
wall thickness of the shell was measured at 50 points
distributed evenly at 5 axial and 10 circumferential
positions. The shell averaged thickness was 0.253 mm
with a maximum deviation of 0.007 mm. After the
end rings were assembled, the imperfections of the
shell were measured by using a UNIVersal instrument
for IMPerfections measurement (UNIVIMP [13]) The
imperfections which were expressed in a Fourier series
had amplitudes less than 0.05 wall thickness.

end ri

Detaill A
240 T .cerrobend
mm '
0.25 mm | 125|mm |<shell
el
U]

Figure 5: Sectional view of the shell clamped with
end rings

The Test Setup

The test objects together with the UNIVIMP were in-
stalled in a Compression Testing Machine (CTM), by
which axially compressive loads could be applied to

the shell, as shown in figure 6. The vibration mea-
surement system was built around the CTM. Fig-
ure 7 shows the schematic view of the instrumenta-
tion. Two acoustic drivers provided acoustic waves
which were projected at two circumferential places.
Capacitive displacement transducers are used to mea-
sure the shell response. The contactless excitation
and measurement systems were used to avoid dis-
turbing changes of the vibration characteristics of the
shells.

]

6-+(
2
5 X
1 4
i —
3+l [ 1
E |
No | Description No | Description

1 Shell 5 Carriage
2 Top bearing 6 | Wooden discs
3 Hexagonal platform 7 CTM upper plate
4 Vertical column 8 CTM lower plate

Figure 6: Shell in the CTM

The Excitation Systems Two self-built acoustic
drivers were used to excite the shell. Each driver
incorporated a loudspeaker and an exponential horn
to concentrate the acoustic waves to a small area on
the shell’s surface. With an outlet diameter 2.5 cm
the horn could effectively excite the vibration modes
with circumferential full waves number less than 15
(half wave length larger than 2.6 cm).

To each horn a microphone was flush-mounted
close to its outlet to measure the excitation pressure.
The distance between horn end and the microphone
was | cm, and between horn end and the cylinder was
1 mm. Hence the microphone did not measure the
actual excitation pressure but the presure at 1.1 ¢cm
away from the shell surface. Since the measurements
were performed on a vibration mode with natural
frequency about 550 Hz, corresponding to a pressure
wave length of 65 cm, the errors, however, were not
significant.

A pressure synchronizer controlled the phase dif-
ference between the pressures of both horns, 0 deg
or 180 deg depending on the vibration mode being
examined. It also kept the amplitudes of the pres-
sures constant within the frequency range of inter-
est. The phase difference of 0 deg was regulated by
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No | Description Type

1 Wave generator Prodera GN484
2 Excitation synchronizer Self built

3 Power amplifier SA120

4.1 | Acoustic exciters no.1 Self built
4.2 | Acoustic exciters no.2 Self built

5.1 | Microphones no.1 BK4160

5.2 | Microphones no.2 BK4160

6 Microphone preamplifiers | BK2633

7 Displacement transducers | ue 600-3

8 Signal conditioners ue series 600
9 FFT analyzer DIFA FA100

Figure 7: Schematic View of The Vibration Tests
Instrumentation

minimizing the phase difference between the pressure
signals of both microphones, and the phase difference
of 180 deg by minimizing the pressure signal of mi-
crophone 1 and the reversed pressure signal of micro-
phone 2.

Response Measurement Systems Two noncontacting
transducers of capacitive type were used to measure
the response. The first transducer was placed inside
the shell excactly opposite to the excitation point and
the second one outside the shell on the carriage of
the UNIVIMP which enabled the measurement of re-
sponse at a variable position. The first transducer in
principle measured the amplitude of the driven mode
response. The second transducer was used to mea-
sure the amplitude of the companion mode response
by positioning it at the node of the driven mode re-
sponse. The accuracy of the transducer is 0.6 pm or
0.003 wall thickness.

Design of the Acoustic Driver

During the preparation of the test setup, the main at-
tention was paid to the design of the acoustic driver.
Figure 8 shows the schematic view of the acoustic
driver. It consists of a loudspeaker with an exponen-
tial horn and a replaceable tube to concentrate the
sound pressure to a small surface on the shell. The
back side of the speaker was closed with damping
material to avoid box resonance which can lower the
sound pressure inside the horn. To provide a large

excitation level, the performance of the driver could
be optimized by choosing the length of the tube so
that the resonant frequency of the air inside the horn
was tuned to the natural frequencies of the shell. The
design was supported by a mathematical model with
the length of the horn and the width of the gap be-
tween horn and shell as the parameters.

r DamEing material

oudspeaker
* Wooden box

: E

&

%

5

2

Horn Tube || Gap

TR, . H

Figure 8: Sectional view of the acoustic driver

Figure 9: Electrical analogon of the acoustic driver

Figure 9 shows the model as an electrical anal-
ogon with e, is the driving voltage, R, is amplifier
impedance, Ry is coil resistance, L; is losless coil in-
ductance, Lo is coil inductances with loss R», and Bl
is the field-strength voice coil length product. The
impedance of the loudspeaker cone Z, is function of
cone stiffness, mass and resistance. The impedance
of the air from horn side 7, is a function of horn
geometry (length, flare constant), air properties and
impedance at the outlet of the horn which depends
on the reflection of the test object and the radia-
tion losses via the gap between horn and test object.
The impedance of the air from the box side, Z;, was
modelled as an additional stiffness to that of the loud-
speaker. By using the parameters of the loudpeaker
and the amplifier as supplied by the manufacturers,
the loudspeaker pressures at the horn and box sides
were calculated. The pressure at the horn outlet was
found from the pressure field equation.
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4. Small Amplitude Response Measurements

At first the vibration tests were performed for small
shell response amplitudes to identify the linear vi-
bration characteristics of the shell, i.e. the resonant
frequencies and the corresponding mode shapes.

To identify the resonant frequencies and the cor-
responding mode shapes in a certain frequency range,
frequency response functions (FRF) were measured,
i.e. the shell responses at various positions with re-
spect to the excitation force with variable frequency.
For this test only a low response level was needed
to maintain linearity of the response. Therefore only
one driver was used and the excitation synchronizer
was inactivated. A chirp was used as excitation signal
which permitted the measurement of an FRF within
a frequency range in one single sweep.

The driver outlet was positioned at axial position
x=4 cm which in principle enabled the excitation of
all vibration modes. The linearity of the response
was checked by comparing the FRF’s measured with
different excitation levels. Figures 10.a, b and ¢
show the FRF’s measured in the frequency ranges
400-800 Hz, 750-1150 Hz and 1100-1500 Hz, respec-
tively. For each frequency range the FRF’s, mea-
sured by using a driver input signal in the form of a
chirp with amplitudes 0.13V, 0.18V and 0.26V, were
plotted. No significant differences between the mea-
sured FRF’s appeared, which indicates the linearity
of the response. The measured maximum response
level was less than 0.1 wall thickness.

IFRFlin W/Pa

i
700 750 800

IFRFf in W/Pa

L " ¢ L
750 800 850 900 950 1000 1050 1100 1150

. ©
10 T T T T T T T

{FRF! in W/Pa

. 2 L .
1100 1150 1200 1250 1300 1350 1400 1450 1500

Frequency in Hz
Rsalv2.m

Figure 10: FRF’s of a point on the shell surface in
three frequency ranges

Sixty-two FRF’s were measured, 51 from the
points evenly distributed along half of the shell cir-
curnference at axial position x=20 c¢m, and 11 points

equally spaced along a line in longitudinal direction.
The 62 FRF’s were curve-fitted simultaneously by
using an iterative multi-curve fit procedure proposed
by Goyder [10}. The resonant frequencies were then
plotted against the circumferential wave number of
the corresponding mode shape, see figure 11.

The results may contain some errors due to the
high sweep rate of the chirp excitation [8]. Some
peaks of the measured FRF were checked by using
sinewave excitation. By manually varying the ex-
citation frequency, peak responses occurred slightly
to the left of the peaks of the measured FRF. With
maximum deviation of about 2 Hz, the FRF were as-.
sumed to be sufficiently accurate for the identification
purpose.

An interesting phenomenon was observed from
the results. Despite the small imperfections of the
shell, some modes preferred a spatial position. This
turned out for modes (1,6) and (1,7) with axial half
wave number m=1. Due to the spatial preference, the
response of these modes at the excitation point was
not a pure antinode whereas for other modes with no
preference the response at the excitation point was
always the maximum.

y in Hz
g & s 8

Natural frequency in H:

0 2 4 6 8 10 12 14 16 18 20
Circumferential full-wave number, 1 Jdispltm

Figure 11: Natural frequency versus circumferen-
tial wave number. Circles, plusses and crosses denote
modes with m=1, m=2 and m=3, respectively. Calcu-
lated results are indicated by solid lines (C4 boundary
conditions) and a dashed line (883, only for m=1)

A comparison of the measured natural frequen-
cies with the calculated ones was carried out by using
the computer program developed by Jansen [5]. The
theoretical linear natural frequency in figure 11 is in-
dicated with solid lines for the C4-C4 boundary con-
ditions. For SS3-5S3 boundary conditions the theo-
retical frequency were calculated only for m=1 and
shown with a dashed line. The measured frequencies
are close to the calculated ones with C4-C4 bound-
ary conditions as expected. However significant de-
viations are observed especially at low frequencies.

For the mode (1,11) which was used for the non-

2439



linear vibration tests, the calculated natural fre-
quency is 580.2 Hz and the measured one is 550 Hz.
It can be shown that the errors in the natural fre-
quency due to neglecting in-plane inertia and the use
of Donnell’s theory are small for this mode. Based on
approximate expressions in [17] they are estimated to
be 0.4 % and 0.6 %, respectively.

Based on the small amplitudes of the measured
imperfections, their effect on the natural frequency of
mopde {1,11) is expected to be small. A calculation
which includes the effect of shell imperfections gives
a reduction no larger than 0.2% [12].

The discrepancy between the calculated and mea-
sured natural frequency is attributed to the boundary
condition of a fully clamped edges not being realized
in the experiment, i.e. the clamping via cerrobend
could not completely force the displacements u and
v and the rotation W, to be zero at the shell edges.
It is known from numerical experiment [14] that the
boundary conditions affect the natural frequencies
most significantly by constraining the axial displace-
ments. Hence, an axial elastic boundary condition
which correlates the state of stress and displacement
has been used, N, + kyu = 0, where k, is a stiffness
parameter, to fit the theoretical to the experimental
results. A trial and error procedure suggested the use
of stiffness parameter k, = 5.10°N/m? which gave
natural frequency of 544 Hz.

The tests for mode (1,11) were performed at sev-
eral axial load levels. The natural frequencies at
these load levels are given in table 1 where they are
compared with the theoretical values using the elastic
boundary condition determined for zero axial load. It
can be shown that the prediction by using the elastic
boundary conditions gives satisfactory results.

Axial Load | Natural Frequency(Hz)
kN Calculated | Measured
0.0 544 549
0.75 538 541
2.0 528 531
4.0 512 515
6.0 494 493

Table 1: Natural frequencies of mode (1,11) for dif-
ferent axial loads

5. Large Amplitude Response Measurements

For the large response measurements, the vibration
mode (1,11) was used. This mode is well separated
from the neighboring modes and has no spatial pref-
erences. To provide a high excitation level two ex-
citers were used. The excitation points were at mid
axial position opposite to each other. The drivers
were fed with the same sine wave signal and their

outputs were controlled to have 180 degrees phase
difference.

The sine wave signal was provided by the Prodera
sweep sine generator. This generator was pro-
grammed such that it stopped the sweep at a certain
frequency for a certain period, sent a trigger pulse to
the FFT analyzer which then started to record the
data signals with time window 7'. To allow the mea-
surement of the steady state response, a delay time
was set in the analyzer which forced the analyzer to
make records At after receiving a trigger pulse from
the generator. After a stop period which was set
larger than 7"+ At, the generator jumped to another
frequency and repeated the same procedure. To avoid
leakage errors in the Fourier transforms of the exci-
tation and response signals, the stop frequency was
chosen such that the sampled signals were periodic
within the time window of the FFT Analyzer.

t t

timehistm

Figure 12: Time records of the pressure (left)
and response signals (right) for excitation level (a)
133 Pa,{b) 266 Pa,(c) 533 Pa, and (d) 1066 Pa at 525
Hz. For left figures, the solid and dashed lines are for
signals of microphone 1 and 2, respectively while for
right figures they are for displacement transducer 1
and 2.

The excitation systems worked properly. Fig-
ure 12 shows the time records of the microphone and
displacement transducer signals for 4 different exci-
tation levels at 525 Hz. It can be seen that the pres-
sures had reasonable sinusoidal form with 180 deg
phase difference. For the lowest excitation level, the
second harmonic content of the pressure is 0.5% and
for the highest one 5%. Figure 13 shows that the
transform of the highest excitation pressure in the
frequency domain.

The excitation synchronizer could keep the phase
difference and amplitudo ratio of 1 within the fre-
quency ranges of interest. Figure 14 shows the am-
plitude of excitation pressure of horn 1, ratio between
amplitude of excitation pressure 2 and 1, and their
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(a) Fourier transform of pressure signal of microphone 1
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(b) Fourier transform of pressure signal of microphone 2
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Figure 13: FFT transforms of excitation pressures of
both horns at 525 Hz for excitation level 1066 Pa

(a) Pressures of horn 1

= v T T T T T v T T v T
£ 12001 1
e
H 0
510001 o Upward sweep + Downward sweep 1
a L i A 1 ) 1 I 1 .
(b) Pressure ratios of horn 2 and horn 1
T T T T T T T T T T T
S 1
&
o Upward sweep + Downward sweep
0.8 bt L 4 L s ! \ . L . «
(c) Phase differences between pressure of horn 1 and that of horn 2
0 190 T T T T T T T T T T
3
g
= 180
; o Upward sweep + Downward sweep
T 170

514 516 518 520 522 524 526 528 530 532 534
Frequency in Hz mdadizicom

Figure 14: Amplitude and phase relations between
pressure of horn 1 and that of horn 1 between 513 and
535 Hz

phase difference from 513 to 535 Hz. This data is
depicted from response measurement of shell with 2
kN axial loads and excitation pressure 1066 Pa which
by assuming constant pressure distribution over horn
outlet corresponds to 0.065 N.

For the axial load level of 2 kN characteristic
results are depicted in figure 15, where the mea-
sured response curve is shown for a high excita-
tion level. The responses for the upward and down-
ward frequency sweep are denoted by circles and
plusses, respectively. The jump phenomena corre-
sponding to the nonlinearity occurred. In a small
region near the resonant frequency the companion
mode responds with amplitudes of the same order of
magnitude as the driven mode. Earlier theoretical
analyses [3, 9, 15], have predicted a coupled mode
response peak due to the appearance of the compan-
ion mode, however in the experiment the slope of the
driven mode réesponse curve does not show a radi-
cal change when the companion mode occurs. Fur-
ther, in the coupled mode response region, a jump

occurs in the response which has not been predicted
by earlier theoretical analyses. An examination of
the mode shapes before and after this jump shows
that the mode has moved to another circumferen-
tial position as shown in figure 16. The circles de-
note the response with time phase equal to the re-
sponse at the excitation point (circumferential posi-
tion # = 0 degrees) and the plusses denote the re-
sponse with 90 degrees phase difference. As a result,
the response below the jump frequency was not mea-
sured at the maximum amplitude, and the effective
excitation level has decreased.

The driven mode response of mode(1,11) for 2 kN axial load
1.8 T T T T
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1.6+ + Downward sweep
<14
£
Z12
=
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a
- 0.8
S
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£
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o s 2 " A 5;
510 515 520 ) 525 530 A resm
Frequency in Hz
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The companion mode response of mode(,11) for 2 kN axial load
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Eoar
4
021
0 N M
510 515 520 525 530 53

mdali2es.m

Frequency in Hz

(b)

Figure 15: Measured response of mode (1,11) for
excitation pressure 1066 Pa with axial load 2kN, a)
driven mode, b) companion mode

In figure 17, the calculated response is shown for
an axial load level of 2 kN [12]. The excitation level
corresponds to the excitation pressure used for fig-
ure 15, the dampinglevel to the experimentally deter-
mined damping for small vibrations {critical damp-
ing percentage { = 0.23 %). The companion mode
appears and vibrates with an amplitude comparable
with the driven mode amplitude (of the order of one
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Figure 16: Response distribution of mode (1,11)
at several frequencies for excitation pressure 1066 Pa
with axial load 2kN during sweep down

wall thickness). Further, the analysis predicts a cou-
pled mode response peak. In a small region, modu-
lated responses in the coupled mode occur and the
maximum amplitudes during this beating are indi-
cated by the ”driven mode 2” and ” companion mode
2” in figure 17). It is noted that the upper branch of
the single mode response is unstable at frequencies
below the coupled mode response region.

Characteristic time responses of the driven and
the companion mode recorded during sweepdown at
(a) 534 Hz, (b) 525 Hz, (c¢) 517 Hz, and (d) 512.5
Hz are shown in figure 18. Above the natural fre-
quency, a steady state single mode response occurs.
Slightly below the natural frequency the companion
mode participates in a steady state coupled mode
response. After the jump, the companion mode de-
creases {(with decreasing frequency). In this region,
modulated responses are observed.

The influence of the axial compressive load on the
response curves is shown in figures 19 to 21. The
theoretical backbone curves, i.e. the curves for free
vibration, for single mode response are based on an
perfect shell and on a constant axial load. The phe-
nomena discussed for the case of 2kN were also found
at the other axial load levels. The softening behavior
is illustrated by the responses for several excitation
levels. The 5 excitation levels in figs. 19 and 20 corre-
spond to an excitation pressure in each horn of 67 Pa,
133 Pa, 266 Pa, 533 Pa and 1066 Pa, respectively. In
figure 21 the 4 excitation levels correspond to the last
four levels. The theoretical backbone curve for single
mode response also indicates a softening behavior,
but for increasing excitation the corresponding lin-
ear frequency seems to decrease in the experiment.
Whether this is due to a shift of the mode in circum-
ferential direction or to other effects remains to be
investigated.

The driven mode response of mode (1,11) with 2kN axial load
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Figure 17: Calculated response of mode (1,11) for
excitation level Qmir = 22 Pa with axial load 2kN, a)
driven mode, b) companion mode

6. Conclusions

A setup for experimental nonlinear vibrations of
cylindrical shells has been built. The setup fulfilled
the requirements which is needed to make the mea-
surement results comparable to the analysis.

The measurement results approved the theoreti-
cal results. A weak nonlinearity of a softening type
was found and in the frequency range around reso-
nance a response in the form of traveling waves was
measured. Increasing axial compressive load make
the natural frequencies shift to lower values. However
the nonlinear behavior of the shell, i.e. the softening
nonlinearity and the occurrence of the traveling wave
responses does not alter.
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Figure 18: Time history of the response of mode
(1,11) for excitation pressure 1066 Pa with axial load
2kN during sweep down for driven mode (left) and
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(c) 317 Hz and (d) 512.5 Hz.
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