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ABSTRACT

A helicopter blade vibration alleviation strategy
is presented in this work. A study is done based on energy
methods. The helicopter blade is first modelled by the
finite element method being the blade considered as a
rotating beam undergoing the coupling motions of
flapping, lead-lagging, axial stretching and torsion. The
blade is also considered having a pre-twist angle, an offset
between mass and elastic axes and being made of isotropic
material. After the finite element matrices are obtained,
reduced and linearized, a linearized aerodynamic loading
is also calculated for hover flight condition and included
in the model. Once these dynamic and aerodynamic
equations that express the blade vibration motions are
obtained, the state-space approach is used to design the
control system considering output feedback control
strategy. Finally, the system is simulated and the results
for open and closed-loop condition are presented.
Analysing these results one can observe that they exhibit
good response qualities showing that output feedback
strategy considered in this work is a good alternative for
helicopter vibration attenuation.

INTRODUCTION

The vibration level achieved by a helicopter when
flying is a bad characteristic of this kind of aircraft. These
vibrations are mainly originated at the helicopter rotor,
which is formed by flexible blades excited by oscillatory
aerodynamic and inertial forces. The helicopter rotor
cannot be totally isolated from the helicopter structure, so
these vibrations, originated in the rotor, transfer to the
structure and create a hostile environment for most of the
helicopter devices, crew and passengers. Trying to
decrease and to alleviate these vibrations a great quantity
of work has been done in order to obtain a solution to
these problems and a considerable progress has already
been reached.

To tackle these problems and having in mind
vibrations alleviation in helicopters, one has to have a
mathematical dynamic model of helicopter blades. To
obtain such model various topics should be considered.
These topics could be condensed as presented in Figure 1.
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Among the ways to reduce vibration problems in
helicopters three main ways to tackle the problem can be
considered: design of structural and aeroelastic optimised
blades; design of passive devices to be added to rotors and
blades; and design of active control devices acting on the
blades and/or structure. Figure 2 shows this in a succinct
form.

Mathematical Models
of Helicopter Blades

Aoroetastic
instabliities

FIGURE 1 - Topics related to the mathematical modelling
of helicopter blades

Aeroelastic
Optimlzation
Passive Control

Vibration Absaortion
Vibration Isolation

Hellcopters
Vibrations
Alleviation

Active Control
RotoriFuselage
Models

FIGURE 2 - Helicopter vibrations alleviation

The first one tries to eliminate or decrease the
helicopter vibratory response through an accurate
structural  design, e.g., using structural design
optimisation techniques involving aerodynamic and
structural studies together (Reichert ©; Loewy @). The
second one is done by installing devices (dynamic
absorbers) in the rotor or fuselage in order to absorb the
vibrations, or isolate the vibratory sources (Reichert o.
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Loewy @). The third one uses techniques from automatic
control systems based on externally powered devices.
These devices strategically placed on the vibrating
structure produce motions or vibrations opposite to those
one wants to eliminate, cancelling them. Some of these
strategies are described by Kretz and Larché ®  and
Friedmann ® where their application to helicopters is
shown. This last is the one to be considered in this work.

When considering active control techniques two

main approaches can be addressed. One is that is referred
as classic linear control theory using transfer functions
(frequency domain) and the other is the modern one which
uses the system represented in state space form (time
domain). From these active control systems techniques
applied to helicopter vibration suppression, the state space
based modern control theory has been intensively used
nowadays. Two applications of modern control theory for
helicopter vibration reduction have been studied. The first
one considers the rotor-fuselage coupling model as
showed in Straub ©, Takahashi and Friedmann ©7. The
second, showed in Jonhson ®, Robinson and Friedmann
© and Nguyen and Chopra “*!®_ considers only the rotor.
In this second one, the control is applied by exciting the
blade with higher harmonics of the blade rotational speed,
called, Higher Harmonic Control - HHC.
, However, another kind of state space feedback
control approach has been studied for applications in
structures. This is the eigenstructure assignment. Using
the state-space representation, the control is obtained by
assigning a desired eigenstructure to a certain closed-loop
system by assessment of the feedback gain matrices. In
aeronautics this approach is applied for stability
augmentation and autopilots as showed by Stevens and
Lewis ®®. For helicopter vibration suppression this
approach can be seen in Straub and Warmbrodt ** who
used state feedback.

State feedback is not always an easy task to
implement and some times can also be very expensive. So,
as an alternative to state feedback, the output feedback
eigenstructure assignment technique for helicopter blade
vibration control is studied here. For study purposes the
blade was considered as a rotating cantilever beam
undergoing the three-dimensional bending-torsion
coupling motions. The finite element method was used to
compose the blade model dynamic equations, which had
their order reduced by the partial fractions expansion
method. Once having the blade reduced model, the output
feedback gain matrix was calculated and applied to the
complete (non-reduced) blade model. Then the resulting
open and closed-loop systems were simulated and their
simulated responses analysed.

MATHEMATICAL MODELLING

The blade studied here is modelled as a rotating
cantilever beam with length R, undergoing the coupling

motions of flapping, lead-lagging, axial stretching and
torsion as in Houlbolt & Brooks ¥, Hodges & Dowell ¢,
and Marques . A pre-twist angle 6; is adopted in the
model, considered null in the blade root and varying
linearly along the span. It is also supposed that elastic and
mass axes are non-coincidents.

In order to develop the model equations, different
co-ordinate systems have to be considered. The main co-
ordinate systems of the blade model are shown in Figures
3 and 4. The first one shows the main co-ordinate system
x, y and z, that is fixed in the blade root with its origin in
the intersection of blade root cross-section and elastic axis.
When the blade is not deformed the x axis is exactly
coincident with the elastic axis. Figure 3 also shows the
deformed blade and elastic displacement u, v and w, in the
x, y and z directions, respectively. Figure 4 shows an
arbitrary blade cross-section and its local co-ordinate
system 1} and . The torsional deflection ¢, due to the
blade deformation can also be seen.

elastic axis

FIGURE 3 - Blade co-ordinate systems and elastic
displacements (a) before and (b) after deflection

To obtain the dynamic equations the formulation
for strain and kinetic energy are used as well as steady
aerodynamic approach with some simplifications.
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FIGURE 4 - Cross-sectional co-ordinate system (a) before
and (b) after deflection.
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Strain energy of a rotating beam

Supposing a rotating beam undergoing axial
stress, shear in the lead-lagging plane and in the flapping
plane, the strain energy is given by:

R
V:%I{EM”+ELQ”«BQ+W%MQY+
0 ,

+EI, (-v”sin 0, +w'" cos 9,)2 + e))

+GJ ¢ + Fy™ + Fw} dx

where EA, EIy, El, and GJ are the axial, lead-lagging,
flapping and torsional stiffness, respectively, u, v, w, ¢
the first order partial derivatives of u, v, w and ¢ with
relation to x and v, w" the second order ones. The term
F_ is the centrifugal effect and is a function of the mass m
and the blade rotational speed Q:

R

F =_"Q2mxdx @

[+
X

Kinetic energy of a rotating beam

To obtain the kinetic energy expression, the
approach presented by Magari et al " is used here and is:

T=~;—§{_g(p dny dg)(%o%)}dx )

where o is the density and the other variables are
according to the sketch of Figure 5 and 6.

The velocity of an arbitrary point in the blade
cross-sections is given by:

i’—:——&'JxF+F 4
7 C)

where:

A% 7
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FIGURE 5 - Position of an arbitrary point P of the
beam in a cross-section

The co-ordinates (x oY pZ,) of an arbitrary point in
the deformed blade cross-section are the same as shown in
references ¥ and 49,

The kinetic energy is obtained by substituting
equation (4) into equation (3) and calculating the double
integrals for the blade cross-section areas. Since this
expression is too long it will not be presented in this

paper.

The Aerodynamic loading on a helicopter blade

The steady aerodynamic approach was adopted to
yield the expressions of lift (L), drag (D) and aerodynamic
moment (/) in the hover condition. Some simplifications
were adopted. The first one is neglecting the induced
velocity, which yields a free air flow. velocity parallel to
the y axis. The small displacement consideration results in
the assumption that the blade cross-section remains
parallel to the yz plane. There is no coincidence between
mass and elastic axes, but the aerodynamic centre is taken
at the same point of the elastic axis and cross-section
intersection. The profile NACA 0015 was assumed,
therefore, the aerodynamic and the pressure centre of the
blade cross-section are the same.

The helicopter blade is divided in elements of
length dx, as in Figure 6, and then the corresponding
element loads dL (lift), dD (drag), and dM (moment) were
calculated.

Considering that the blade elastic displacements
in the free air flow and supposing an operational region of
the blade angle of attack as shown in Figure 7, a matricial
expression representing the aerodynamic loading, results
as follows in equation (6).
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FIGURE 6 - Top view of a helicopter blade showing the
positioning of an element dx

elastic axis

point A = aercdynamic center

v ] y

FIGURE 7 - Schematic representation of the helicopter
blade cross section under deflection
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where a and b are the proportionality factors between lift
and drag coefficients due to angle of attack, respectively
(@as Ci=a xaand Cp= b x a ), e is the offset between
elastic and mass axis; p,;,. is the air mass density; c is the
blade cross-section chord; 6y is the commanded pitch
angle; @, is the nominal value of pitch angle in the
operational region (10° in this work).

Finite element method applied to the beam

The finite element method is used to discretize
the beam and is done in terms of beam elements, with two
nodes, one at each end, as shown in Figure 8.

FIGURE 8 - Dicretization of the helicopter blade in finite
elements

Each node has six degrees of freedom:
displacements in the x, y and z directions, rotation in the
Xy, xz planes and in the cross-section plane. The nodal
displacements (generalised co-ordinates) form the q vector
and are related with blade displacements through the
following equations:

u = H(x)u, +H,(x)u,

v= By, + H O+ o, + B,
w = H(x)w, + H,(x)w| + H,(x)w, + H/(x)w,

¢ = H,(x)¢, + H,(x)9,

where H l(x) through H G(x) are the shape functions given
by third degree Hermite polynomials, which are the same
as in Magari et al ” and Sivaneri & Chopra *®

Now, the matrices M, G, and K, of each finite
element can be obtained. Each coefficient my;, gij and k,-j,
for ij = 1,2,...n, is obtained by substituting equation (7) in
the expressions of the strain and kinetic energy. However,
these coefficients are not linear in q, the linearization
occurs adopting the hypothesis of small motions about the
equilibrium point (Meirovitch @), what yields the
expressions of the coefficients as follows:

o T
04,84,
2
gg=,&,—T __.52!._ ‘ ®)
94;94;) _, 94:94;|
gV | __IT
Y 0q,0q; w0 aq,9q; 40

The same procedure is done in order to obtain the
loading vector Q. By substituting equation (7) in equation
(6), non-linear loading expressions are obtained and
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linearized next. This loading vector Q is composed by two
parts. A first one depends only of system inputs and a
second -one depends only of system generalised co-
ordinates.

The system matrices are formed 9 by
superposing each M,, G, and K, respectively, and
considering the system constraints.

The damping effect was put into the model by
using the Rayleigh approach described in Clough and
Penzien ©”. The damping matrix C, is given by
Cy=agM+a; K, where ap and aj are arbitrary
proportionality factors. In this work ag = 3.4843 and
aj = 0.0006, what yields a damping factor of & = 0.05.

The mathematical model obtained results in the
following matricial equation of motion:

M{+(G+C,)q+Kq=0Q(8,,q,q) ©)

State-space representation

Thinking about application of control techniques,
it is convenient to transform the equation (9) into state-
space representation.

Taking the state vector x(t)=[q’ (dg/d)" T,
and pre-multiplying the equation (9) by M, it follows
that %

x(t)= Ax(t)+ BQ (10)
where A is the state matrix and B is the input matrix.

The loading vector Q, when represented in state-
space form can be written as Q, x(t) + Q, u(t), where u(t)
is the control input vector.

Taking each part of the loading vector and
substituting them in equation (10), it results:

x(t) = A x(t)+ B, u(t)
y(®) =Cx(t)

where A;=A4 + B Qy, Bi= B Q,, y(t) is the output vector
and C is the output matrix.

This can be represented in terms of block diagram
as shown in Figure 8.

an

ww B,

)

Ayl

FIGURE 8 - Block diagram corresponding to the complete
dynamic equations of the helicopter rotor blade

BEAM MODEL REDUCTION

The high order of the original blade model makes
it difficult to work with and some high frequencies that
appear do not have great importance since the energy
involved is small. So in order to have a better perception
of what is happening, it is necessary to use a model
reduction procedure. The technique adopted here is the
same as that described by “?. It uses the original system
represented in the form of a transfer function matrix
written as a partial fraction expansion:

2 Ch,f. B
H(s)=S" — il 21
(s) ; —

12)
Lj

where the hy /> f 1> are the right and left eigenvectors of
matrix A respectively, and the A j are the corresponding
eigenvalues.

Selecting then a set of r eigenvalues, which will
remain in the equation (12), and applying the appropriate
transformation 2, the result is the reduced orthonormal
eigenvectors U and V, which are applied in the equation
(11) by x(t) = V x(t). Then, the reduced order model
obtained is:

X, =4, x,O)+ B, ut)

13)
y ) =C,x,(t)+ D, u(t)
where, A, =V A, U, B,=VB,;, C,=CUand D,is
given by those eigenvalues of A, that were neglected from
the system. This model reduction equation above can be
represented by the following Figure 9.

FIGURE 9 - Block diagram corresponding to the reduced
dynamic equations of the helicopter rotor blade

CONTROL SYSTEM DESIGN

The control strategy that was idealised was that
for the case of a typical blade pitch control linkage. At a
first moment an actuator that responds very fast is placed
at the pitch control rod and its action on the blade pitch
depends on the measure of displacements or velocities got
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from some sensors placed along key points on the blade
span. Therefore, the idea is to alleviate vibrations on the
blade through changes of its pitch angle. A schematic
view of the positioning of actuators and sensors on the
helicopter blade can be seen in Figure 10.

FIGURE 10 - Sketch of a helicopter blade showing the
positioning of actuator and sensors for vibration alleviation

The eigenstructure assignment technique by
output feedback is applied to yield a gain matrix R, that
leads to the control system described above.

Due to the size of the original system given by the
equation (11), the control law design will be developed by
using the reduced model equations.

For output feedback and for the case of a
regulator, the control inputs are:

u(t)=-R y(t) (14)

Substituting the equation (14) in the equation
(13) and working algebraically, one reaches the following
closed-loop equation:

% (t)= [A, -B,(I +RD,)“RC,]x,(t) 1%

For assessment of the matrix R, a set of
eigenvalues and eigenvectors must be assigned in order to
yield the desired time response characteristics of the
closed-loop system.

Therefore, for each eigenvalue and its respective
eigenvector, the null space of [ (4, - kjd I B, ] (for
7L2,..,n) must be taken, which gives another vector,
where after its decomposition, results in:

[af @ .. qi]=

i (16)
=—(I+RD,)" RC, [v;‘ v)

d
ve]

where p is the number of assigned eigenvalues and v* and
q° result from the null space of [ (4, - kj" I B,]

From equation (16), one obtains:

0]+

R=1{q! q
an

+C, [v;' v;

a;][o.[af of

v"p] ]+

where [ ]+ represents the Moore-Penrose pseudo-inverse,
since the number of assigned eigenvalues may be different
of the number of measured outputs. The closed loop
resulting system can be represented in terms of block
diagram as it is shown in Figure 11.

FIGURE 11 - Block diagram of the closed loop control
system of the helicopter rotor blade

RESULTS

The softwares Mathematica and MATLAB were
used to obtain the blade model and to assess the gain
matrix R for the controller. The numerical values are the
same as in "®. Ten finite elements for the blade model
were used giving a free-free system with 66 degrees of
freedom (DOFs) which correspond to I1 nodes. With
some constraints, that the blade can be considered
subjected they turn 51 DOFs. These constraints are: there
are no DOFs in the axial (longitudinal) direction and on
node 1 only the torsional motion in the x direction of the
blade is possible To reduce this model is a desired
alternative in order to avoid a greater computational
effort. The reduced model was applied considering the
first 5 natural frequencies of the blade model with the
effect of aerodynamic loading (matrix A4,). It leads to a.
reduced model with dimension equal to 10. The choice of
the frequencies results from the fact that-the vibratory
behaviour of the blade is -more damaging at low
frequencies. : B

It is necessary to verify whether the reduced
model obtained can represent efficiently the original one.
This verification can be done by several ways. One of
them is to confront the output from each one for the same
input. Figure 12 shows an output of the original model
plotted against the corresponding one of the reduced
model. The plot tends to stay near a line with 45° of slope.
This shows the agreement between the two models. The
simulation of the original and reduced models was done
for a step input with all state variables considered as
output measures, which were compared one to one,
showing agreement. '
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FIGURE 12 - Reduced and original models comparison

The first step to apply the control strategy is to
choose where to put the sensors and the control inputs.
The characteristics of the closed-loop system depend
directly on this choice. As described previously the control
input was chosen to be the blade pitch angle in the root.
The sensors were placed on the nodes of the blade finite
element model, measuring the flapping and lead-lagging
velocities on nodes 5, 7, 9 an 11 (blade tip), the torsional
gyro ratio on node 7 and the torsional gyro on node 11.

Some criteria were adopted for placing the
sensors and for choosing the measured variables. The
choice of those nodes was based on the fact that at the
blade tip, the displacements as well as the velocities are
more significant quantities. An increased blade damping
is desired to the resulting closed-loop system, and this is
achieved feeding back velocities. The measuring of
torsional variables such as, gyro ratio and gyro on blade
tip, can warrant a quick stabilisation on torsional
variables, what is important in order to avoid problems
such as blade stall or even flutter.

Another step to be taken toward the closed-loop
system assessment is to assign the eigenstructure, namely,
eigenvalues and eigenvectors. The desired time response,
frequencies and damping factors for the closed-loop
system were the main factors for the eigenvalues choice.
Table 1 shows the assigned and the achieved eigenvalues
for the closed-loop system. Since the eigenstructure
assignment technique was applied using the blade reduced
model, only 10 eigenvalues are presented in Table 1. The
achieved ones are those from the non-reduced blade
model. Only the eigenvalues related to the assigned ones
in the reduced model are shown. The other eigenvalues,
which are omitted form Table 1, were too little affected by
feedback. For the eigenvectors, since there is only one
control input, it is impossible to modify them. Next, the
time simulations of the blade when in closed loop and
open-loop configuration are presented in Figures 13 to 183.

An impulse input of 1.5° of blade pitch angle at
the root, was considered with the objective of observing
the blade transient response. The variables of simulation
that were measured are those at the blade tip.

JASSIGNED EINGENVALUES [ACHIEVED EIGENVALUES
-3.4047+50.798 i -3.4061+50.790 i
S1241200 -12.001+119.94 i
-173.62 -161.10 _
-200 -15.3814205.37 i
-15.3234205.48 i -233.08
-31.024+311.71 i -30.915+311.75 i

TABLE 1 - Assigned and achieved eigenvalues
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FIGURE 16 - Blade tip velocity: dv/dt

In the simulated cases, the controller showed
efficiency with respect to blade vibration attenuation.
However, for some variables, the time response did not
present an adequate damping, but shows a good decrease
on their response values.
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FIGURE 17 - Blade tip velocity: dw/dt
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FIGURE 18 - Blade tip angular velocity: dg/dt

Due to the size of the blade model, the number of
sensors used for feedback and the number of control
inputs, the range of assignable eigenvalues becomes
restricted and some modes can not be modified as it would
be desirable.
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CONCLUSIONS

A study about the vibration control on a
helicopter blade using the eigenstructure assignment by
output feedback was presented. Through the results
presented it was verified that the reduced order method
adopted led to a suitable blade reduced model. As a form
of reducing the vibration on a helicopter blade, the
eigenstructure assignment by output feedback shows to be
efficient, and a promising alternative for further studies. It
was also observed through simulation that for some
variables the response did not achieve the desired
characteristics, what is due to the restricted range of
assignable eigenvalues. In spite of this, ome can
understand from this work that the application of
eigenstructure assignment by output feedback for vibration
control in a helicopter blade is important and must be
studied more deeply.
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