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ROBUST STABILIZATION OF A TRANSONIC FLUTTER
BASED ON A LINEARIZED TRANSONIC MATH MODEL
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To get much benefit of simplicity from the linear
control, a transonic aerodynamics is linearized to
obtain a linear aeroelastic math model and the robust
control design method is applied to yield linear control
laws. An aeroelastic model of high aspect ratio wing
with a leading and a trailing edge control surface was
designed and fabricated in order to investigate the
applicability of active control to manage a transonic
flutter. Flutter tests were carried out in the transonic
wind tunnel at the National Aerospace Laboratory and
the model exhibited a typical transonic nonlinear
phenomena such as a transonic dip and a limit cycle
oscillation. A transonic full potential code, USTF3, is
extended to calculate the generalized aerodynamic
forces due to eigen mode oscillation and linear
approximation is carried out by getting a describing
function and fitting a linear finite state aerodynamic
model to the calculated data. Since a finite state
linearized model has many sources of modeling error,
the H. loop-shaping method with the normalized left
coprime factors approach is applied to provide a
stability robustness against model uncertainty. The
- sensitivity analysis conducted for the resulting 7th-
order controller exhibits robustness and the compari-
son with the laws which were designed based on a
subsonic code and tested in the wind tunnel shows
promising results for this newly designed laws as well.

Introduction

Active control of aeroelastic phenomena such as
gust load response and flutter provides great benefit
to vehicle safety, energy efficiency and flight perfor-
mance. Research efforts for more than a decade at
NAL have established the design methodology of
these active control systems in the low subsonic
speed range.( It still remains however to extend the
technology towards a transonic region where flutter
dynamic pressure drops significantly, known as the
transonic dip phenomenon.® @

Due to a shock wave staying on a wing surface,
steady and unsteady transonic aerodynamic forces
are nonlinearly dependent on angle of attack or oscil-
lation amplitude. Transonic flutter, therefore, often
behaves like nonlinear and is difficult to be expressed
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with a simple linear mathematical formulation.
However, the linearized unsteady aerodynamics still
provide a good estimation for a transonic flutter even
though the static or steady state aerodynamics are
nonlinear." As a first step to verify the promise and
limitation in applying linear subsonic aerodynamics,
robust stabilization method was tried to get a control
law to suppress flutter. The control laws were imple-
mented in the wing model and tested in the wind
tunnel resulting the increment of 11.4 % in the flutter
dynamic pressure.(®)-(7) While the robust stability
method was thus validated its promise against the
nonlinear characteristics of transonic flutter, the
research effort to refine the math model by using a
transonic code is still necessary as the next step.

Previously, limited numbers of research were car-
ried out on designing control laws based directly on
transonic aerodynamics. Batina et al tried to apply
transonic codes to aeroelastic modeling of 2 dimen-
sional wing and investigate possible flutter speed
increment with a simple feedback control.®® They
showed that almost the same procedure as applied to
subsonic region can also be applied to a transonic
region.

Present study tries to extend their work to three
dimensional transonic full potential code USTF3,
which was developed by Isogai.® Since a finite state
linearized model has many sources of modeling error
such as linear approximation and mode truncation,
the H,, loop-shaping method with the normalized left
coprime factors approach is applied as a control law
design method which will provide a stability robust-
ness against model uncertainty.

Linearization of Transonic Aerodynamics

Mathematical modeling procedure to get linear
model approximating transonic aerodynamic forces is
almost parallel to subsonic analysis. With an expres-
sion of a flexible wing deformation z(x,y,z) by N struc-
tural modes, 2gi(%Y), and two control surface modes
zi(x,y) such as

N 2
2(xy,t) = Elzqz(x,y)qi(t) +2 Iz'aj(x,y)ﬁj(t) 0y
i= j=
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fundamental equations for aeroelastic wing is ex-
pressed as(10.(11),

Mj+Bg+Kq+Sb=f, )

where M,, B, and K are mass matrix, damping ma-
trix, and stiffness matrix, respectively; g,(t) and d,(1)
are the generalized coordinates and control surface
deflection, respectively. The last term on the left hand
side of Eq.(2) is an inertial coupling term; §;; repre-
sents the inertial force coefficient on the i-th mode
due to j-th control surface activity.

The terms f, on the right hand side of Eq.(2) are
generalized aerodynamic forces due to aircraft mo-
tion. Since we treat here transonic aerodynamics
which behaves nonlinearly, they can be expressed at
most symbolically by aerodynamic operator for
generalized coordinates. When we linearize the
transonic aerodynamics for small disturbance condi-
tion, they can be expressed using aerodynamic in-
fluence matrix F,(k,M) as,

fa = Fa(krM) q (38)

and the elements of F (kM) = { fay } are defined by
the pressure distribution caused by j-th eigen mode
oscillation Ap,(x,y;k M) such that

fus = s A Pyl M) z,,cy)dxdy (3b)

The pressure distributions in Eq. (3b) are calculat-
ed for each eigen mode oscillation at specific Mach
number M and reduced frequency k=b,m/U where b,,
®, U being a half mean aerodynamic chord, circular
frequency and flow velocity, respectively.

Because of nonlinear nature of transonic aerody-
namics, the time response of the generalized aerody-
namic forces, f,(1), due to harmonic oscillation of
eigen mode will contain higher harmonic components;
it is necessary to take a fundamental component of
the Fourier series expansion of generalized aerody-
namic forces response at each frequency to get a de-
scribing function for transonic aerodynamics.

In order to design a control law for active flutter
suppression, transonic describing functions have to
be further approximated by a set of linear differential
equations which is called a state-space equation of
finite dimension. Specifically, the linear finite dimen-
sional equation of the generalized aerodynamic
forces should be expressed by the following:

Ja®) = A, GOTIW)T)T + A, (4(1)T 51)T)T
+ A4, (qt)"d()7)T + r(t) (4a)
F(t) = Ar(1) + B,y (q(t)T 8@1)7 )T (4b)
where A =diag(-\, ...,-\)

with the Fourier transformation counterparts to this
expression in a frequency domain as follows.

F, (k) = Ak) (qk)T & )T (5a)
Ak) = (ik)2[A2q Ay ]+ (ik)[AIq A1+ [Aoq Ays ]
. [Bog Bos ] 55

ik+ A

Mathematical model coefficients 4,5, 4,5, A4,'s and
B,'s are obtained by least square error curve fitting in
frequency domain to aerodynamic describing func-
tions, F,(k)

Once we get a linear formulation for the transonic
aerodynamics, we can follow the routine procedure to
get the whole equations in the state space form.
Making use of the finite state expression for unsteady
aerodynamics, Eq.(4), along with the second order
expression for control actuator dynamics such as

8+ Cd+Kd=Kpd, (6)

where control command 8, = (8, 8., )7, fundamental
aeroelastic equation (2) can be transformed to state
equation such as

£(t) = Ax(t) + Bu(t) + w(t) )

where a state variable vector is defined asx = (¢ 7, 87,
q%, o7, 17, w, )T and a control variable vector u contains
the control commands. A system noise w introduced
at the right hand side of the equation represents
some noise source and is assumed as a white noise.

The observable output which can be used as a
feedback signal, such as an accelerometer, a wing
spar strain, etc, can be expressed by linear combina-
tion of the state and control variables as

y(t) = Cx(t) + Du(t) + v(t) 8
with v being a measurement noise.

Numerical Analysis by USTF3 Code

Transonic aeroelastic wing model

We refurnished a transonic flutter model which
was previously used to study a transonic flutter
characteristics of a supercritical wing(12, We installed
a leading- and a trailing-edge control surfaces which
are activated by electric geared motor. Since the
torque needed to control the surface was estimated
too high, the mid part of the wing is inflated so that it
contains the motors of rather large size. The baseline
wing has a supercritical wing section, while at an
inflated part, symmetrical thick wing section is used.
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The inflated part is composed of five sets of rigid
plastic covers which are attached to a wing spar
made by aluminum alloy, so as not to influence the
original rigidity of the wing. We call these part as a
glove. The plan form of the model is shown in Fig. 1.
The structural model which characterizes vibration
frequency and mode is derived by FEM analysis and
a ground vibration test. The first four modes are as
shown in Fig. 2.

Fluiter tests were also conducted and revealed a
typical transonic dip phenomena with the dip Mach
number of 0.81 as shown in Fig. 3, and limit cycle
oscillation was observed as shown in Fig. 4. It is
worth notifying that the original wing (without control
surfaces and inflated glove part) also had a limit cycle
tendency and a transonic dip ; so fundamental flutter
characteristics are retained by refurbishment.

Sieady transonic analysis

Steady and unsteady analysis of the transonic flow
around the model were carried out using USTF3 code
installed in NAL supercomputer, Numerical Wind
Tunnel (NWT). NWT is comprised of 140 processing
elements (PE), with 1.5 GFLOPS performance each,
and has a total peak performance of 236 GFLOPS.
One PE was used in the present calculation.

In Fig. 5, the grid systems in xy plane (wing sec-
tion plane) and in xz plane (wing planform plane) are
shown. The total number of grid points in case of flap
aerodynamics calculation are 47x31x23 for x, y, and
z direction, respectively, in which 8x3 points are on
the flap.

Steady state analysis was conducted for two Mach
number cases for comparison; Mach 0.75 where a
shock is not created yet, and Mach 0.80 where a
shock wave is appearing on the rear part of a wing
surfaces.' Fig. 6 shows chordwise pressure distribu-
tion at 70 % spanwise section at Mach 0.75 of
measurement data and CFD analysis results consid-
ering the elastic deformation. The correspondence is
good. Calculated results at Mach 0.80, Fig. 7, shows
a strong shock appearing at the rear wing surface.
Fig. 8 shows the overall pressure distributions at two
different Mach numbers. Unusually high pressure
peaks on both upper and lower surfaces can be
observed at "glove" part which sometimes caused
numerical trouble in computation. Though we don't
have any test data of pressure distribution at the
glove part, these analytical results suggest that some
discrepancy between calculation and measurement
may occur caused by flow separation.

Unsteady calculation and linearized model

Original USTF3 code was extended to calculate
the time response of a transonic generalized aerody-

namics due to forced oscillation by eigen modes.
Calculation was executed at 11-deferent reduced fre-
quencies, from 0.1 to 1.0 in 0.1 step, and 0.05, for
Mach number 0.8. The same grid systems were used
as in the steady calculation. The computation time
was about 0.87 seconds per time step.

Since the calculation was started from zero initial
conditions, calculated results have a transient part at
the beginning and gradually tends to sinusoidal
steady state. For example, Fig. 9 shows the time
history of the calculated generalized aerodynamic
forces at reduced frequency of 0.5. At reduced fre-
quency of 0.1, at least 3 cycles of computation is
necessary to get the steady state solution. Total
computing time amounts to 9360 time steps which
consumed 8,098 sec of CPU time. At higher frequen-
¢y, much more cycles are needed to get steady solu-
tion so that the total time steps are almost the same.
The computation cycles were thus determined to
increase according to the frequency.

When Fourier analysis is conducted to this time
response of the aerodynamic forces at a final cycle
response, we can obtain frequency response to
transonic aerodynamics. In Fig. 10, the complex
plane presentation of 4x5 elements of the computed
generalized aerodynamic forces (GAF) are depicted
as asterisks connected with dotted lines. Almost all
elements are obtained as a smooth curve but with few
exception: i.e., "off-diagonal elements" of q31, q32,
q23 for instance, all are related to third mode. It is
conjectured that the third mode may have large de-
flection at the area of abrupt change of the pressure
at shock wave, and shock occurrence is sensitive to
the reduced frequency so that the diagram of Fig. 10
shows such an irregular behavior.

Using these describing functions for generalized
aerodynamic forces, U-g flutter analysis was con-
ducted. As the result is shown in Fig. 11, the second
mode will get into flutter though the predicted flutter
speed is much lower than occurred in the test.

By fitting 1st order rational functions as shown in
Eq. (5b) to the calculated data, a finite state math
model is obtained which is depicted in Fig. 10 as a
solid line. Eigen value analysis was done by this
model to get another prediction of flutter and its veloc-
ity root locus is shown in Fig. 12. The flutter speed is
almost the same as predicted by U-g method and the
tendency of the locus is also the same which means
that the finite dimensional approximation is success-
ful. The problem remained yet is that these flutter
speed have discrepancy with the tested data. As
pointed out previously, the possible discrepancy
between analytical and test pressure distribution may
occur by flow separation which may in turn cause the
flutter speed discrepancy. We therefore decided to
introduce the reduction factor to the calculated aero-
dynamic forces intending to express the aerodynamic
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inefficiency caused by flow separation. Fig. 13 shows
the speed root locus for the model with the reduction
factor of 0.338, while Fig. 14 shows the root locus for
the model based on subsonic lifting surface theory of
Doublet Point Method (DPM) where the reduction
factor of 0.305 was used. Though apparent difference
is the relation of the 1st and 2nd mode to flutter, it is
notified that the resulting flutter mode is not so much
different to each other.

Robust stability control synthesis

Sketch of the synthesis method

Robust stability control design based on coprime
factors approach was applied to this wing model and
the reduced order controller was obtained by the
residualization method which yielded control laws with
a certain level of robustness.('¥ The design process
. combines classical open-loop shaping principle with
an H,, robust stabilization problem in the normalized
coprime factors framework. Main contents of the
procedure is summarized here; the detailed process
is stated in Reference 14.

Let the nominal plant model G(s) have a normal-
ized left coprime factorization such as,

G(s)=M(s)~IN(s)

where N(s)N(s)" +M(s)M(s)*=1 for all s, and N(s), M(s)
are asymptotically stable proper real rational functions
and M(s)*= M(-s)T. The uncertainties in the plant can
be represented in terms of additive stable perturba-
tions [ AN(s), AM(s)] to the factors in a coprime factor-
ization of the plant as shown in Fig. 15.

Let a minimal realization of a proper plant be G(s)
= (4, B, C, D), and let X, Z>0 be the positive definite
solution to the following algebraic Riccati solutions

Ay'X + XAy - XBS-IB'X + C'RIC =0 ©)
A,Z + 74, - ZC'R-ICZ + BS-'B* = 0 (10)
where 4, and 4, are
Ay = A - BSID'C
A, =A - BD'RIC
then, for a given 0 < € < ¢, the state space realiza-

tion of a central controller K, can explicitly be given,
using Doyle's notation, as

A+e2WiZC*(C+DF) | &?WZC"
K,(s) = an
B'X | -p°

S=I+D'D, R=1+DD’, A°=A4 +BF
W,=1+XZ - e?), F=-S-1(DC + B'X)

The maximum stability margin, ¢, is given as

€y = [ 1 + Nppr(ZX) 1712 12)

where A, (ZX) is a maximum Hankel norm for the
nominal plant and is a function of ZX.

In order to incorporate performance objectives in
the design process, input and output shaping func-
tions Ws), W (s) are introduced just before and after
the normal plant. The extended plant is thus given as
Go(s) = W,GW(s) so that feedback controller can be
given as

K,(5) = WK, Wy(s) 13)
where a controller K, is obtained from Eq. (11) by
substituting a plant dynamics G(s) with G.(s) = (4,

B, Cp, D). The maximum stability margin for an
extended plant can be expressed accordingly as

Comar = [ 1 + Mpax(ZeXe) 17 (14)

Control law design

Control law was designed at the design dynamic
pressure of 32.4 kPa, 20% higher than the open loop
flutter. According to the previous experience obtained
by the model based on subsonic aerodynamicsts),
almost the same structure of the control component
was adopted. Order of the shaping function was set
three and low pass filter of 30 Hz cut-off frequency
was introduced in order to prevent the higher mode
spill over. The order of the extended plant is in-
creased to 22: 14 from the original plant, 6 from the
shaping function, 2 from the low pass filter. Direct
application of the design procedure produced 22th
order controller, the same order as the extended
plant. Sensitivity and complimentary sensitivity for full
order controller were estimated by changing the .
shaping function gain and good performance was
obtained with the gain value of 1 as shown in Fig. 16.
Order reduction method of residualization with a
balanced truncation approximation process{!4 was
then applied to this full order controller. Order reduc-
tion to 7th order was found most efficient in the sense
that the reduction error in frequency response of the
controller between successive order reduction is
minimized.

The robust performance of the controller was
estimated by changing the two important parameters,
1st mode and 2nd mode stiffness. Table 1 shows the
results. It was found that the controlier is robust
against the first mode variation, while it is very sensi-
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tive to change of the second mode stiffness. The
controller will lose the stability even at the original
flutter dynamic pressure if the second mode stiffness
changes 10%. Table 2 shows the same diagram for
another controller (CT31-171) which was designed
for the model based on subsonic DPM. In this dia-
gram, the first mode change does not degrade the
control performance but reduction of the second
mode stiffness degrades the control performance just
like the above results for USTF3 model. The sensitivi-
ty chart of this control law shown in Fig. 17 shows
that it maintains excellent robustness and noise
reduction performance. Almost similar control law was
recently tested in the wind tunnel and succeeded to
demonstrate its effectiveness by recovering the flutter
once occurred when the control loop was disengaged.
Fig. 18 shows these situation in the time chart.
Considering the test results and the related chart for
the controller CT31-171 and newly designed USTF3
controller, it can be concluded that the present con-
troller will realize certain level of flutter speed in-
crease in the wind tunnel test.

As future research subjects, wind tunnel test ver-
ification of the effectiveness of the newly designed
control law should be carried out. Flutter simulation
using USTF3 function by implementing the control law
should also be freated.

Summary

A transonic full potential code, USTF3, was ex-
tended to calculate the generalized aerodynamic
forces due to eigen mode oscillation for reduced fre-
quency range from 0.05 to 1.0. Fourier series analysis
was then applied to final cycle of calculated time his-
tory of GAF to get a describing function. Linearized
aerodynamic model was obtained by fitting a finite
state model to the aerodynamic describing function.
By implementing this model, linearized math model
for aeroelastic wind tunnel model was obtained. In
order to compensate possible modeling error, the H,
loop-shaping method with the normalized left co-
prime factors approach was applied to provide a
stability robustness against model uncertainty. The
sensitivity analysis conducted for the resulting 7th-
order controller exhibits robustness. Comparable
performance with the previous control laws designed
on the basis of subsonic lifting surface method was
obtained by the present model.
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Table 1 The sensitivity of closed loop flutter
dynamic pressure due to parameter
changes (USTF3 controller)

W, , ~10% Nom. +10%
-10% 25.05 36.60 20.36
Nom 23.97 36.90 20.02
+10% 22.80 36.98 19.65

Table 2 The sensitivity of closed loop flutter
dynamic pressure due to parameter
changes (DPM controller)

0, o -10% Nom. +10%
~10% 29.55 38.22 53.65
Nom 28.73 37.73 45.39
. +10% 27.82 37.13 38.71
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Fig. 10 Generalized aerodynamic forces
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Fig. 12 Speed root locus (Original model)
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Fig. 17 Sensitivity and complementary sensitivity

for full order controller. (DPM model)
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Fig. 14 Speed root locus (DPM model)
Perturbed Plant

AM
t oY gl
K |e— |

Fig. 15 Coprime factor description
and robust stabilization problem

Acceleration {wing tip forward) 7

%‘W
i

Acceleration (wing tip rearward)

‘f :’«

Torsioﬁal strain (middle wing)
it )
W“*”"“"”"*"'““Wﬁ’tﬁfi%ﬁ%”’”m

Bending strain (wing roof)

Control disengaged

Fig. 18 Time history of successful flutter suppression

in the transonic wind tunnel



