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Abstract

The use of neural network controllers to provide
structural load alleviation for a large transport
aircraft which exhibits a significant number of
bending modes is a new application. In this
paper some details of a particular model of the
aircraft dynamics are given followed by
information relating to a linear, continuous
optimal LQR controller (the baseline controller ).
The results obtained from digital simulations of
the optimal manoeuvre load alleviation control
system then follow. These results and many
others obtained from the same simulation were
used as the training data for the neural network
controllers used in the design. A particular type
of neural network was studied and information
about its corresponding training performance
and control effectiveness is presented. The
dynamic performance achieved by using the
neural controller is compared with that obtained
using the baseline LQR controller. The paper
concludes with a number of suggestions in
respect of neural networks as controllersin a
manoeuvre load control system.

Introduction

Structural load alleviation is one of the chief
flight control modes of what has been called
"Active Control Technology"”. Such technology
allows aircraft to be more efficient by permitting
them to be lighter in structure, yet still capable
of sustaining the high loads experienced in
operational flight.

The usual method of manoeuvre load control
(MLQC) is to sense at appropriate points on the
fuselage and wing the displacements and rates
associated with any bending modes and to use
these values as feedback signals in a control
system which has been designed to drive the
available control surface actuators to reduce
bending effects.

The use of continuous, or discrete, feedback
control systems designed by means of methods
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such as He, linear quadratic regulator (LQR), or
other quantitative methods to produce an
effective MLC, has had only limited success
(Harvey and Pope[6], McLean and Prasad [9],
Ali[2]).

The application of neural networks to aircraft
flight control systems has been limited to
somewhat elementary cases (Jorgensen and
Schley 8, Ahmed-Zaid et al (1)) , Sadhukhan and
Feteih (11). Such applications have not involved
aircraft dynamics of much complexity. The work
in this paper is intended to demonstrate the
effectiveness of neural controllers when used as
MLC controllers.

The design of a MLC requires a detailed
mathematical model of the aircraft dynamics,
including its rigid body motion and the
significant flexibility modes. It is hoped to show,
using the results of some digital simulations,
that the dynamic performance achieved by using
neural networks is as good as the performance
achieved by a base-line controller.

Aircraft Dynamics

The mathematical model of the flexible transport
aircraft used in this research is given in detail in
McLean and Prasad (9. It was used in this work
to carry out initial simulation studies: a form of
"test-bed" to generate training data of adequate
quality (in terms of frequency and scale content)
and in sufficient quantity for the networks to
learn.

The subject aircraft chosen for this research
work was the Lockheed C-5a Galaxy, a large,
four engined, subsonic transport aircraft. Much
of the data can be found in Harvey and Pope 6
and McLean and Prasad (9. The data related
only to longitudinal motion for a single flight
condition.

In McLean and Prasad (9 there are presented six
models. Each model had state, control and output
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vectors; the dimensions of five of these models
used for this work are listed in Table 1.

Dimension of Vectors
Name of
Model
State | Control | Output
Arne 79 2 56
Bach 42 2 56
Clementi 24 2 38
Handel 5 2 5
Vivaldi 17 2 28

TABLE 1 - Dimensions of Vectors used in
Mathematical Models

ARNE was the greatest, being 79. Besides
including the first fifteen bending modes, ARNE
includes both the Kiissner and Wagner lift
growth functions and the time delays involved
before the wing and tail encounter any gust.
Handel represented only rigid-body motion and
actuator dynamics.

For this work the bending and torsional
moments of five separate stations on the wing,
denoted as WS1 to WS5H, were included in the
output vector. The locations were chosen such
that WS1 is at the root of the wing, WS3 is at
mid-span and WS5 is at the wing tip. WS2 and
WS4 are located equidistant between the wing
root and mid-span and between mid-span and the
wing tip respectively.

Baseline Controllers

Designing and training neural network control
schemes suitable for use in a MLC requires that
there are available sets of representative
training data and also a baseline controller
against which to measure the performance of the
neural control. Linear optimal state feedback
and output feedback controllers were used for
these tasks. A block diagram of the MLC is
shown in Figure 1. BACH was used to obtain
full state feedback controller designs. Several
test situations were devised in which both
deterministic and stochastic excitation signals
were applied. Table 2 lists the deterministic test
signals used to generate transient responses
which were later used to provide initial training
strategies for the neural controllers.

In those test cases where turbulence was
introduced the assessment of the effectiveness of
the control achieved in turbulence was carried
out by calculating the rms values of the bending
moments .

Uncontrolled Aircraft Response

The first assessment of the aircraft response was
made on the basis of the uncontrolled aircraft ie
open-loop system. Responses were obtained by
using the mathematical model BACH when
subjected to test cases ALPHA or BETA . Some
of these responses are shown in Figures 2 - 4.
The natural frequency of the short-period rigid
body mode is only separated from the
fundamental bending mode by a factor of 4.
Bending mode number 2 was not subsequently
much affected by control action.

" Commanded Commanded
Test Case Initial Val.ues of State Aileron Inboard
Variables Deflection § Elevator
Ae Deflection 8g;_
ALPHA All zero 0 0
except w(tg) = 1.0
BETA All zero 1.0 0
GAMMA All zero 0.0 1.0

TABLE 2 Training Data Test Signals
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Controlled Aircraft

Full State Feedback In Figures 5 and 6 are
shown some typical bending and torsional
moment responses obtained with the use of
optimal full state feedback controllers. The
selection of the weighting matrices used in the
design of the optimal LQR controllers was not
unique ie several combinations of different
weighting matrices could give rise to near
identical control laws. Some methods which can
assist the selection process have been proposed
(Bryson and Ho 3), Johnson (7 It was found to be
as effective and quick to make the choices
empirically, based on observation of the
responses.

Wing Moments It was decided to use the bending
moment responses occurring at the wing root
(WS1) and mid -span (WS3) as measures of the
SLACS performance. It was found that bending
moments could be substantially reduced by
means of the action of the MLC. A reductionin
any oscillatory motion of the bending moment
responses to reduce the cumulative fatigue of the
wing was also desirable, but it usually required
several attempts at controller design to achieve
this.

Figures 5 and 6 indicate how much alleviation of
both bending and torsional moments can be
achieved with good controllers. Responses
obtained from successful controllers were
retained as training data for the neural
networks. Some systems could achieve good
WRBM (Wing Root Bending Moment) reduction
but did not reduce WRTM (Wing Root Torsional
Moment) and vice versa. This situation is
illustrated in Figures 7 and 8. Under certain
circumstance it may be necessary to sacrifice
some reduction in WRBM to secure some
alleviation in the torsional moment at the wing
root (WRTM), or even at the wing tip, WS5. The
key objective is to reduce the bending moments
at the wing tip and then inboard all along the
wing without increasing the torsional moment.
Figure 9 shows the control surface activity
required by the MLC to achieve load alleviation.

Neural Networks

In this paper the use of the multi-layered
perceptron (MLP) for structural load alleviation
is considered. The choice of a particular type of
NN depends on the nature of the problem being
solved, but several issues relating to the number

of nodes required, the number of layers to be
used, and their inter-connexion are non-trivial.
Some rules-of-thumb can help in the initial
decisions eg it is known that a network with a
single hidden layer can produce the same results
as a network with several, although it may
require more training. The hidden layer must
contain at least as many neurons as there are
inputs.

The MLP is a non-linear feed forward network
which is usually trained by using an algorithm
based upon back-propagation of the errors. The
designer can choose the activation function (or
the transfer function) of the neural network.
Among the most usual choices are sigmoid,
hyperbolic tangent and sine. In this work. use of
the sigmoid function in the hidden layer of the
MLP resulted in poor performance in terms of
training time. Both the sine and hyperbolic
tangent functions provided much better
performance, with the use of the sine function
resulting in the lowest training times. With the
sine activation function the aircraft dynamics
containing the most complete description of the
flexibility effects provided the best results.
However, when using different data sets, the
difference in performance from the other two
activation functions was not marked.

A number of tests were used to ensure that the
data obtained from the simulation were
representative. Responses to gust and
deterministic inputs, as well as responses to
initial conditions, were used in addition to those
obtained when the aircraft dynamics were
augmented by unsteady aerodynamics and
excited by simulated atmospheric gust
disturbances. The need for many different test-
situations is reinforced by the requirement for
assessment of how well the neural network has
learned its control strategy from the training
data presented. The system adopted for
assessing the effectiveness of training networks -
was to test the network's capacity for
reproducing the training data presented and
then to adjust to a new set of training data.

The available sets of data were split in a random
way into training and test data sets. A further
source of training data was obtained from the
aircraft simulation using responses to excitation
inputs not used earlier. Thus, gusts with
different levels of rms intensity were used to
excite the system and responses obtained from
the neurally-controlled system with training
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completed using only deterministic data but with
the system subjected to gusts, were also studied .

An issue which caused some difficulty was to
include/exclude the unsteady aerodynamic
effects. Generation of appropriate training data
* based upon the mathematical model BACH
produced redundant data and caused, by its
complexity, training to be slow and convergence
could not be guaranteed. As a measure of how
useful any training data were for training the
neural controllers, the condition number of the
autocorrelation matrix (based upon the network
inputs) was used. The rate of convergence
depended upon the smallest non-zero eigenvalue
of the autocorrelation matrix, and the parameter
chosen for the learning rate of the hidden
layer(s).

BP networks suffer from a number of problems
which cause difficulty during training. The
weight vector can be updated using an algorithm
which depends on the learning rate parameter
but convergence is usually slow. To speed this up
an empirical procedure was used to adaptively
adjust the learning rates in the hidden layers:
after a specified number of training cycles the
learning rate was incremented by a specified
amount. Too large increments, however, could
result in a total failure to converge, whereas
values which were too small caused very slow
convergence. Using standard BP, even with
special enhancements, sometimes resulted in the
network training taking place over several days.

Network paralysis was commonly encountered.
When the weights in the hidden layer were too
large the output nodes produced large values.
When activation functions such as sigmoid or
tanh were used, such large outputs caused
saturation and the BP error became small
causing training to cease prematurely. To check
for network paralysis required that the nodal
activity and weight changes were checked
throughout the training period. When more
than four bending modes were included in the
mathematical model of the aircraft dynamics
network paralysis was avoided.

Sometimes learning interference occurred
between the network weights which had already
been trained, and those weights which remained
only partially trained , for then the rms output
error from the network was back-propagated to
cause those areas of the network which were
already partially trained to become

untrained as a consequence of the network’s
efforts to train areas which were initially
untrained. Wherever this happened the training
times for dynamical models with more than four
bending modes (ie the first four) increased by
about four times. A practical solution was
achieved by using a series of training
experiments referred to here as "sequential build
(SB)". These experiments attempted to decouple
the control problem involving the control of rigid
and flexible modes by using with the rigid body
modes a deterministic LQR controller and with
the bending modes a neural controller.

Improvement of MLP Learning Times

Several techniques were studied as a means of
speeding up the MLP learning times.

Momentum Term

This term modified the extent to which the old
values of the network weights were changed.
Usually the value of this momentum term lay
between 0.1 and 1.0; when models of low order
were used, it was found that a value of 0.7 was
satisfactory. However, for models of greater
order, the appropriate value was less and was
determined by experiment.

Cumulative Update of Weight Vector

This involves updating the network weights
only after a fixed number of training data sets
have been presented to the network. By using
the cumulative error over the epoch a more
effective updating of the network weights was
established. The epoch size lay between 16 - 70
but this approach required more computing.

Fast B.P. (Samad (10))

This involved the error at the (s - 1)th layer being
added to the output before the connection weight
was established. An amplification factor,
between 0.5 and 2.0,was applied, but,
experiments did not show any appreciable
improvement in learning times.

BIAS Term

A bias term allows the origin of the activation
function to be offset, thereby sometimes
providing more rapid convergence. When models
involving only the first 2 - 4 bending modes were
considered, the neural networks, using bias
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terms, achieved significant improvements in
training times. The same result was noted when
the complete model, using all fifteen bending
modes, was employed. The bias firing value was
reduced from 1.0 to 0.786 when the aircraft
dynamics involving the first fifteen modes were
considered.

Quickprop (Fahlman's Methods) (5,

These involved the following three heuristic
techniques.

Biasing the Derivative of the Activation
Function Normally this was considered only
when the activation function used wasthe
sigmoid. It was then referred to as the F’ offset,
viz F'. The advantage of using this was that
learning occurred at all times: the technique
prevented the occurrence of saturation for the
aircraft mathematical model, BACH. When an
F1 offset of 0.279 was used with a hidden layer of
15 nodes, with a sine activation function,a
considerable improvement in the training times
was observed.

Changed Error Function in the Qutput Layer
When an hyperbolic tangent (tanh) function was
used as the activation function for the output
layer, the large errors in the network were
further amplified. Using a cubic error function
as the activation function in the output layer
reduced training times by almost an order of
magnitude.

Self-Adaptive Learning Rate for Hidden Layer
DBD (Adaptive Learning and Momentum Rate)
networks increase their learning rate linearly,
but the weight decrease is geometric, to prevent
the learning rate from decreasing too quickly
and to ensure that, in regions of the weight space
where the error curve is greatest, the connection
learning rate is rapidly decreased. A parameter,
A, was used to control the network recovery
phase such that, if the error vector after the ith
training epoch is denoted E;, then

E. >1E.
1 1

t -1

All the connection weights reverted to the best
weights of the preceding epoch which were
retained. The learning and momentum rates
were also increased. This technique provided
better training and performance when used with
the model BACH than did the MLP with BP.

Network Training Features

A beneficial feature for network training was
found to be the technique of separating the
actuator dynamics from the rigid body and
flexible dynamics, and controlling them
separately. For realism, rate and displacement
limits were placed on the appropriate control
surface, as shown in Table 3.

Deflection Limit R
Control (degrees) ate
Surface Limit
. deg/s
Max Min
Ailerons 14.5 14.5 25
Inboard 20 30 15
Elevators

TABLE 3 - Control Surface Deflection and
Rate Limits

Networks trained on data obtained from the
responses to deterministic inputs performed
better when the system was tested with
simulated atmospheric turbulence than
networks trained using response data obtained
from turbulence input tests. The resulting
controllers, however trained, were almost as
robust as the baseline controllers from which the
training data were obtained.

As more bending modes were included in the
model of the aircraft dynamics the training time
and the number of nodes which were required to
be used in the hidden layer(s) increased. The
effect of including the Kiissner dynamics in the
mathematical model was not very great in terms
of the observed closed-loop performance,
although the increased complexity of the
associated mathematical model representing the
aircraft dynamics resulted in greatly
complicating the MLP. Attempts at retaining
the complete set of inputs to the network, but
with a restricted number of nodes in the hidden
layer, did not result in satisfactory control. It
was found to be difficult to design well-trained
MLP networks for large systems. To overcome
this difficulty a series of smaller sub-models
were constructed and used sequentially to build
a larger network.

Sequential Build (SB) Networks
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These were obtained by finding several LQR
baseline controllers, based upon the
mathematical model BACH, and collecting the
responses to several types of input from the
SLACS which used these LQR controllers. Data
relating to the flexibility effects ie the bending
mode displacements, the associated rates, and
the moments (both bending and torsional) at the
five designated wing stations, were collected
separately. A feedback control system,using
only the rigid body motion variables, and the
corresponding feedback gains of an LQR
controller, was implemented with a multi-
purpose neural network block in parallel. This
NN block was trained using the data based on
flexibility effects. Collecting data relating to
bending displacements and rates of individual
bending modes for training a NN to control just
that mode was also tried. It was found that, in
general, using such a sequential build (SB)
technique was more efficient in terms of training
time: the smaller networks were easier to train.
Moreover, it was possible to control the rigid
body motion independently: it was then easier to
evaluate the load alleviation performance of
particular neural controllers, for the effect of
that controller could be compared directly with
the alleviation achieved by the baseline LQR
controllers which had already provided the
training data. It was found to be important to
ensure that the response data used for training
truly represented all the mode contributions and
that the corresponding mode variables were
satisfactory from a scale and frequency
viewpoint. Of course, such response data could
be poorly conditioned, with a bad effect on the
network error, causing it to converge to its
minimum only very slowly, if at all. Data
scaling can be effective in overcoming this
problem.

Initially each mode was controlled by a separate
neural controller, but, by experiment, it was
established that modes could be gathered into
controllable groups,allowing the system to be re-
modelled , further training data collected, and
larger neural networks developed. As a check on
the appropriateness of including or excluding a
particular mode in a cluster, the condition
number of the scaled data matrix was examined.
If it was too large,either a mode was removed, or
fewer inputs were used. In Table 4 are presented
some data relating to mode 4 which proved to be
particularly troublesome. Whenever mode 4 was
included in a cluster the condition number of
the data matrix and consequently, the network

training time, increased. The solution was to
exclude mode 4 from a cluster and to use another
neural controller for just that single mode.

Cluster of Condition No of No of
I&S der %1 Noof Data | Network | Network
odes Matrix Inputs | Outputs
3,4,5,6 2414 8 2
3,4,5 9.53 x 1015 6 2
3,4 9.5x 1015 4 2
3 2.24 2 2
3,5 34.79 4 2

TABLE 4 - Sequential build; Variation of
condition number with Mode 4 included or
excluded

Simply neglecting a mode from the control
scheme is inappropriate, for modal interaction
can give rise to effects which would be
unobserved by the control scheme. Modal
interaction can be significant, too, in relation to
the training data. If modes are clustered and the
response data re-obtained for particular types of
excitation inputs, then the condition number of
the autocorrelation matrix can increase
significantly if there is modal interaction within
the cluster. This feature can be demonstrated by
means of Table 5.

One interesting result of the study using the
sequential build technique related to whether it
was significant if higher bending modes were
neglected when using neural control: the steady-
state values of the bending and torsional
moments were almost the same whether the full
number of bending modes were included or not.
See Figure 10. When training the associated
neural network it was necessary to ensure that
sufficient number of nodes were used in the
hidden layer, otherwise the quality of learning
was much impaired. An illustration of using too
few nodes in the hidden layer of a neural
network which had been trained on data relating
to a controlled aircraft with only a few lower
bending modes is shown in Figure 11. The
responses shown were obtained from using the
neural controller with a simulation based upon
CLEMENTI. When the number of nodes in the
hidden layer was increased the response
improved, but the training took longer. The
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Cluster of Modes Condition N 0 of | Noof Network | Noof Network |InputExcitation
Data Matrix Inputs Outputs Type
5,6 5.3505 4 2 square wave
5,6 719 4 2 sine wave
5 3.1987 2 2 sine wave
6 5.2141 2 2 sine wave

TABLE 5 - Sequential build; Variation of condition number with different system inputs

response produced was less rapid than the
corresponding response provided by the parent
LQR controller. It is believed that the neural
controller was driving the control surface
actuators at rates close to the frequencies of the
lower bending modes which are those with the
greatest energy. These modes were excited,
therefore, causing increased surface activity -a
situation which could result in instability,
although this possibility could not be inferred
from the training or validation data. Large scale
MLP networks, with back-propagation, seem to
be inappropriate for on-line, real-time learning
on account of the large number of computations
required per training cycle and the large number
of iterations needed before convergence. By
adopting the technique of updating in real-time
the weights in only those networks which
require updating, the SB method overcame the
problem of learning interference in large MLP
networks. However, the technique of SB could
not overcome two other problems related to the
use of the MLP with BP viz network paralysis
and an inability to produce weights
incrementally ie if there is a finite time for
training and reasonable convergence can be
achieved, then all the inputs have to be seen
before any weight change can take place.

Figure 12 shows the responses of the system
when a neural controller was employed which
controlled only the rigid body and first bending
mode; Figure 13 shows the responses when the
controller controls the rigid-body, and first and
second bending modes. These indicate small
reductions compared to the LQR control in both
wing root bending moment and wing root torsion
moment and in all the moments up to wing
station 4. The bending moment at the wing tip
is lower, however, than the corresponding LQR
controller. Whenever neural control was used
for the purpose of controlling just the first
bending mode, it was observed that modal

interaction, particularly at WS3 and 5, occurred
and was especially noticeable in the wing
torsional moment.

Conclusions

The use of neural controllers has been shown to
be effective for use in MLC. Individual networks
can be made to learn to optimize the control of
particular bending or torsional moments by
changing the response of individual bending
modes,

The choice of LQR-based responses for training
data was influenced by two factors: LQR-based
MLC had already been shown to be particularly
effective; and the guaranteed closed-loop
stability of the LQR controlled systems meant
that neural networks learning such mappings
initially would also possess this desirable
property.

The non-linearities which existed in the
simulation related to the control surfaces
deflection and rate limits, but the principal
advantages expected from applying neural
control to linear dynamics were the expected
lower-order controller capable of providing
acceptable dynamic performance even when
there were significant errors in the
mathematical model and, producing stability
and robustness.

The use of smaller sub-networks applied to
individual (or selected clusters of) bending modes
has been proposed to overcome the difficulties.
observed in the early attempts to train MLP
based networks using a large number of inputs.
Difficulties attending the use of large MLP
manifested themselves in increased training
times caused by the severity of the phenomenon
of learning interference.
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Consequently,it was decided to sub-divide the
large MLP network into small sub-networks
which could control specific bending modes
individually. Such smaller networks facilitated
the problems when studying the bending
behaviour along the wing stations.

Neural control produced dynamic load
alleviation equal to that produced by the LQR
controller from which the training data were
obtained; its use did not significantly improve
upon that performance, and required substantial
amounts of training data and time.
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Figure 10. Moment Responses for Different S.B. NN Controllers
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iFigure 12. S B. NN Controlier - Rigid and 1st Bending Mode
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Figure 13.
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S.B. NN Controiler - Rigid, 1st and 2nd Bending Modes



