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Introduction

The present work deals with the generation of a
trajectory envelope during the midcourse phase of
flight of a missile capable of achieving controllable
maneuvering at angles of attack beyond stall. A
sample scenario represented by a three dimensional
heading reversal maneuver is considered and evaluated
in detail. Trajectory analysis and synthesis are catried
out using two approaches. The first approach is a
traditional nonlinear optimization procedure, with the
added capability of high angles of attack and non zero
sideslip. The optimal trajectory is found by
minimizing a performance index, that contains
constraints on state and control variables, as well as a
minimum time structure. This approach is also used to
perform a sensitivity evaluation with respect to design
parameters such as thrust to weight ratio.

A second approach is a direct optimization in the ”
agility ” state space. Curvilinear coordinates are used
to represent the missile motion is space, and a
performance index is minimized, which contains
parameters like torsion and curvature.

The present paper describes the initial development of
the optimization algorithm and contains preliminary
results, which must be intended as validation of the
optimal control strategy. Resulting time histories of
differential geometry parameters are also available.
The graphical results are presented using the Matlab™
computational environment.

The Flight Vehicle Model

The baseline flight vehicle model considered herein is
representative of a generic air-air missile taken from(D.

"Copyright® 1996 by Mario Innocenti and Francesco
Nasuti. Published by the American Institute of Aeronautics
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Due to the preliminary phase of trajectory analysis,
several approximations were made on the dynamic
characteristics of the system for the purpose of keeping
the model as simple as possible, and because of the
absence of accurate acrodynamic data. As a better
aerodynamics becomes available, the model will be
modified accordingly.

The optimal trajectory is computed with respect of a set
of inputs given by angle of attack, sideslip angle, and
main thrust (o, B, 7), the presence of reaction jets is
not explicitely included at the present time. A point
mass model is used, assuming therefore that the
attitude time constant is much smaller compared to the
trajectory motion. In order to reduce instantaneous
changes of the control angle, as a result of point mass
optimization, the angle of attack and sideslip angles are
governed by a first order dynamics, representative of
the missile short period characteristics. During the
maneuver, the total mass is assumed to remain constant
and the force contribution due to reaction jets is
neglected.

The reference systems used are standard for this type of
application and they are described(!). Based on the
above, the missile equations of motion in wind axes are
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where the symbols follow the standard nomenclature.
To improve the numerical stiffness of the algorithm
during the optimization, the system (1)-(3) is made
nondimensional defining the parameters:
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Indicating the nondimensional time derivative as (.) =
d/dr, the equations of motion become
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The nondimensional kinematic equations are then
given by
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(10)
The basic data for the specific missile are taken from(!
and will not be repeated here:
Missile Aerodynamics

The missile aerodynamic properties are one of the
major issues whenever dynamics and control problems
are addressed. The absence of experimental data is
particularly critical in the present study, since flight
mechanical characteristics at high angles of attack are
analyzed. To this point, the only available source of
information for the authors is represented by Ref. 1,
where a prediction of lift C;(a,M) and drag Cp(c,M)
coefficients was presented, limited to the longitudinal
plane and based on Missile DATCOM®) software up to
the assumed stall value and classical fluidynamics
prediction formulas at high angles of attack®. For the
present problem, we assume a functional relationship
for the aerodynamic coefficients of the form
C; =Ci(o,p, M), with i = L, D, Y. The coefficients

are extrapolated from the estimated values available in
Ref. (1) and assuming a symmetric behavior with
respect to the missile principal axis. Under the above
assumptions, the effective angle of attack is computed
first as

Qo = cas“l(cas'a cosB) ¢5))

based on the values of a, g and speed, we can compute
Cp,Cry from Ref. (1). Lift and side force coefficients
C, and Cy are then computed by projection of Cpy on
the yz wind axes plane, yielding
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Equations (12) and (13) are then saved in a look-up-
table as functions of angle of attack and Mach number
and made available to the optimization algorithm. Lift
and drag curves are shown in figures 1 and 2

respectively.
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Figure 2. Drag Coefficient

The interpolation procedure is important for smoothing
the data used by numerical algorithms such any
optimization method. Currently, a multilinear
interpolation method is used, to guarantee the
continuity of the aerodynamic coefficients, needed by
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the gradient-based optimization. Improvement on the
interpolation is underway, so that continuity of first
and second derivatives of the coefficients is also
ensured. The modification uses Q-patches proposed by
Bless and Moerder(), characterized by quadratic
andfor quartic functions in the proximity of the data
points, which improve considerably the computational
efficiency, especially during multi-dimensional
interpolation. Convexity and monotonicity of the
resulting composite functions are maintained imposing
the cubic tetm to be zero. ‘

Finite Horizon Optimal Control Strategy

A discrete time optimal control approach will be used
in the optimal trajectory computation®. The reason
for this choice lies in the fact that the implementation
of the guidance and autopilot systems will be probably
digital and a direct discrete time approach appears
more consistent at this point. The vehicle dynamics
are then written in the following general form:

Xiey =_f__,-(£i'£,') (14)

which is nothing but a sequential set of equality
constraints, where x; are the system's state variables
corresponding to a sampling' time i and y; are the
inputs. All the variables need to be perfectly known
and the absence of external disturbances is assumed,
but this formulation is otherwise general since the
system can be both nonlinear and time varying.

In order to execute an optimal N-step maneuver, a cost
functional must be defined, and the solution consists on
finding the sequence of N system inputs which
minimizes the cost functional. A general form for the
index of performance is given by

N-1
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where h,-(J_c,-, _zg‘-) includes items such as tracking error,

control variables cost, state and control constraints,
etceteras, while hy (_Jg Nk N) takes into account

possible constraints on the desired final state ertor.
The expression of the performance index may be
nonlinear, and the finite horizon optimization can be
stated as follows:

Given an initial state x, find the succession of
optimal controls U = {ug,u,,...,up_,} to be applied
to (14) so that (15) is a minimum.

In practice, a succession of open loop controls must be
found so that the system can reach the desired final
state with the minimum associated cost. Since the cost
is expressed by (15), we can also write

J= J(I.o:.’io:-"y_u.N-[) (16)

The simplest numerical approach to solve the
optimization stated by (14) and (15) is an iterative first
order gradient-based descent of the cost functional
yielding, at each step
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It can be shown that (17) can be calculated using the
following algorithm:
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with the gradient in (20) computed by calculating the
derivatives of which it is composed, and A; the
sequence of Lagrange multipliers defined as

As any first order gradient-based procedure,
convergence = to . an absolute minimum is not
guaranteed. A good initial guess, based on the physical
knowledge of the problem, is always appropriate,
coupled with a simulation campaign capable of
indicating the feasibility of the solution. The discrete-
time optimization, although strictly speaking less
general than a continuous one, tends to the continuous
optimal solution as the sampling time goes to zero. It
has the advantage of a simpler algorithm (numerical
solution is needed anyway even for continuous
systems), which helps in reducing the possibility of the
minimization yielding a local minimum. Of course,
the problem of local minima can be always controlled,
to a certain extent, by varying (reducing) the descent
step a, at the expenses of a slower convergence speed.
The procedure described above is open loop at each
step and it requires a closed loop structure in order to
achieve optimality over the entire trajectory. This can
be accomplished by a receding horizon technique®
which consists of the following iterative steps:

Step I: Given the ith state x; (and N reference values, if
any), the succession of optimal controls to be applied
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to (14) U; = {u;,4;, (... 4;, y_y} must be sought so
that (15) is minimum.

Step 2: Only ; is applied to the system, then x;,; is
measured and U, = {80 84000 ltj is

computed. Note that {u;,,%;,,,...%;, y_;} have

already been found in the previous step, so they can be
employed to initialize the algorithm, making the
current sequence optimization faster.

Step 3: The procedure is iterated over the entire
trajectory.

The complete closed loop optimization procedure, for a
S-step maneuver, is then composed of S open loop
optimizations, but, in general, only the first one is
critical so that an acceptable speed is generally
retained. It must be noted that the approach is truly
feedback in the sense that if a disturbance changes an
optimal state x;, ; to an incotrect value x;, 7, the next
sequence will provide compensation for the error.

Abpplication

Since the optimization procedure needs a discrete time
model of the process, the first step is to obtain a
sampled data version of equations (1'), (2') and (3.
Because of the system's nonlinearity, classical
equivalent models such as step (zero hold) invariant
ones can not be used. A viable solution is using Euler's
rule, that yields:

m(k + 1)=m(k)+ts m(k) {an
x(k +1) = x(k)+ 2, 7(k) @
Y(k+1) =y (k) + 1,y (k) 3

The choice of the sampling time f is clearly important
and must be a compromise between accuracy and
computational speed. If we assume a maneuver of a
duration of two to four seconds, a satisfactory starting
choice for sampling time is 0.1 seconds.

At this point the controller structure relative to the
maneuver of interest must be defined in more detail.
The temporal window for the entire trajectory was
chosen to be made up of 20-30 sequences. This choice,
based on trial simulations, resulted in the best
compromise between algorithm accuracy and speed.
The performance index has three main components:
tracking error, input cost penalty, and system’ s
constraints leading to the form

hi(x;,u;)= B*-r (x;)+ hiu'cos(l‘.i )+ hicmm(lpﬂi )

@1)

The components were selected as follows:
® A quadratic form for the state vector tracking error,

W@ =@ -5 P -8 @)

where P is a positive definite diagonal weight matrix,
whose elements specify the relative importance of the
state variables. If all the states are equally important,
the obvious choice for P is P = k;I, where k; is a design
parameter.

* A quadratic form for the control cost penalty:

B (u;) = 1,7 Qu; 23)

where Q is diagonal, positive definite and furthermore
ol <<|#| and flv]~|x], typically @ = k;1 with ,
<< kj. In other terms, the cost associated with the
controls may be considered negligible (enough to avoid
singular solution) in order to achieve a tracking as
good as possible. A zero steady state error can not be
obtained because no integral action is employed;
however this is not fundamental for our purposes
compared with the necessity of keeping the algorithm
as simple as possible, in order to avoid local minima.
The problem of appropriate constraints is critical to
every optimization algorithm. In our case, the angle of
attack is not limited by stall values, however it can not
be arbitrarily large and a constraint is introduced. The
constrained angle is neither o nor f, but the
trigonometric combination defined as effective angle of
incidence o, Several different values for the
maximum o, grwere tried, and shown in the simulation
results section.

The control variables can not have an instantaneous
variation because of the actuators dynamics, thus a
term penalizing abrupt variations is introduced.
Usually such a constraint applies to the angles only.
Finally, the thrust is assumed to be limited to 22 times
the body weight. The constraints are introduced in the
performance index by the terms

BT (&) =Y @l ) dlogg) F () (24)
where

V(upu50) = (8~ 5 ) R(u; — ;) +

T
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] -lfimax)

(24)

1561



with [[s|>> [P = |R] and Aw; = li; - ;|- The first

term on the RHS of (24') is a soft constraint on the
control, whereas the second term acts as hard limit.
And

(')(aeﬁ'):.S((X.qﬁr —a,,,axeﬁ«)zh(aqﬁ« ‘amﬁ)
(25)
@(T) =t (T~22)* (T ~22) (26)

where h(.) is the Heaviside function and R must be
comparable with P , while s and ¢ must be much larger
in norm than the matrices mentioned above.

Although time of flight is not explicitly introduced in
the cost function, the constraints that are introduced
guarantee a behavior leading indirectly to a minimum
time, while maintaining the missile physical integrity
and characteristics.

Preliminary Simulation Results

Several simulations were performed using the model
defined by equations (1), (2) and (3") and the optimal
control algorithm of (18), (19) and (20). The main
purpose of the test being, at this point, the evaluation of
the algorithm and not the optimal selection. The
results are shown next for a horizontal trajectory. All
the simulations were performed using the following
weigthing matrices: P = 101, Q = k,I; and k, = (0.01 -
0.1), R = diag{100, 100, 0}, and S = 10,000*diag{1, 1,
0}.

The missile is required to execute a turn which lies
approximately on the horizontal plane, with yaw and
heading angles going from zero to 180°, while the
reference pitch angle is set equal to zero. The initial
and final velocities are constrained to be equal to Mach
0.8. Note that although their final values are fixed,
speed and the pitch angle are permitted to vary dutring
the curve if this can endorse the maneuver.

The optimization was performed for three different
values of maximum sideslip angle, 40°, 80° and 120°
respectively, while the limits on the maximum effective
angle of attack in (25) where set to 34.3, 68.8, and
103.2 degrees respectively.

One curve, characterized by the lowest limit on the
sideslip angle shows clearly a marked three-
dimensional behavior compared to the other two. For
the turn to be accomplished, with the constraint on the
final speed, the missile tries to maintain a higher
effective angle of attack and energy level. This curve is
similar to a conventional turn, with the thrust level
near the maximum at every instant. As the constraints
on beta are relaxed, the higher heading rate allows for
quicker turns, almost two-dimensional, with lower and
more effective thrust expenditure. The next 3 figures

show the same trajectories, with their projections onto
the 3 reference planes.

Xin

Figure 3. Horizontal Trajectories in 3D

Figure 4. Trajectory for fmax = 40 deg

Y Xin

Figure 5. Trajectory for fmax = 80 deg
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Figure 6. Trajectory for fmax = 120 deg

The time history of heading, yaw, and sideslip angles
are shown next for the 3 trajectories. Note that yaw

angle behavior presents discontinuity due to the

plotting set up.

The figures include the nondimensional thrust profile
as well. Figure 10 shows the missile behavior
superimposed to the trajectory, during the curve at the
highest sideslip level. In this figure, a qualitative
relationship among the angular variations can be seen,
as well as the “post-stall” characteristics of the flight.
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Figure 7. Angles Time Histories fmax = 40 deg

g

g

o

beta, ps, chi [deg]

g

g

(-

tis)

0 0.5 1 15
tis]

( 05 1 15 I 25
tis)

Figure 9. Angles Time Histories fmax = 120 deg

Figure 10. Graphical Representation of Missile Motion

Differential Geometry Approach

Differential geometry is used in this work as a tool to
investigate the agility characteristics of a particular
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maneuver®). Agility has been widely studied in recent
years as one of the components leading to the
superiority of combat aircraft over the threat and
defined as operational agility- in a larger semse to
encompass the entire weapon system.. Although
airframe agility has been measured through simulation
and, more recently, in flight testing, it still lacks a
unified analytical background. A general agreement

has been found among manufacturing, procuring and

research agencies in that airframe agility is now
associated with the rate of change of the maneuver
plane and, as such, it has been recognized as a property
of the flight path. The development of the governing
equations is done using a differential geometry
approach(®), and the main elements needed to describe
the flight path in a three dimensional space are the
curvilinear coordinates. From Ref. 5, one definition of
agility is the total time derivative of the acceleration
vector measured in the Frenet trajectory frame

A= [&'—s‘zleg*'[m“ +s-2;é]ﬂ+[.§3m]_lz= o))
Agt+Acn+ Arb

where « and T are defined as curvature and torsion of
the path, and the unit vectors in (27) identify the
tangent, normal and binormal directions. The agility
of the curve is then characterized by the value of the
components in the RHS of (27), which represent axial,
curvature and torsional agility respectively.

For the maneuver at 120 deg. sideslip, Figures 11 and
12 show curvature and torsion for the low and high
sideslip turns. The agility components defined also as
“jerk vector” are shown for the same trajectories in
figures 13 and 14. Although at the analysis level at
this point, the behavior in the figures below is
indicative of the increased maneuvering capabilities of
the vehicle as p increases.
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Figure 11. Curvature, Torsion and Speed (Pmax=40
deg)
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Figure 12. Curvature, Torsion and Speed (fmax=120
deg)
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Figure 13. Agility Components Speed (fmax=40 deg)
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Figure 14. Agility Components Speed (Pmax=120 deg)
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Current Research

Work is being currently carried out in all the aspects
mentioned in the paper.

In the area of optimization, the multistage algorithm is
undergoing further development and comparison is
being done with other techniques available in the
literature such as direct shooting methods and
quadratic programming. Once reliability and speed are
evaluated, the use of fuzzy theory will be investigated
as a tool for on-line porting. A comprehensive
simulation campaign is being carried out to define sets
of optimal trajectories in space. In addition, several
flight vehicle parameters are currently changed (such
as thrust/weight ratio, maximum aerodynamic angles,
speed and time constraints at the boundaries) for
sensitivity studies and preliminary design assessment.
The equations of motion are currently being extended
to include motion in the roll axis. This added degree of
freedom will allow the simulation of "true” spatial
trajectories. If aerodynamic data is made available, the
attitude equations will be incorporated in the model as
well.

The activity in agility is proceding parallel to the above
studies. It is expected that agility properties of optimal
trajectories will be evaluated, and that an optimization
based on agility equations and agility parameters in the
performance index will be carried out in the near
future.
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