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Abstract

At present on bodies of revolution
wraparound fins (or largely bent wings), as a
rule, of cylindrical type are mounted . The
flutter console forms of such wings can be
determining flutter forms of vehicles both in
subsonic, and in supersonic flow.

Report is devoted to advanced
analysis of wing spanwise curvature influence
on bent slender and high aspect-ratio wings
flutter characteristics, on efficiency of actions
application for flutter prevention Spanwise
wing curvature in paper in a set of presented
results is resolved as self-parameter, which
defines wings aeroelastic behavior. Simplified

wing elastic-inertial scheme is wused for
parametric calculations.

In the report it is shown, that for
slender wings the flutter curve behavior and

aeroelastic oscillations type is different from
similar behavior for high-aspect-ratio wings at
increase of wing curvature.

The conclusions, that help on designing
of safe from flutter spanwise bent slender
wings, were made on the calculations basis.

The opportunity valuations to use
simplified aerodynamic loads theories for
largely bent wings flutter characteristics
analyses are obtained, the example for bent
wing flutter characteristics fast calculations on
practice is given.

Introduction

At present the task about fluttér console
forms of wraparound, largely bent (of
cylindrical type) wings both in subsonic, and in
supersonic flow is actual.

Bent wings flutter task decision has
several features. First, design of wing is three-
dimensional and, in difference from flat wing, at
small oscillations the wing points can deflect
not only in normal, but also in tangential and in
plan directions relatively undeformed wing
position. Second, for exact account of three-
dimensional space position of wing different
sections it is necessary to apply the
advanced aerodynamic theory. Third, in
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manufacturing the significant differences of
elastic and inertial characteristics of one
wings type are observed, the numerous
modifications of wings are developed. As a
result, it is necessary to take into account
the influence of large number of parameters on
wing flutter characteristics.

Bent wing features are stipulated by
the fact, that excepting known  stiffness and
inertial parameters of wing design the wing
spanwise curvature, new, not encountered
earlier parameter, will influence on bent wing
fiutter characteristics.

Report is devoted to advanced analysis
of wing spanwise curvature influence on bent
slender and high aspect-ratio wings flutter
characteristics, on efficiency of actions
application for flutter prevention .

For flutter analysis simplified bent wing
mathematical model using polynomial method
is used. To simulate unsteady aerodynamic
loads, acting on bent wing in subsonic flow the
distributed douplet method, advanced for
system of thin lifting surfaces, located in
different planes is used V. In supersonic flow
the linear theory of thin body in compressible
flow with correction of relative position of
aerodynamic focus and lifting force derivative
by the angle of attack in sections of wing is
used @, The precision of elastic-inertial and
aerodynamic wing model was sufficient to main
made in paper conclusions.

Using modal analysis, flutter equation
complex roots analysis in the report it is shown,
that for slender wings the flutter curve
behavior and aeroelastic oscillations type is
different from similar behavior for high-aspect-
ratio wings at increase of wing curvature.

On the calculations basis the
conclusions-recommendations on designing of
safe from flutter spanwise bent slender wings
are given. The opportunity valuations to use
simplified aerodynamic loads theories for
largely bent wings flutter characteristics
analyses are obtained, the example for bent
wing flutter characteristics fast calculations in
supersonic fiow is given.

Flutter calcuiations are executed with
use of specialized computer program,
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developed by report author to fast parametric
calculations of largely bent wings aeroelastic
characteristics .

Mathematical model

Elastic-inertial scheme

The wing is defined as a set of boxes,
fig.1(a). Every box is absolutely rigid body.
Boxes are connected by elastic elements
(springs), which model elastic forces of press-
stretch, shift, bending, torsion, fig.1(b). Local
coordinate system x; y; zj o; is linked to every
i-th box. In the problem about oscillations dx; ,
dy; , dzj , do4', deo!, des' are taken as
generalized coordinates (degrees of freedom ),
where i=1,...,,N and degrees of freedom are
small displacements of boxes centers
coordinates and rotation angles (N - number of
boxes) reiatively local linked to boxes
coordinates systems.

Free wing oscillations are described by
equation:

g (1)
[A]-{g} +[G]-{q} = {0}

where [A],[G] - matrices of system inertia and
stiffness. {q}T - the column of generalized
coordinates, upper point denotes time
derivative, and vector-string {g}T has form:

{a)T=(dxq , dyq , dzq , doy!, dop! deg’,
..., dxy, dyy , dzy, doqN, dooN, dog™}

The form of symmetrical matrices [A] and [G]
is close to diagonal form, and therefor it is
possible to use memory economical and time-
economical numeric algorithms. To model low
eigen frequencies of beam with changing
cross-section the springs stiffnesses ( diagonal
elements of some [Sf]-matrix for each from N
boxes) it is necessary to take as follows:

S.=()|EFdx, S.=2S8.. §,=28.,
S.=(1)[GI (1+1/2NY dkx,

S.=()[EI A+1/ NYydx,

S.=()[EL(1+1/ Ny dx

where Ely, , El, bending beam stiffnesses
relatively y; and z; axes; GJkp - torsion beam
stiffness, EF - press-stretch stiffness, N -
number of boxes, I;j - the length of i-th box.
Integration is executed over the beam part,
which is substituted by the box. Comparison of

()

eigen modes of symmetrical console beam
using beam theory and using described above
model shows, that at N > 5 the calculations
using presented model gives good agreement
in low bending and torsion frequencies with
beam theory results. Six-components springs,
which connect boxes, are located in boxes
rigidity centers.

: When simulation fow eigen modes of
plate the formulas to calculate [S'] -matrix
elements are differed from similar formulas of
thin-section beam. In flutter caiculations of real
bent slender wings, as a rule, it is necessary to
take into account characteristics of two lowest
eigen modes of wings: lowest bending mode
and lowest torsion mode. It can be shown, that
to simulate lowest eigen modes of rectangular
plates-wings at small, close to one wings
aspect-ratios the calcuiation of [Si]-matrix
elements as follows:

i =72 = ol d =9l
Sfy=upTEmbds, shy =25}, s43=25).

d =2 3 N2 * w2 0
Sya=UD YU DHCR A+ V2INY (1=th(4 1) /(42™)) “helx.
AX=1bJ1,5(1-11) (3
5"'55=(1,~>‘2f(1/12)Eh3(1+1/N)2hdx,

S66= Ur‘)"zf(”12>Eh3(1-ﬂ2>“1(1+1/1v)2bdx

( I, b, h - length, chord, thickness of plate-
wing, E, G - Young's and shift modulus, p -
Poisson coefficient) resuits in satisfactory
agreement of three low eigen frequencies with
the respect to console plate eigen frequencies,
but the form of oscillations remains as in beam,
without wing chord deformation.

For slender wings, as it is shown in the
control calculations, the difference in values of
flutter ram and frequencies, calculated with use
of polynomial method, taking into account
chord deformations, and values, calculated
using described above, simplified scheme
underestimates flutter ram relatively more
precise scheme @, This precision for
parametric flutter calculations is satisfactory.

Aerodynamic loads

Using developed wing scheme as a
system of rigid boxes, on the basis of
aerodynamic loads to the system of fiat
surfaces, located in different planes
(distributed douplet method) " |, there are
calculated so-called aerodynamic stiffness and
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damping matrices [B], [D]. At finite value of
reduced frequency K calculation of [B] and [D]
matrices in flutter problem is performed as
follows:

[B]=-0,5 pU[F] {[LJ[FJ]+(k/b>mpu]},(4)
[D1=-0,5-pv [FT{LIF.]- G/ LIF. I

When using so-called harmonic theory
(k—0) and quasisteady theory the formulas are
more and more simplified. Adopted here
notations are: p, v - airflow density and speed.
[F1.[Fy).[Fy, ] - matrices, depending upon wing
form, douplets and boundary points location,
deformations at low modes oscillations, b -
typical chord length, [L,],[L,] - aerodynamic
influence matrices.

Aerodynamic stiffness and damping
matrices in subsonic (M<1) and supersonic
(M>1) flow can be calculated also with use of
plane sections theory “. At M<1 it is used
quasisteady theory “, at M>1 - harmonic
theory @ (for rigid wing in plane supersonic
flow). In both cases it is possible to introduce
experimental values of aerodynamic focus
location in section "s" of wing Xf&=xq{s) and
values of lifting force coefficient derivative in
section "s" of wing C *=C %(s). Therefor, if in
section "s” the distanée frdm leading edge to
rotation axes x =x(s), chord b=b(s), rotation
axe displacement w;=wj(s) and angle of
rotation 6;=0j(s) of section for i-th low eigen
modes, are known, then [B],[D] matrices
elements can be calculated as follows:

b.=-L2J0 )Y+ 66) ) M),

d=-"E 0w O rw@w @1+ O

+0/(5) Q.(5) M’ +w,(5) Q(s) M*)ds,
where ¥'=Cb, Y*=-C(-b(x,~x)-mb),
Y'=-Cb,
M'=Chb(x.~-x), M*=Cbx,~x),
M’ ==CAmb +mb (x,- x)+bCe.— x,)'}:
atM <1: m°=%8CZ)’ m=0,5:

atM>1: m=(M-2)/12(M -1)),
m.=—=0,5/(M* 1)

Flutter equation

The flutter equation form, as equation of
wing disturbed motion, is shown below.
Galerkin's method is used. Low wing eigen
modes, orthonormalized to wing inertia matrix,
are taken as prescribed forms.

Qs + A[H+ (A MVYDD + ([K] +A[B] )y ={0} (6)

In equation (6) inertia matrix [C],
structure stiffness matrix [K], structure
damping matrix [H] are diagonal. The A

parameter is value of critical ram, M -Mach
number, V -sound speed,{u}- reduced
equation vector, [B] and [D] - aerodynamic
stiffness and damping matrices without
extracted values A and (A/MV). Instability in
flow becomes possible, when some equation
complex root A (A=8+in) changes real part sign
from negative to positive. The o value is
therefor frequency of low bound of dynamic
instability region. if o=0, then instability has
flutter type, if =0, then equation solution
further will be called divergence.

Computer program

To parametric investigation of spanwise
largely bent wings, on the basis of algorithms,
briefly described above, the specializes
computer routine F1PC was developed. After
analysis of really existing wings structures the
choice of bent wings main parameters was
made. From main parameters values all
necessary inertia and stiffness wings data are
calculated, mathematical model to eigen
modes calculations is formed, in dependence
from type of aerodynamic theory the wing
loads are defined, mathematical model of wing
in flow is calculated. Initial data separation to
main and depending ones, calculated from
main data, allows to fast and effectively
execute eigen modes parametric investigations
and investigations of wing in flow stability
region bounds on the plane of every pair of
main parameters of wing and flow. It need be
noted, that wing and flow parameters are
equivalent in that sense, that every of them can
be or argument or function when instability

- bounds are calculated. This fact and possibility

to be restricted by small number of boxes by
which the wing is modeled, allow fast and
effectively execute bent wings parametric
investigations  using relatively low-power
computers, for example, of the type IBM PC
AT-386.
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Parametric flutter investigations

Some results of bent wings parametric
investigations of eigen modes, frequencies,
critical ram and flutter frequency in subsonic
and supersonic flow will be presented further in
the paper. Influence of wing balancing,
embedding parameter, in-plane wing form
variation, wing aspect-ratio to wing flutter
characteristics is investigated. Main flutter
study results present critical ram as a function
of wing curvature radius. Wing curvature
radius influence to wing flutter characteristics is
investigated using typical in-plane rectangular
bent wing.

Arc length S,, chord length b, curvature
radius R, the distance b, between root chord
leading edge and location of six-components
spring, which simulates wing attachment,
balancing mass mg, coordinates Sy, Ly,
thickness h, thickness parameter dh/ds and
some other parameters are taken as main
parameters, fig.2.

Some undimensional parameters as
wing aspect-ratio A=Sy/b, undimensional
curvature radius R=R/S, (or curvature angle
¢=So/R }, undimensional wing thickness c=h/b
undimensional by coordinate "s" wing
thickness  derivative  dh/ds=(dh/ds)-(S,/h),
undimensional ~ coordinates  Sqi=  S4,/S ,
Zgr=Z4:/b, and balancing mass r_n_g,=mg,/Mwing,
(Mying~ Wing mass) undimensional wing
attachment location b,=b,/b and some other
parameters are taken to analysis.

Low eigen modes and frequencies as a
functions of ¢ parameter (or R parameter) are
investigated in paper for cantilever attached
slender wing (A=1, ¢=0,01, b,=0,5). To used
wraparound folding slender wings the R
parameter must be limited as follows: 1/r<R<w
{0 < ¢ <m). For the R range that is given by
first above statement the first, bending mode
frequency, is increased and second, torsion
mode frequency, is decreased at R parameter
decreasing (¢ increasing), fig.5. Such low
frequencies behavior concerned with including
to wing oscillating process not only normal to
wing surface displacements v, but also
tangential displacements u (along spanwise
direction) and in-plane displacements w ( along
flow direction). Behavior of u, v, w
displacements amplitude components for bent
wing leading edge points for low eigen modes
in dependence form ¢ parameter is shown on
fig.3 and fig.4.

Eigen modes and frequencies variation
at R diminishing causes to result, that at (R, q)
parameters plane the flutter region is closed,

fig.6 ( g - undimensional value, q=A/A, , where
A- bent wing flutter ram, A, - plane wing flatter
ram, span of plane wing is equal to arc length
S, of bent wing).

Figure 6 and following figures results
are obtained at Mach number M=0,5 , using
distributed douplet method. In calculations the
wing was divided into 6 chordwise parts and 10
spanwise parts, therefor 60 panels were used.
it was supposed, that damping in wing
structure is absent. Flutter is caused by low
modes in-flow interaction. At R diminishing the
distinct q increasing is seen at some radius Ra.
This radius is marked by prominent in-plane
wing motions including to wing oscillations.
Flutter region closing is seen at Rg radius. This
radius is marked by prominent tangential,
spanwise wing motions including to wing
oscillations.

Behavior consideration of undimensional
values of aerodynamic stiffness by and
aerodynamic damping djx matrix coefficients
and structure stiffness matrix coefficients k;,
Lk=1,2 (fig.7) shows remarkable diminishing of
bi, dik values in range 0,3<R<1,3 (3,3>¢>0,79)
at R diminishing. Matrix coefficients are
normalized to corresponding plane wing matrix
coefficients (R=w«, ¢=0). As a result, at R
diminishing (¢ increasing) the aerodynamic
connectedness of oscillating modes in flow
falls, "negative” aerodynamic stiffness is
diminished, equation (6) roots trajectories on
complex plane become "less dynamic”, fig.8.
The changing of real part of equation (6)
unstable complex root, which is corresponded
to torsion mode, becomes more slow at q
increasing. fig.9. As a result the flatter
phenomenon becomes impossible ( flatter
region is closed).

On the basis of stated above results the
following conclusions can be made: it must be
flutter ram q increasing ( relatively plane wing
flutter ram ) at R<Ra and remarkable flutter
ram - increasing at B~Rg for bent slender
wings as a result of wing curvature increasing.
This increasing is caused by prominent
including of tangential and in-plane wing
sections motion to wing oscillation process.

Influence of undimensional curvature
radius R to bent wing critical ram in subsonic
flow in dependence with aerodynamic loads
type, using distributed douplet method is
considered further. Calculations, executed
using exact reduced frequency value k, and
calculations, executed using harmonic theory,
give the same results. This is explained by low
reduced frequency value k=0,35 and small
wing aspect-ratio value. It need be noted too,
that calculations using quasisteady theory give
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lower flutter ram than calculations using
harmonic theory. And this underrating is more
large at low wing curvature radius. Body
influence account in aerodynamic loads
calculations results in shifting of bounds of
flutter region closing to lower R value and in
more difference between flutter ram q
calculations results using quasisteady theory
( curve 1, fig.10) and q calculations results
using harmonic theory (curve 2, fig.10) in
region of low R. It is established, that usage of
simplified, "flat™ aerodynamic theory (curve 3,
fig. 10) gives overrating of flutter ram in range
- of low R (relatively calculations with use of
harmonic theory). in "flat” aerodynamic theory
it takes into account the only bent wing aspect-
ratio, the wing is considered flat, unbent,
different wing sections orientation is not
accounted.

As known, usage of antiflutter weight-

balance is one of the main ways to wing flutter .

prevention. Critical ram g as a function of R for
superbalanced, disbalanced wing and without
balance wing is shown on fig.11. The wing,
marked as 1, corresponds to bent wing with
balance weight  mg~0,06 which has
coordinates Sg=1,0, Zg=1,0 (disbalancing),
curve, marked as 2, corresponds to without
balance wing, curve 3 corresponds to wing with
balance mg=0,06, which has coordinates
S¢r=1,0, Zgr=0,0 ( superbalancing). As it is
seen from presented results, superbalancing
leads to the flutter region rising and closing at
more high R values. Conclusion can be made,
that for slender wings in subsonic flow
superbalancing effectiveness at low R is
increased.

Calculations with balance mg=0,2,
which is located in the middle of tip wing
section ( Sg¢r=1,0, Z4=0,5, curve 4, fig.11 )
show, that balance effectiveness is decreased
at R diminishing. These calculations and
analysis of low eigen frequencies behavior at R
diminishing and corresponding analysis of main
type of wing motion allow to make a
conclusion, that additional including of in-plane
wing motions to wing oscillating process results
in bent slender wing flutter characteristics
decline.

The influence of wing attachment
location to critical ram q can be analyzed by
the way of changing the point location of the
first spring element, by which wing attachment
is simulated, in mathematical model, that is
variation of b; parameter. As it follows from
fig.12, the shift of bent wing attachment
location point to the back sufficiently increases
flutter ram, especially at range 0,4<R<0,6, that
is explained by zero normal displacement line

shift in torsion mode to back, more closely to
wing trailing edge and therefor by wing
balancing effect.

For bent rectangular in plane form
slender wing in subsonic flow there is one
more way of console flutter ram increasing.
This way is changing of in plane wing form by
cut of wing tip sections trailing edge.
Calculations were executed  to evaluate cut
efficiency. In calculations it was adopted, that
wing is cut from trailing edge by rectangular
parts, . beginning from 0,75 span chord
(S2/S0,=0,75), the uncut wing part is
characterized by b, parameter (bo=b,/b), fig.2.
As it follows from fig.13, the wing cutting acts
more effectively to flutter ram in the range
0,4 <R<0,7. The eigen modes and frequencies
analysis shows, that flutter ram increasing is
caused by balancing effect due to wing tip
sections uncut parts. As a result, the following
conclusions can be made: wing part cutting
may be effective measure 1o prevent bent wing
console flutter form, at low curvatures radiuses
the cutting effectiveness is increased.

To evaluate curvature influence to bent
wing flutter characteristics in supersonic flow
the calculations were executed, in which
pressure distribution in wing sections was
taken from pressure distribution in tip sections
of in plane rectangular flat wing at Mach
number M=1,75. The behavior of flutter region
bound in supersonic flow replicates bound
behavior in subsonic flow, fig.14. Aerodynamic
stiffnress and damping matrices coefficients
behavior at R variation in subsonic flow is
similar to one in supersonic flow. Therefore the
main conclusions about flutter prevention
measures effectiveness are the same ones for
bent slender wings both in subsonic and in
supersonic flow.

Aspect ratio A influence to bent wings
flutter characteristics was analyzed using a set
of thin wings: 2=1 (c=0,01), A=3 (c=0,01), A=7
(c=0,033). It was recognized, that relatively
larger diminishing of the torsion mode
frequency at wing curvature increasing (R
decreasing, ¢ increasing) is caused by larger
addition of the in plane wing motion for high
aspect ratio wings. As a result, at R diminishing
there is falling of flutter ram in difference from
slender wing ram, fig.15 (wing has 1=3). The
wing aspect-ratio is larger, the flutter ram
falling is stronger. For wings with 1<3,4 the
flutter is caused by in flow interaction of two,
lowest bending and torsion modes (first flutter
form), fig.15. For high aspect-ratio wings, for
example A=7, at small wing curvature, the
flutter is caused by in flow interaction of
second bending and first torsion modes
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(second flutter form), fig.16. At large wing
curvature the first flutter form is the main one
again, fig.16. Such flutter bounds behavior,
existence of second fiutter form is related with
eigen frequencies variation, which is shown at
fig.17. Wing curvature increasing tends to
torsion mode frequency falling lower than
second bending mode frequency. Qualitative
change of frequencies values tends to
disappearing of the second flutter form.

Thus, at wings aspect-ratio increasing
the wing curvature, as a rule, causes to flutter
ram diminishing, therefor it is adverse factor.

Calculations and experimental results
comparison

The console flutter form of cylindrical,
bent, missile wings at Mach number M=1,75 is
considered below. Analysis and comparison of
the parametric calculations resuits and
supersonic wind-tunnel tests are given. Four
wings with parameters 1=0,62, (c=0,0025+
0,01}, by=0,34, dh/ds=-0,75, R=0,6 and four
shorter chord wings with parameters 1=0,83;
¢=0,003+0,013, b;=0,5, dh/ds=-0,75, R=0,6
were taken into consideration.

Elastic-inertial wings scheme was
corrected using ground vibration tests results.
Aerodynamic loads to vibrating wing were given
according to formulas (5) at M>1. Spanwise
lifting force characteristic _C_y"‘:_ *(s)
distribution was given following the ‘pressure
difference distribution in wing tip sections in
and out Mach cone for in plane rectangular flat
wing at Mach number M=1,75 and was
corrected using "rigid” wings wind-tunnel tests
as follows:

C,*[C * cos(B)dF = C *ex[cos(p)dF, (7)

where C %~ experimental wing lift coefficient
derivativg, dF - undimensional wing area
differential ([dF=1,0), B - angle between
current wing surface part normal vector n and
average wing normal vector position r, fig.18.

C % wing lift distribution scale. Aerodynamic
focus position for all wing sections was taken
the same and equal to x; It need be noted,

that Cy“:1 ,0 corresponds to Cy“ex=2,8.
Despite of four wings similar type of the
first group, they had some differences in
bending fy and torsion f, eigen frequencies. In
mathematical model these differences were
taken into account by different bending and
torsion wing attachment parameters Ky and Ko.
in wind-tunnel flutter tests at dynamic pressure
increasing the N2 wing flutter was noted.

Flutter and N2 wing parameters are: K{=0,3,
K>=0,35, fo/f1=1,43, flutter frequency wy=1,0,
ram q.=1,0. Flutter ram was normalized to
A=1,43-10° H/m? flutter frequency was
normalized to o=140Hz. Wing N4 ( K=0,3,
K>=0,35, f»/f1=1,43) flutter appeared at
as=1,13 and ®4=0,99. Wing N3 (K{=0,35,
Ko=0,6, f2/f1=1,48) flutter appeared at qz=1,25
+1,3 and w3=1,11. Wing N1 (K{=0,25, K>=0,6,
fo/f1=1,72) did not subjected to flutter.
Dynamic pressure range was up to q,,,,~1,51.

wings flutter and flutter absence on
wing N1 are correlated using = single
mathematical model and assumptions: wing
parameters Ky and Ky are stable enough for in

and out of flow wings, C_,* and x; values for all
wings have 0,1 scatter relatively similar wing
N2 values.

According to assumptions g as a
function of Ky for all, four wings are shown at
fig.19. Values of qp, q4, qz in correspondence
with wings Ky parameters are in calculated
values g range, that corresponds to various

C.* and x; combinations. Experimental flutter
fr(!,quencies of 2-nd, 4-th, 3-rd wings are also
in a good agreement with calculated ones. First
wing calculated flutter ram are higher than
maximum experimental dynamic pressure Q...
This is an explanation of flutter phenomenon
absence for wing N1,

Using the same mathematical model,
the flutter calculations of missile modified, with
shorter chord , wings were executed. Wings
mathematical model was corrected using
ground vibration tests resuits too. Calculations
shown, that these wings are flutter stable with
sufficient safety margin, that was confirmed by
additional supersonic wind-tunnel tests.

Therefore, developed wing
mathematical model corrected by results of
ground vibration tests and "rigid" wings wind-
tunnel tests, allows to calcuiate flutter ram of
cylindrical, bent, in-plane rectangular
wraparound wings in supersonic flow with good
accuracy for parametric investigations.

Conclusions

As a result of parametric calculations of
curvature parameter influence to flutter
characteristics of different aspect-ratio, largely
bent wings it was ascertained, that for slender
wings the spanwise wing curvature increasing
causes the increasing flutter ram relatively
unbent, flat wing both in subsonic and in
supersonic flow. For high aspect-ratio wings in
subsonic flow the spanwise wing curvature
increasing causes the diminishing of wing
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flutter ram relatively flutter ram of unbent, flat
wing.

Different console form flutter prevention
measures were considered for largely bent
folding slender wings. It was established, that
wings weight balance effectiveness increases
for small wings curvature radiuses. Wings
flutter ram considerable increasing possibility is
shown, when wings attachment location is
shifted to trailing edge of wing root chord and
also when tip sections of wings are cut at small
wings curvature radiuses.

It was determined, that in subsonic flow
underrating of flutter ram in calculations using
quasisteady aerodynamic ioads theory
relatively calculations using unsteady
aerodynamic loads theory is increased at small
curvature radiuses for bent slender wings.

Calculations and experimental results
for bent folding slender wings were compared.
Good matching of console flutter form
calculations results and wind tunnel flutter
results was shown for bent folding wings in
supersonic flow.
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