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Abstract

The aim of the paper is to present alternative well-
conditioned procedures arising in robust design of flight
control systemns with respect to unstructured modeling
uncertainties and in other applications in which the at-
tenuation of exogenous disturbances is required.These
techniques are based on transforming the design prob-
lems considered in one and two-block Nehari problems
which optimal solutions allow to improve the robust-
ness and disturbance attenuation performances.Unlike
the suboptimal H* methods which are frequently used
in such applications,the optimal solutions given in this
paper based on explicit formulae deduced via singular
perturbations theory,are well conditioned near the opti-
mum.Study cases referring to weighted robustness per-
formances with respect to additive,multiplicative and
stable-factor uncertainties and the design of a stability
augmentation system(SAS) for the longitudinal dynam-
ics of an aircraft by solving a model-matching problem
illustrate the described optimal design procedures.

1 Introduction

There are many applications in which the design
of a flight control system leads to H™ problems; we
shall recall here some typical cases like the robust de-
sign with respect to different classes of unstructured
modeling uncertainties(®):(11):(13) the reduction of the
sensitivity together with its complement (the mixed-
sensitivity problem)(!"):(!®) and model-matching prob-
lems in which increased maneuverability of the air-
craft is required®V).In most applications such prob-
lems are solved using the H-techniques based on
the results of Doyle and al.(!) and the subsequent
developments(®:(29) Given a standard system T with
two inputs u;,us and two outputs y1,y2,and v > 0,these
methods give necessary and sufficient conditions as well
as explicit formulae to determine a controller K {or a
family of parameterized controllers) such that the re-
sulting system Ty, y, ,obtained by coupling K to T with
ugz = Ky, ,is stable and has the H* norm less than 7.

In order to improve the performances of the resulting

system one tends to reduce v until one of the necessary
Copyright © 1996 by the AIAA and ICAS. All rights reserved.

and sufficient conditions fails;but when approaching the
minimum of v,the explicit formulae invoked above of-
ten leads to ill-conditioned computations(!?) therefore
in such applications only a suboptimal level of attenu-
ation may be obtained.

The aim of the present paper is to describe well-
conditioned procedures for some of the typical cases
enumerated at the beginning of this section.These ap-
plications may be solved by transforming them in one
and two-block Nehari problems for which we used the
explicit formulae to the optimal solutions derived in
Ref.®® and () respectively,using the theory of singular
perturbations. ‘

The paper is organized as follows:the next section
contains the statement of the optimal weighted robust-
ness problem with respect  to additive,multiplicative
and stable-factor modeling uncertainties and the pro-
cedure to transform them in one-block Nehari prob-
lems.We also consider in Section 2 a model matching
problem for the short period dynamics of an aircraft
and we reduce it to a two-block Nehari problem.In Sec-
tion 3 we present the well-conditioned procedures to
compute the optimal solutions to the one and two-block
Nehari problems,respectively. ‘

Numerical cases illustrating the proposed optimal
procedures are described in Section 4 in which we
considered the weighted robustness problem with re-
spect to additive,multiplicative uncertainties and with
respect to normalized coprime factorization for the lon-
gitudinal dynamics of an aircraft.We also present in
Section 4 the numerical results corresponding to the
model-matching problem in which we determine a lon-
gitudinal stability augmentation system (SAS) in order
to improve the maneuverability and the robustness per-
formances together with the control limitation.

2 Optimal flight control applications;
reduction to Nehari-type problems

2.1 Preliminaries

We shall consider the case when the aircraft dynam-
ics is described by using a linearized model correspond-
ing to a certain nominal flight condition within the
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flight envelope.Let denote by G(s) the matrix func-
tion of this nominal model and let (4,B,C,D) a
minimal state-space realization of it. Then,according to
Ref.16,a double coprime factorization G = NM~! =
M~-'N with MV - NU = LVM - UN = I
M,N,U,V,M,N,U,V € RH® (RH® denoting the set
of all proper stable transfer matrices) is given by:

M(s) := (A + BF, B, F,I)

M(s):=(A+ HC,H,C,I)
N(s) .= (A+ BF,B,C + DF, D)

N(s):=(A+ HC,~(B+ HD),~C,D) 1)
U(s):=(A+ BF,—H,F,0)
U(s) :== (A+ HC, H,—F,0)

V(s):=(A+BF,—H,C+ DF,I)
V(s):=(A+ HC,—(B+ HD),F,I)

where F and H are any matrices of appropriate di-
mensions for which A + BF and A + HC are hur-
witz.Moreover,the set of all controllers K (s) stabilizing
G(s) has the following parameterization in terms of the
coprime factors above(24);

K=(U+MLYV +NLY' = (V+ LN)"Y (U + LM)

(2)
with respect to the stable system parameter L.

The following three subsections are devoted to the
optimal robust design of flight controllers with respect
to additive,multiplicative and coprime-factorization un-
certainties,respectively.

2.2 Weighted robustness with respect to
additive uncertainties

The robust design with respect to additive uncertain-
ties of a flight control system is considered in applica-
tions in which the aircraft dynamics is approximated
by a nominal model G plus an unknown bounded sta-
ble uncertainty(!3)(23) Therefore it consists in finding
a controller K which stabilizes all perturbed systems
G+ A where A € RH® and || A [|[o< v for vy > 0
as large as possible.From the Small Gain Theorem(?)
it follows that K is a solution to this problem if it sta-
bilizes G and || K(I — GK)™! Jloo< 77 1,therefore a
maximal robustness radius may be obtained by solv-
ing the optimal problem ming || K(I — GK)™! ||o
with K stabilizing.If we are interested in good robust-
ness properties over a specified range of frequencies
of the modeling uncertainties A then we shall con-
sider the optimal weighted robustness problem ming ||
WK(I — GK)™! ||oo where W denotes a square stable
weighting matrix,adequately chosen.Although the ro-
bustness problem usually appears in flight control ap-
plications together with other design specifications,this
problem itself is useful in practical situations when one
analyses the largest(in norm) admissible unmodelled

dynamics for which a stabilizing controller may be still
determined.Another important practical significance of
this problem consists in minimizing the influence of out-
put disturbances over controls for a given frequency
range of disturbances.

Assume that G has no poles on the extended jw-axis
and select W such that it has no transmission zeros on
this axis;then we may perform the inner-outer factoriza-
tions M = M; M, and WM = P; P, and the outer-inner
factorization M = M,M;.Using the coprime factoriza-
tion given in the previous subsection and the represen-
tation (2) for all stabilizing controllers,direct calcula~
tions give:

| WEI = GK) ! flo=l| EWUM, + Lalle  (3)

where * denotes the adjoint operator and Ly =
M.,L]C{O € RH®(for computational details  sce
also Re~f.(23)).When performing the decomposition
P!WUM, = P4 + P_ with P, antistable and P-
stable we obtain that || WK(I — GK)™! [lo= ||
Py + L, ||owhere Lq := La+ P_ € RH* ;therefore the
weighted robust design problem with respect to addi-
tive uncertainties leads to the optimal one-block Nehari
problem:

“min || P+ 4+ Lallo ; Py antistable (4)
L.eRH>

An alternative solution to this problem has been de-

duced in Ref.(®) via singular perturbations theory and

corresponding explicit formulae are given in Section

3.Then an optimal controller K may be obtained from
(2) with L = M;Y(L, —~ P-)M;' € RH™.

2.3 Weighted robustness with respect to
multiplicative uncertainties

An important objective in the design of a flight con-
trol system is to ensure good robustness properties
with respect to multiplicative uncertainties(13)(17),(18),
namely if G denotes the transfer matrix of the aircratt
dynamics at certain flight conditions then the flight con-
trol system K stabilizes (I + A)G for all stable A with
| A ||oo< 7.According to a well-known result(®| if K is
stabilizing for G and || GK(I — GK)™! |lco< 77! then
K is a solution to this problem; therefore the greatest
robustness radius with respect to multiplicative uncer-
tainties implies to solve the optimal problem ming |
GK(I — GK)~! ||owith K stabilizing G.For a speci-
fied range of frequencies of uncertain A the problem
may be restated as ming || WGK(I — GK)™! |jeowith
K stabilizing and W a square stable weighting ma-
trix.Even in the suboptimal case the unweighted ro-
bustness problem (W = I) with respect to multiplica-
tive perturbations leads to a singular H*® problem(with
Dis = 0)4:(22) Applications of the suboptimal singu-
lar case in flight control systems design may be found
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in Ref.() but there are many practical situations in
which this singularity may be avoided.We consider in
this paper the case in which the nominal aircraft dy-
namics G = N M~ satisfies the following conditions:G
has no poles on the extended jw-axis and WN admits
an inner-outer factorization Q;Q, (this is possible if W
is stable and W N is full column rank at all points on
the extended jw -axis).Under these assumptions which
are valid in many aircraft applications,using the param-
eterization (2) of all stabilizing controllers K and the
coprime factorizations from Section 2.1,one obtains:

| WGK(I = GK) ™ lloo=ll QUM + Em Il (5)
where M,,,M _are given by the outer-inner factoriza-
tion M = M,M; and Lm = QoLM, € RH™ 1t follows
that when performing the decomposition Q,UM; =
@+ + Q- with @, antistable and Q. stable,one ob-
tains || WGK(I — GK)™! |joo=|| @+ + Lm ||oc Where
Ly = Ly, + Q- € RH*® Hence,under the assumptions
mentioned above we reduced the weighted robustness
problem with respect to multiplicative uncertainties to
the one-block Nehari problem:

“ Q+ +I:m

min

. Q4+ antistable
LeRH=

(6)

lloo

The solution L,, to this problem allows to determine
the controller K ,optimally robust with respect to mul-
tiplicative perturbations,using (2) with L = Q7' (L, —
Q_)M;! € RH™.

Remark 1

In the particular case when the nominal system G
considered in the previous two subsections is stable then
obviously the robustness radius with respect to additive
and multiplicative perturbations is infinite since K = 0
stabilizes all G+ A and (I+A)G, A € RH* Therefore
in the numerical case described in Section 4 we shall
consider only unstable dynamics.

2.4 Optimal robustness with respect to
normalized left coprime factorization

There are many applications of flight control sys-
tems design in which the normalized left coprime fac-
torization is involved(6):(11)(13) This problem is impor-
tant not only for exclusive robustness reasons but
it is also strongly related to the loop-shaping de-
sign which is frequently used in the design of flight
control systems(®)(13). Given the normalized left co-
prime_factorization of a nominal _dynamics G =
M-'N ;M,N € RH®; M*M + N*N = I,the ro-
bustness problem with respect to this factorization
requires to determine a controller K which stabi-
lizes all perturbed systems (M + Ag)~Y(N + Ag)

where AM,AN € RH® and || Ay Af |l 7.If
(4,B,C, D) is a minimal realization of G then state-
space realizations of the factors M and N are given
by M(s) := (A + HC’ H R‘EC R™%) and N(s) :=
(A + HC,B+ HD,R™3C, D) respectively,where
= —(YC@ + BDT)R“1 R:=I+ DDT and X and
Y denote the stabilizing positive definite solutions to
the standard Riccati equations(13):

ATX + XA— XBS-'BTX +CTR™'C =0
AY +YAT —-YCTR-ICY + BS~'BT =

where A := A— BS™'DTC and § := I+ DDT It is
also proved in Ref.(!3) that an optimal controller with
respect to normalized left coprime factorization is given
by K, = PQ~! with P,Q € RH*™ satxsfymg the mini-
mization condition:

a5 1+ G,

and this minimum equals o1(1 + o )‘2 where o? de-
notes the largest eigenvalue of XY Since M* and N*
are antistable,(7) defines a one-block Nehari problem

(7)

which solution [ g allows to determine an optimal

robust controller K, = PQ~!with respect to left co-
prime factorization.Explicit formulae for a realization of
K, are given in Ref.(%) ;these formulae are based on bal-
anced realizations in the sense of Jonckheere-Silverman
for which X and Y are diagonal and equal.

2.5 Optimal design of a SAS using
a model matching approach

Consider the short-period motion of an aircraft de-
scribed by the second order system:

a 1o Zs,
HEFAHEFI
with the states a-the angle of attack, ¢ -the pitch
rate; the control §, —elevator deflection, Z,, My, M, and
Zs,, M;, denoting the longitudinal stability and control
derivatives, respectively.

The handling qualities of the aircraft require to de-
sign a controller (the stability augmentation system-
SAS), such that the closed loop system has the poles
in a prescribed domain from C~ (Ref.(15)). We shall
choose an ”ideal model ” which is in fact a second order
system satisfying the pole placement requirements:

Zo 1
M, M,

w2

m
’ 9
§2 + 2 pwms + w2, (9)

H,(s) =

The main objectives of our design is to determine a
stabilizing controller K such that:
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- the difference between the angle of attack in the
short period and the output of the ideal model is
strongly attenuated over a specified range of frequencies
for ayrey ;

- the control is limited in order to avoid the actuator
saturation;

- the influence of sensor noise over the tracking error
and over control is minimized.

Taking into account these objectives, the following
model-matching configuration has been considered:

Qref M +\e W Ze
Zy B
Vv
Ny nq
A I
a |+ +
_% rK LR G4 ~ +C‘)

Figure 1: The model-matching configuration

where G denotes the transfer function of the short
period, M is the ideal model and V and W are weighting
functions penalizing the control and the tracking error,
respectively.

In the configuration above a certain redundancy of
the measured outputs may be remarked but the nu-
merical results described in Section 4 will show how
this redundancy can be removed.

The structure in Figure 1 is equivalent with the
v -attenuation problem illustrated in Figure 2 where
ui = [ ores na g | jus =6y = [ 2 oz T
Yo = [ Qref —@— Ny a+ng g+n ]T for which
the standard system will be determined in the next sec-
tion.

When denoting by T, ., (s) the transfer matrix from
u; to y1 in Figure 2, it follows that the goal of our
design is to determine a stabilizing controller K such
that ||Ty,u, ||, is minimal.

We shall describe in the following a procedure to re-
duce the model-matching problem to a two-block Ne-
hari one in the usual assumption, available for most of
aircrafts, that the short period dynamics is stable.

¥

Let’ (Ag’Bgan)a(AmaBm,Cm)y(AwaBw,cwwa)
denote minimal realizations of G, M and W, respec-
tively. To avoid the increase of the order of the con-
troller we chose a constant weight V.

Uy Yi

Uz Y2

Figure 2: The equivalent y-attenuation problem

From Figures 1 and 2 we obtain the following real-
ization of the standard system T

z= Az + Blul + BzU2
yr = Ciz + Dygus
y2 = Caz + Dyyuy

(10)

T .
where z := [ zT I 2T 1", 2, ,@m 2w denoting

the state vectors of G , M and W respectively, and:

A, 0 0
—B,Cy ByCpm Aw
0 0 0 B,
Bi={B, 0 0}|;By= 0 t;
0 0 0 0
[ -DuC, DyCm Cul - _[0].
Cl'—[ 0 0 0 ]1D12“[V]y
1 =1 0
Cz:[[_lc 0] 8 8 8];1)21: 0 1 0
g 0 0 1

i)
the zero-matrices having appropriate dimensions.Since
A, was assumed stable and weighting function W (s)
is chosen stable one can directly verify that the matri-
ces in (11) satisfy the assumptions to a DF(disturbance
feedforward) problem(that is:(i) D3 is nonsingular; (ii)
A~ By D3]y is hurwita(iii) [ 4 _Cf‘”f 5122 ] is full
column rank for all w €RU{£0oc});this problem may be
transformed in an optimal two-block Nehari problem.
Although the method to reduce a DF problem to a two-
block Nehari one is known(see for example Ref.(12)) we
briefly describe for completeness in Appendix the steps
of this procedure. In order to simplify the calculations
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we considered the case when Dy = I and Dj» is inner;
let remark that the more general situation for a DF
problem with Dy; nonsingular, may be transformed in
a problem with Dy; = I by simply scaling the measured
output y, by D;'.On the other hand the restriction
D2 inner may be accomplished even if Dy, is full col-
umn rank by using for example the technique given in
Ref.(!%) based on the singular value decomposition.We
conclude that the design of the SAS using the matching-
model approach described above may be transformed in
an optimal two-block Nehari problem.

3 Well-conditioned computation
of the optimal solutions

We briefly present in this section two alternative pro-
cedures to compute optimal solutions to one and two-
block Nehari problems which corresponding explicit for-

mulae were deduced via singular perturbations theory
in Ref.(® and (5,

3.1 The one-block Nehari problem case

Consider the one-block Nehari problem for a given
antistable system G,consisting in finding a stable sys-
tem G, such that ||G — G| is minimal.

An optimal solution to this problem,derived in Ref.(5)
can be obtained by performing the following procedure:

1°*Step  Compute a balanced realization
(A,B,C,D) of G with respect to the corresponding
Gramians:

AP+ PAT - BBT =0; QA+ ATQ-CTC=0

such that P = Q = diag(p1 11, ..., ppl,) where
H#1 >,...,> pp and I are np X ng unit matrices,k =
1,...,p. Such a realization can be obtamed using the
algorithm given by Glover(®);

2"4Step Let denote

M22 = diag([lg_[z, ...,ﬂpIp)
W22 = diag {;féj-};y}

i=2,....p
and perform the partitions:

| Ann Ap By
A= ; B=1 ;
[ A Ap |7 By |’
where A;; has the dimensions n; x ny;
3rdStep If B; BT is nonsingular then an opti-

mal solution to the one-block Nehari problem is given
by Go(s) := (A, Bo, Co, D,) with: :

C=[C, CY

= (AT, + W40 3,575, 87) 5y 5]
W22B232

—(AT, + Wa2 B, BT )(B, BT)~! + Wa,B,
101(BlBT) 1BlﬂT -_ CgMzz

—p1Cy (B BT~ 1191 +D

— Ago—

A
B
Co
D

i H !

(12)

As it is shown in Ref.(5) in the case when BlB is sin-
gular,the method can be also applied by performing an
orthogonal transformation U such that UBBTUT =

B,BT o
[ 0 0
mulae to (12) will be obtained;if B; = 0 the optimal
solution to the one-block Nehari problem may be de-
termined using the formulae:

] with B; BT nonsingular and similar for-

A, = - All A21 ]
? A’{'z Ag'z + szBng'
0
B, = [ Wa2 By
Co=—[ mC1 Ca2Mp, |;D,=D

therefore,if A has the dimension n x n then the opti-
mal solution to the one-block Nehari problem has the
dimension n — rank(B, BT ).

3.2 The two-block Nehari problem case

We shall describe in the present section a procedure
detailed in Ref.(3) to solve the optimal two-block Nehari
problem:

G1 (S) - G(s)
Ga(s)

Usually in applications the suboptimal case ¥ > ¥

is solved by using explicit formulae depending on v. In
Ref.(® the following solution to the suboptimal Nehari

= 70;G1,Gz (S R.Hio

o

in
GERH>

problem corresponding to the realization (G}'; ] (s) :=
(A,B, [ g; ] , [ 11;; ])is ‘deduced:
G(s) = (- [A+WH)CTC]T,-QB + CT Dy,
C:iW(7), Dr)
(13)

where W(y) := R(y) [721 - QR(7)) “! Q and R(y) de-
noting the positive semi-definite solution to the Lya-
punov equation:

ATQ+QA-ClCi-C7C=0 (14)

and the positive semidefinite stabilizing solution. to-the
Riccati equation:

AR+ RAT - (RCT - BDY) (v*1 - D, DY)

DzBT) - BBT =0

“1(CaR-

(15)
respectively.
On the other hand,a result in Ref.(3) states that the
optimal Nehari distance vo, equals the umque solution
to the transcendental equatxon

7 = p(QR(7)) =0 (16)
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(with p denoting the spectral radius ), if the equation
has a solution, and otherwise it equals ||Ga]i,. It fol-
lows from this remark that in applications in which 7q
equals the solution of (16), when applying the subopti-
mal formulae above with ¥ close to 7g, ill-conditioned
computations appear since the matrix y2I — QR(v) in
expression for W(¥) tends to be singular. In order to
avoid this ill conditioning in Ref.(3) a solution for the
optimal problem has been determined via singular per-
turbations method. We present in the following the
algorithm to compute this solution.

Stagel Determine by using a v-procedure the unique
solution (if exists) of equation (16). Since the depen-
dence v — p(QR(7y)) is monotonically decreasing (3),
the solution of (16) may be easily determined with an
imposed level of tolerance, using a v-procedure start-
ing with ¥ = {|Gal|..- If equation (16) has no solution
then we shall use the suboptimal case formula (13) with
Yo = ||Galls since in this case no ill conditioned com-
putations appear.

Remark 2

The following stages of the algorithm will be performed
only in the case when v, equals the solution of (16).

Gy
Gy

Stage 2 Determine a balanced realization of [

respect to @ and R(7o) that is:

Qo) = R('YO) = [ rl(‘)(l;))Il ‘Rzz(z'ro)

|
where Raa(7v0) = diag(ra(y0)la,....,7p(70)1p) ; I are
ng X ny unit matrices , k = 2,...,p and r1(y) > ... >
rp(70) > 0. Such a balanced realization may be ob-
tained using a similar procedure with the one given
by Glover(®), referring to the balancing with respect to

gl ,[Dl D this

Gramians. Denote by Z,ﬁ,
2 D;

balanced realization.

Stage 3 Perform the following partitions con-
formably with (17):
Ay ] )

- A ] 3
A= , B =
[ A1 Az ] ' [
Gl { Cu Ci2
C, Can Co
Stage 4 Determine the optimal solution Gyo(s) :=

(Ao, By, Co, Do) to the two-block Nehari problem,
where:

B
B,

Ao = CT,C1 (CECu) ™" (A%, + CLC1aWaa(10)] -
AT, — C%C'mwzz(‘rlo)
By = CLC11 (CTCu) ™ (voB1 — ChLDs) —

Ry5(v0)B2 + C;":zlzz
Co = —Cn (Cclrlcll)_ [Ag‘l + CﬂCI2W22(VO)] +
Ci1aWay (7’0)

Do = =Cy1 (CHiCi1) ™" (70B1 — C,D2) + Dy (18)
18

with Waa(v0) 1= Raa(v0)[131 — Ria(0)] ™.

STOP

Remark 3

In the case when C};Cy; is singular the method above
may be also used by performing to C;Ci; an orthogo-
nal transformation which gives in (13) for v> = y2 + € a
singularly perturbed system which fast component with
the dimension equal to rank(C7,C11) may be reduced
according to the theory of singular perturbations(®).

In the singular case when C}; = 0 no ill conditioning
will appear in (13).

We conclude that if n denotes the order of G then
the optimal solution to the Nehari problem determined
above has the dimension n — rank(CHCry) .

4 Numerical results

We present in this section some numerical results of
the problems formulated in Section 2,results obtained
using the well-conditioned formulae given in Section
3.All calculations have been performed using the MAT-
LAB package.

4.1 The robustness radii for the longitudinal
dynamics of an aircraft

We considered the nominal model G of an four-
engined,executive jet aircraft,linearized at the equilib-
rium conditions Vy = 236m/sec; hg = 12200m;00 =
4.2 deg,having the state-space realization(!%):

-9.81

[ —2.1le—6 —4.30e—6 0
A— | —350e—2 —665e—1 2.36e+2 0
T | -140e-2 -243¢—2 ~742% -1 0
| o 0o 1 0
[ 7.74e—1 “
_ | —1.06e+1
B= -6.77
i 0
Cc=|594e-2 -500e-1 502 0
- 0 0 1 0
_[353e+1
p=| %!
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where the state components are respectively the for-
ward velocity [m/sec],the heave velocity[m/sec], the
pitch rate[deg/sec] and the attitude{deg];the control in-
put is the elevator deflection[deg] and the measured
outputs are the normal acceleration[m/sec?] and the
pitch rate.The open-loop eigenvalues are: —0.5963 +
2.43314;0.1262; —0145 the third eigenvalue correspond-
ing to an unstable phugoid mode.

a.The additive uncertainties case In order to ob-
tain good robustness properties beyond 10rad/sec
we considered - the weighting function W{s) =
aj’ifl—l.’I‘ransforming the robustness problem in a one-
block Nehari problem as it is shown in Section 2,the
optimal solution (12) gives after reducing the uncon-
trollable and unobservable parts a fourth-order stabi-
lizing controller which ensures the optimal robustness
radius with respect to additive uncertainties y;! =
38.3142.Denoting by Mmaz the largest absolute value
of all elements of matrices in the computed realization
of this controller we obtained Mmaz= 43.0200.The di-
agram of the maximum singular value of K(I - GK)™!
is plotted in Figure 3,showing a strong attenuation for
w > 10rad/ sec conformably to the design objectives.

107"

: 10-3[

100

Fig.3 &(K(I — GK)~!) V’s frequency[rad/sec]

b.The multiplicative uncertainties case We consid-
ered for this numerical case the weighting function
Wi(s) = ﬂ%}—ﬁb and using the procedure described
in Subsection 2.3,we obtained with formulae (12) ,(1)
and (2) a stabilizing seventh-order controller which en-
sure the optimal robustness radius with respect to mul-
tiplicative uncertainties v;! = 0.8882.The parameter
Mmaz defined above equals in this case 233.4224.In
Figure 4 the diagram of the largest singular value of
GK(I — GK)™! is given,showing very good robustness
properties on the high frequency range.

10'

10°F —

107} \\

1021 \\

10°L = - :
10 10 10°

Fig4 &(GK(I — GK)™') V’s frequency[rad/sec]

¢. The left-coprime factorization case For the nom-
inal model considered we obtained,using formulae
(1),(7) and (12) a third-order controller for which the
maximal robustness radius with respect to left coprime
factorization is attained.This radius equals 0.7371 and
Mmaz= 3.9213.

4.2 Numerical results for the SAS design

For the problem formulated in Section 2.5 we con-
sider the F-8 aircraft at the nominal conditions: flight
at 20000 ft,speed 620ft/s and the equilibrium angle
of attack ag = 0.078rad. The short period dynam-
ics is given by (8) where(®): Z, = —0.84sec!,
M, = —48sec™?, M, = -—049sec™}, Z;, =
—0.11sec ~!,M;s, = —8.7sec ~2.According to MIL re-
quirements (%) we choose for the nominal flight condi-
tions above an ideal model (9) with w,, = 3rad/ sec and
&m = 0.7. Since the pilot commands ay.y are low fre-
quency references we selected the weighting function for
the tracking error W(s) = ;’i%%%. The weighting func-
tion on control is V = 1.With these numerical values
we transformed first the matching problem in a DF one
as it is shown in Appendix and then this problem was
reduced . to an optimal two-block Nehari problem.By
solving the optimal two-block Nehari problem we ob-
tained the stable controller K(s) := (A, Bk, Ck, Di)

with Ay = [Ax, Ak, Ak,) where:

[ —0.25 -2.14 5.88
0.01 -2.82 -2.24
0 3.26 -0.51
Ap = 0 0 3.86

0 0 0

0 0 0

0 o 0
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-

0.05

[ —11.45 0.17
-1.75 -0.96
2.54 1.58
Ap, =1 —541 -0.99 o1l
1.47 -2.63 ’
0 0.91 -
L 0 0 -
[ —1.04 2547 015
—0.54 2283.01
248 —1873.50
Ag, = | —2.89 —1393.50 02 .
-5.13 —894.81 “0 2 4 5 8
—-2.55 -103.40
2.95 —24.59
N - Fig.6 Control response[rad] to a,.p = 0.2rad
045 045 O
—6.63 -6.63 0 showing that controller ensures a good tracking error
.70 330 0 (about 1.5% from the reference value) together with an
B = 4.06 406 0 acceptable maximum value of the control.
084 084 0 . . e(s
~0.05 —0.05 0 We also plotted the magnitude diagram for ==
| O 0 0 | (Figure 7) and for E{% (Figure 8)
Ce=[0 000 0 0 337.15 ] 10"
Dp=[-094 —094 0] J
The numerical results above show that the control 107 ]
configuration in Figure 1 may be simplified by giving
up to the incidence and pitch rate feedback and consid- \
ering a single input to the controller, namely oz .1t is 1073 3 ]
obvious that in this case the noises no and n, will not Y '
affect the controlled cutputs z, and z,.
The tracking error e for ar.; = 0.2rad and the con-
trol é. responses are illustrated in Figure 5 and 6, re- 1074 .

spectively(the time axis is scaled in [sec]):

4

3t

Fig.5 Error response[rad] to a,.; = 0.2rad

x10°

10° 10° 10°

Fig.7 Error magnitude V’s frequency[rad/sec]

10°

107" .
10° 10° 10°

Fig.8 Control magnitude V’s frequency{rad/sec]
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showing that for low frequency commands (less than
3-10~%rad/ sec) under interest, good tracking error is Tyiuy = T+ T12LTn
obtained together with a limited control é..

Note that for the simplified configuration without where:
feedback,the robustness properties with respect to ad-
ditive and multiplicative uncertainties are very good

A+ ByFF  —B)F
since both K and G are stable and the resulting sys- T(s) == ([ +0 ? A+ IZ{CZ ] ;
tem (without the ideal model) reduces to GK. B
Let finally remark that during the numerical tests de- [ B, _; H ] JC1+ DioF = D1oF]
e i ks ston o condtiont compuations 0,02 (31 B850, + DiaF Do)
: P Tor(s) := (A+ HC», By + H,C3,I)

are used near the optimum.

Since A~ B,Cs is hurwitz (as an assumption for the

Appendix_ DF problem) it follows that Tj;! € RH*. By denoting
We shall describe in the following the transformation L = —LT3; we obtain:
of a DF problem to a two-block Nehari one in the case -
when Dj1 = I ,Dyj is inner,Dy; = 0; Dys = O(see also Tyiu, = T11 —T12L

Ref.(12)),
Let X,Y be the stabilizing solutions to the standard
Riccati equations:

Taking into account the choice of F and H we
get that T, is inner. Let Tj5 be a completion such
that [ Tio Tl‘lé ] is square and inner.A realization of
[ Ty, TH ] is then:

ATX + XA — (XBy + CTDy5) (BT X+ (A+ByF,[By, —X~'CTDL],Ci+ DioF,
AY +YAT - YCTC,Y + ByBY =0 [ D1z Db )

and perform the double coprime factorization
(A,B3,C2) = NM~' = M~ N with: where Dy is the orthonormal complement of Dja.

When writing:
Yy U M U}l _110
-N M N V 7101

Tyiur =T~ | Tia T | [ L]

where: 0
from the fact that [ Ti2 Tf‘é ] is square and inner it
M U follows that:
¥ V]o=wtsmris -n],
Lo v]) :
G|’ 0 I iW%uMm==“[ﬂz T | ﬂl—[ 0]“
with
Direct calculations show that a minimal realization
L o1* e
F =~ (BY X + DL,Cy) of [ iz T ] Ty is:
—(A + BZF) 0 ~XB,;
and 0 A + HCZ ’ Bl + H !
T
H:=-vycT B; ~F
: | -osex
According to the results in Ref.(?%), a parameterized . .
family of stabilizing controllers is then: Consider now the partition:
K=K K;! é
T [T, T3 "Tu=| A
where: Ga
K - M U L where Gz(s) = (-— (A+ BgF)T ,—XB,
K, N Vv I

) - (D{Z)T i X "1) is antistable and perform the de-
After coupling this family of controllers to the stan-

A A A
dard system T one obtains the input-output operator: composition G1=G14 + G1s in which:

2697



Che (s) == (A+ HCs, B, + H,~F)
A
G1a (5) 1= (= (A+ BoF)" ,—X By, BY )

with G’ls(s) stable and Gla(s) antistable, Denoting by

. o~ A
L = L— G5 the DF problem has been transformed in
a two-block Nehari problem consisting in determining
A A
for the given antistable systems Gi, and G2 a stable
A A
Gla - L
A
Ge

A
system [, such that is minimized.

[so}
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