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Abstract

An analytical-computational method for matching two NZ vertical acceleration at CG
optimal control formulations is presented. Both formulations P matrix order
rely on the classical time domain, constant matrix [Q] weight matrix of J
representation of linear control systems. The first {Q°} vector form of [Q]
formulation, referred to as Direct System, consists in q aircraft pitch rate
directly enforcing a prescribed time behavior of output QS quadratic system
quantities and solving for the control activity. The second ([R] weight matrix of J
formulation, referred to as Quadratic System, is associated (R°} vector form of [R]
to the use of linear quadratic regulator theory. Matching the [g] solution of the Riccati equation
two formulations is accomplished by enforcing the time {s°} vector form of [S]
behavior identity of control, state, output vectors using an TQ20, TQ40 wing torque at 1/3, 2/3 span
appropriate form of the regulator equations, and verifying station
the conditions for the mathematical existence of the | aircraft forward velocity
Quadratic System: a routine is presented which computes v} control vector
sets of weight matrices associated to a quadratic v} error on control vector
performance index that exactly generate the matched | ° requlator control vector
feedback control feedback matrix as summarized here \{,‘VIK} airgcraft vertical velocity
above.
A numerical application to ascertain theoreticai results is run {X} state veclor
onto aircraft maneuver load alleviation, but the generality of {v} qutput ve'ctcr
the method makes it also suitable for studying other © aircraft pitch angle
problems in aeroservoelasticity and advanced guidance and * level of alleviation
control of missiles, for instance analyzing optimal guidance M aileron deflection
versus other criteria such as proportional navigation. £ elevator deflection

[}, [12] : solver matrices for {S°}

{9} : input vector to DS

Nomenclature ™). (@ (o (@ ®: quantity refers to unalleviated
system, DS, QS, [Q], [R]

AIC : aircraft O () transposed

(AL [A), [A#]
(B], [B#]
BM20, BM40

dynamic matrices

control-state matrices

wing bending moment at 1/3, 2/3
span station

[C]. IC], [CA, [C#: state-output matrices

C(li,J) : generic element of [C]

CG : aircraft center of gravity

[D], [D*], [D#] control-output matrices

1. Introduction

The application of LQR in problems of minimization relies
on the use of a quadratic performance index associated to
the well-known Riccati equation. An intrinsic complication
therein is represented by the fact that the quality of the

D(LJ) generic element of [D] solution is strongly affected by the form of the performance
DS : direct system index integrand (presence of cross-coupling terms) and the
{e} : error on state vector numerical values of the weight matrices. Minimization of the
J - quadratic performance index quadratic index is rarely the true design objective.? In the
K] : " regulator control matrix open literature, it is sometimes found that authors do not
LQR : linear quadratic regulator use the cross-coupling terms and rely on the use of unit
[N] : weight matrix of J matrices.®¥ A better way of handling the problem is to use
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the so-called Bryson rule®*%7® for setting reasonable initial
values of the weight matrices. An aiternative method
consists in using energy,™® pole placement and actuator
saturation™ considerations. Once initial values are found,
the further step consists in trial-and-error looping the
elements of the weight matrices which ends when design

DS represents the non-LQR method which the LQR system
will be matched to. Anyway the final form of the equations is
of the same type as in standard feedback systems and
looks like:

requirements are met, and therefore the so-called optimal {

solution is identified.

Referring to the common applications of LQR to
aeroservoelasticity and flight dynamics, the control law is
usually formulated to stabilize unstable short period modes
while maintaining or augmenting the stability of the
aeroelastic modes and to achieve gust load alleviation and
ride improvement: in all of these cases, the control system
is required to fulfill a pole-placement assignment and/or
destroy the effects of a gust disturbance input.

If more demanding constraints are required, as for instance
time-matching a prescribed behavior of selected dynamic
quantities, the afore-mentioned criteria for selecting weight
matrices combined with a poor formulation of the
performance index integrand may fail. Nevertheless, LQR-
based solutions can be very precise: a technique for
generating a LQR-controlled dynamic system which time-
matches a non-LQR optimal system is assessed thoroughly
in the following sections.

2. Summary of Equations

2.1 Basic System

One refers to a steady matrix formulation for linear systems

represented by the following set of equations:

[ {dx/dt} = [AIX}+{BI{v} @2.1.1)
{

({} = [CHX}+[DKv} (2.1.2)

In the following, one will refer to an “unalleviated” system
when dealing with a dynamic system which does not fulfill
prescribed sets of constraints and levels of optimization of
output quantities. The relative arrays will be indicated with a
(*) superscript. In this way, the unalleviated system looks
like:

[ {dx*/dt} = [AI{X*}+[BKv*} (2.1.3)
1

L{Y)

2.2 Direct System

= [CHX*}+[D}{v*} (2.1.4)

This section deals with a dynamic system in which the
control action is derived from directly prescribing a set of
constraints and optimization levels of output quantities. This
system will be referred to as “Direct System” (DS) and the
relative arrays will be indicated with a (d) subscript. The full
derivation of the equations is reported in Section 4.2, which
deals with an application to aircraft maneuver load
alleviation (incidentally, the DS represents the standard
routine for solving this kind of aeronautical problem). The

[{dXy/dt} = [AJ{X+[Bliva} 2.2.1)
WYd = [CaXa+Dlva) (2.2.2)
[Ad=[A]+AJ (2.2.3)
[Ad=[BIID] [C"] (2.2.4)
[CA=[CI+Cd] (2.2.5)
[Cd=[DI[D"] [CA] (2.2.6)

wa=[ 0T (@} 22.7)

2.3 Quadratic System

One refers here to a dynamic system (Quadratic System -
QS) which is controlled by a LQR. The QS can be written
as:

[{dXdt} = [AJXg+Bl{ve} 2.3.1)
{[{Yq} = [Col{Xo}+[DHvg} (2.3.2)
[AJJ=[AI-[B]IK] (2.3.3)
[CI=ICI-DIK] (2.3.4)
[Agl= -[BIIK] (2.3.5)

Matching QS and DS formulations is accomplished in two
steps:

a. Mathematical identification of QS and DS formulas,
leading to [K] of QS

b. Solving for the weight matrices of a quadratic
performance index which guarantee the mathematical
existence of [K].

3. Matching QS and DS Formulations

3.1 Enforcing the Mathematical identity of the two

Eormulations

One introduces an error on the state vector {e} defined as:

{e}={Xq- X4} (3.1.1)
and an error on the control vector {ve} defined as:
{vel={vqvq} (3.1.2)

Subtracting Eq.(2.2.1) from Eg.(2.3.1) one gets the
following differential equation:
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{de/dt}= [Al{e}+[Bl{ve}+([AJ{X}-Ad{Xd) @13

Eq.(3.1.3) can be reduced to a regulator equation provided
that:

{vel={0} (3.1.4)
AIE[Ad (3.1.5)
One gets by identification of Eq.(3.1.5):

[KI={D"] '[CM (3.1.6)

Thus QS is exactly represented by the same set of
equations relative to DS. Eq.(3.1.3) yields:

{de/dt}= ([A1+[Ad{e}=([Al-[B][K]){e} (3.1.7)
Defining:
{vki=-[K]{e} (3.1.8)

QS relies on the minimization of a quadratic performance
index (which provides [K]) referred to {e} and {vk}:

J

r({e}T[QHe}+{vK}T[R1{vK}+2{e}T[Nl{vK»dt
0 (3.1.9)

3.2 Assigning Weight Matrices for a Prescribed Feedback
Control Matrix {K]

The st1asrting point is represented by the equation of
Riccati™ related to the performance index introduced in
Eq.(3.1.9):

[dS/dtI={0}=[SIAIHAIISI-(SIBI+INDIR] (INI™+{BIIS)+[Q]
321

Here, the unknown matrix is [S], and the equation becomes
meaningless when [R] is singular. The equation which
defines [K] versus [S] is:

[KI=[R] (IN]™+(B]'(S]) (3.2.2)

Combining Eq.(3.2.2) and Eq.(3.2.1) yields;
[SIAABIKD+AIISI+{SI'IBIKI-KIRI'IKI+HQ]=[0] (3.2.3)

One introduces "standard"' hypotheses for matrices {Q],
[R1, [S]: [Q] symmetric, positive semidefinite, [R] and {S]
symmetric, positive definite. In this way, Eq.(3.2.3) can be
simplified as:

(ISIAD "+[SNIAI-KIRIKI+[Q}=(0] (3.2.4)
One can verify that [K]T[R][K] is symmetric. In this way, one
can transform matrix equation (3.2.4) into a vector equation

by rearranging into vector arrays the independent elements
of [S], [Q] and [R] (this operation can be rapidly performed

with symbolic algebra software codes). The number of
components of each vector is P(P+1)/2, where P is the
order of the matrix considered. Let be {S°} the vector form
of [S], {R°} the vector form of [R], {Q°} the vector form of
[Q). One gets:
[1){S°}+[[12{R°}+{Q"}={0} (3.2.5)
Eq.(3.2.4) is a Lyapunov equation. The Lyapunov theorem®
states that the existence of a unique, positive definite [S] is
guaranteed by the stability of [A] and the condition that ({Q]-
[K]T[R][K]) must be positive semidefinite. If all the conditions
are met, {I11] is symmetric and certainly not singular.
Eq.(3.2.5) yields:

-1
{8°}=-[1] (2] {R°}+{Q°}) (3.2.6)
The generic vector {S°} belongs to a space of (Pq(Po+1)+
Pr(Pr+1))/2 dimensions: any choice of {R°} and {Q°} leads
to a different [S] but to the same {K]. The procedure
consists in selecting the components of {R°} and {Q°} in
order to find {S°}. Here, the only constraint (which is a very
soft one) is represented by the fact that {R°} and {Q°} have
to fulfill the afore-mentioned hypotheses. [N} can be
computed through back-substitution of [S] and [R] into
Eq.(3.2.2).

4. Application to Aircraft Maneuver Load Alleviation

The demonstration of the principles depicted in the upper
sections is performed on an example of aircraft maneuver
load alleviation. It is worth repeating that this problem is
normally framed using DS which rely on the direct
assignment of prescribed alleviation levels and load factors,
and not using LQR routines, which are normally used within
the frame of flutter suppression and gust load alleviation
problems."®""* The proven identity of QS and DS is such
to highlight the precision, and thus the good performance of
QS even in those problems where more suitable methods
are normally used.

it is worth mentioning that maneuver loads primarily affect
fighter A/C,"®" whereas gust loads are the dominant loads
on transport A/IC"*'™  even though fighters may aliso
experience severe gust loads during “terrain following
missions”."” Because of the restrictions associated to the
publication of data on military aircraft, a numerical
application is run here on the longitudinal model of a
transport aircraft with the help of the MATLAB® simulation
package.

4.1 Description of the Aircraft Dynamic Mode!

The dynamic characteristics of the A/C, represented in
Fig.1, are investigated for a pull-up maneuver. This is
defined as a pitch demand resulting from a step of the
elevator control surface reaching a maximum, steady-state
value of 5 degrees in 0.8 seconds. Because of this, loads
arise and consequently wing bending moments increase
from a steady, horizontal-flight, zero-reference condition. All
of the dynamic quantities will be regarded here as an
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unalleviated case and indicated with a (*) superscript. An
A/C rigid model is derived from Kaynes." Since the period
of short oscillations is Tg=2.86s, the validity of the time
evolution of the physical quantities is restrained to a
bounded interval, say t € [0,5s]. For longer time scales
thrust changes would be made, which is beyond the scope

of this document. Define {X} and {Y} as perturbation
vectors:

X¥=17 ul = [ forward velocity ]
[ w | | vertical velocity |
| q | | pitch rate |
L o | | pitch angle ]

{Y}= [ BM20 7] [ bending moment at 1/3 span ]
| BM40 | | bending moment at 2/3 span |
| TQ20 | | torque at 1/3 span |
| TQ40 | | torque at 2/3 span !
L NZ J L vertical acceleration at CG |

v}i= [ & 1= T elevator deflection ]
Ln | L aileron deflection |

The equations of motion are Eqs.(2.1.1)and (2.1.2) with [A],
[Bl, [C] and [D] from Kaynes."® The dynamic quantities
relative to the unalleviated case are obtained using (n*=0)
and (€*= step of 5°). They are represented in Fig.2-a to
Fig.2-k.

4.2 Direct Method

Since in the A/C mode! presented in the previous section
one can rely only on the two control surfaces £ and 7, it is
quite evident these cannot fulfill more than two conditions,
e.g. alleviate BM20, BM40 and constrain NZ at the same
time. Constraining NZ is essential to preserve the feasibility
of the maneuver: this represents an equality one cannot
afford loosing. Moreover, pitch motion is primarily dictated
by &, which is also very much responsible for the value of
the unconstrained BM20. Thus under these circumstances
the alleviation can be effectively performed solely on BM40,
Of course BM20 is indirectly subject to some (minor)
changes with respect to the (*) condition. These changes
physically can only represent positive variations, which may
turn the whole design into a worthless task: one will thus
assume the design is acceptable within a maximum 5%
increase in BM20 (5% uncertainty can be considered as an
upper noise level margin).

The first step of the method consists in expanding
Eq.(2.1.2) and focusing only on the BM40 and NZ rows:

rD(2,1)§+D(2,2)1‘|=BM40-C(2.1)u-C(2,2)w-C(2,3)q-C(2,4)6
1

| D(5,1)E+D(5,2M=NZ  -C(5,1)u-C(5,2)w-C(5,3)q-C(5,4)8
(4.2.1)

Let be A, the prescribed level of alleviation on BM40,
defined on the whole time interval [0, 5s]:

A = 1 - (BM40 / BM40*) 4.2.2)
Let be {¢} such that:
{0} =((1-\)BM40*,NZ*} (4.2.3)

Eq.(4.2.1) can be transformed into the compact form:

{V}=IDAT" ({OH+{CAKRXY) (4.2.4)
which leads, after replacement into Eqs.(2.1.1) and (2.1.2),
to the final set of equations (2.2.1) and (2.2.2) already
encountered in Section 2.2. These equations represent a
dynamic system where NZ and BM40 are prescribed.

The implementation of the DS requires a full-state
feedback, the selection of the maneuver schedule NZ* (pilot
input), the generation of the BM40* signal through NZ*.
Taking the second Eq.(4.2.1) and enforcing NZ(t)=NZ*(t)
with the assumption that in the unalleviated case there is no
aileron activity (n*=0), one gets in compact form:
-1

£=D(5,1) (NZ*-[C]{X}) (4.2.5)
introducing Eq.(4.2.5) and (n*=0) into Egs.(2.1.3) and
(2.1.4) leads to a system driven by NZ*:

[{dX*/dt}=[AH]{X*}+[B#INZ* (4.2.6)
!

l{Y*}  =[CHI{X*}+[D#NZ* (4.2.7)

Matrices [G], [A#], [B#], [C#], [D#] can be identified

straightforward. The control loop of DS is shown in Fig.3
and Fig.2-a to Fig.2-k refer to A=0.25.

5. Resuits

5.1 Resuits related to QS and DS Formulation Matching

The first output is the identification of [K], given by
Eq.(3.1.6):

[KI= [ 0.0127 0.1400 04584 0 ]
[ 0.0023 0.0224 00871 0 |

In the present case, [S] is 4x4, [Q] is 4x4, [R] is 2x2, [N] is
4x2. A first set of matrices which generate [K] is:

RI=T 1.0 02 ]
[ 02 1.0 |

[Q= [ 1.0 0.0 0.0 0.0 ]
| 0.0 1.0 0.0 0.0 |
| 0.0 0.0 1.0 0.0 |

{ 0.0 0.0 0.0 1.0 |

INJ= 10° [ -0.0010 -0.0005 ]
| 0.0187 0.0073 |
| -1.2340 -0.4869 |
L -5.7344 -22437 |
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A second set is:

[RlI=T 120 00 7 [Q= T 1.0 0.0 0.0 0.0 ]
L 00 10 | | 0.0 12 0.0 00 |
| 0.0 0.0 1.0 00 |
| 0.0 0.0 0.0 1.0 |
[N= 10° [ -0.0010 -0.0005 ]
| 0.0186 0.0072 |
|  -1.2450 -0.4920 |
[ -5.7350 -2.2439 |

Matrices [Q] and [R] fulfill all hypotheses of Section 3.2. A
back-check through the Riccati equation proof (Eq.3.2.1)
perfectly confirms in both cases the numerical value of [K]
with round off errors smaller than 10™. The corresponding
variations on {Y} are smaller than 4x10™.

5.2 Results related to Aircraft Motion

This section does not represent an A/C technical
assessment; It only helps visualize the accuracy of the use
of QS.

Table1 contains peak vaiues of BM20, BM40 and NZ in the
cases considered (unalleviated, . DS=QS) and their relative
variations. Design constraint on (+5%) peak increase on
BM20 (see Section 4.2) and the identity of NZ are fulfilled,
together with (-25%) on BM40. BM20 and BM40 curves are
shown in Fig.2-c and Fig.2-d.

Table 1: Comparison of Bending Moments and CG

Accelerations
case NZ BM20 BM40
BM20 | ABM/ || BM40 | aBM/
BM(1) | BM(1)
(1):unall. 10.8542)1.5268] 0.0 §0.7102| 0.0
(2): DS=QS |; 0.8542 | 1.5954 | 0.045 | 0.5326 | -0.250
The eigenvalues of the A/C longitudinal model are
presented in Table2.
Table2: Eigenvalues
case eigenvalues | natural natural
frequency | damping
unalleviated | -0.9900+1.9601i | 2.1959rad/s | 0.4508
-0.0059+0.0488i | 0.0049rad/s { 0.1200
DS=QS -2.0089+8.1819i | 8.4249rad/s | 0.2384
-0.0081+0.0791i | 0.0080rad/s | 0.1019

The stability conditions are ensured. One can check that the
alleviated curves of u, w, q, § (Fig.2-h to Fig.2-k) perfectly
match the unalleviated behavior, although this result does
not follow from a direct requirement. The quality of the
eigenvalue results may seem immateriai to flight mechanics
specialists. One can definitely add some measures of
additional compensation to render the A/C “friendlier".
However, a flight mechanical analysis of the feedback
matrix gains is beyond the scope of the document. One

only wants to illustrate the mathematical technique depicted
in the previous sections.

The characteristics of control surface activity are shown in
Table3.

Table3: Maximum Control Surface Deflection and Rate

case E©) [n(®) |dédt(©ls) | dn/dt (9/s)
unalleviated | 5.00 | 0.0 31.6 0.00
direct 493 /028 [28.9 0.86

The time behavior of £ and 1 is shown in Fig.2-a and Fig.2-
b. The extremely low value of n is probably hard to
implement in the real world. As already stated, one is
interested here only in describing a mathematical technique.

8. Conclusions

A LQR-based solution intrinsically owns a very high level of
accuracy if one correctly formulates the performance index
and drives the weight matrices as described in the paper:
the solution proposed is easy to implement and requires
relaxed conditions on the matrices.

The associated matching method is general, has the
advantage of requiring standard feedback systems and can
be used to analyze aeroservoelasticity problems and
advanced missile guidance and control laws.
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