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Abstract

The objective of this research is to investigate the ap-
plication of a new methodology based on a boundary
element method to compute aerodynamic sensitivities
to a simple integrated aerodynamic-structural optimal
design problem. The selected problem was the design
of a wing for minimum weight with structural-load,
aeroelastic and performance constraints. An equiva-
lent beam model was used to simulate the structure.
The numerical results of this preliminary study show
the validity of the proposed approach.

Introduction

In recent years there has been an increasing interest
in integrated optimal design methods as a rational ap-
proach to the aircraft design problem ( Sobieski ().
In these methods, objective and constraint functions
are assigned and the system analysis is performed
by integrating several disciplines (e.g., aerodynamics,
structures, controls etc.) in a common optimization
procedure. If a formal optimization is used, gradi-
ents of the objective and constraint functions with re-
spect to the design variables of interest are required.
This in turn implies the computation of the so-called
sensitivities coefficients, i.e., the derivatives with re-
spect to the design variables of certain key quantities
describing the system. In the field of computational
structures, the subject of sensitivity analysis is rela-
tively mature, and the references that are available
are extensive (see, e.g., references cited in Haftka and
Giirdal ). In the field of aerodynarmics, there exist
a limited number of studies and research is actually in
progress on this subject (Burgreen and Baysal ().

The present work is based on a methodology to

compute aerodynamic sensitivities which is based on
the Boundary Element Method (BEM) proposed by
Morino *). In early works, Arsuffi (*) introduced these
sensitivities to compute static aeroelastic sensitivities
for a wing in the presence of shape design variable
perturbations and Balis Crema et al. (), performed
a study to investigate aeroelastic sensitivities due to
structural modification by using BEM aerodynamics.
In this paper the above methodologies are applied
to solve an integrated aerodynamic-structural optimal
design problem. The design problem of a wing for min-
imum weight in the presence of structural-load, aeroe-
lastic, and performance constraints is addressed and
solved. The objective is to investigate the aspects re-
lated to the integration of the proposed aerodynamics
with a structural model in a common formal optimiza-
tion scheme.

In the following sections the paper presents a descrip-
tion of the model used in the study and the formula-
tion of the complete design problem. The optimiza-
tion procedure used is described. Finally, initial nu-
merical results are presented and discussed.

Modeling of the system

Aerodynamic analysis

For simplicity, in this paper the flow is assumed to
be potential (except for a vector for a vortex layer
called the wake, see Morino (), and incompressible
(for the extension of the methodology to compressible
and viscous flows see Morino (). The equation for
the velocity potential, obtained from the continuity
equation, is: :

V24 =0 (1)
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The boundary conditions, in the air frame of reference
(i.e., areference frame fixed with the undisturbed air),
are: (i) 0¢/0n = x = n-vp on the body surface
Sp (where vp is the velocity of a point on the body
surface and n the outward normal); (i7) ¢ = 0 at
infinity; (4iZ) potential discontinuity A¢ = constant
following a material wake point; (iv) A(d¢/0n) = 0
on the wake surface Sw; (v) at the trailing edge, A¢
on the wake is equal to the potential discontinuity on
the body. :
The corresponding boundary integral representation
is (Morino (7)) :
, 9¢ oG
Fod(x,te) = (BnG qﬁan) dS(x)

oG |,
/SW Ad o dS(x) (2)
where (¢ = —1/4m||x — x.||, with x denoting the point
of integration, whereas E, = 1 if x, is outside Sg, and
E. = 1/2 if x. is a smooth point of Sg. In this last
case Eq. 2 is an integral equation which allows one to
solve for ¢ on Sp, given d¢/0n (from body boundary
condition) and A¢ (from wake boundary condition).

This equation is discretized by dividing Sp and Sw
in quadrilateral elements (0, and o},, respectively),
assuming ¢, x; and A¢ to be constant within each
element, and using the collocation method. Using M
elements on Sp and N elements on Sy, one obtains
(see, again, Morino (7):

M 1 N M
Z <§6km - Crm — Z Fannm) Om = Z BimXm

m=1 n=1 m=1

(k=1,..., M) where

Bim = ff Grdo(x);  Cim=— f 0

0Gy
Fip = — Tk
k '/"In on dU(X)
with Gy = —1/4n|lx ~ xXi||, whereas S, is equal to 1

if the m-th body surface element is the upper element
at the trailing edge corresponding to the wake element
n, equal to —1 for the lower element, zero otherwise,
so that Agn, =3 Sumém.

Next, consider the problem of computing lift and in-
duced drag for a wing starting from the solution of
Eq. 2, which gives the value of the velocity potential
over the body surface Sp, and hence the value of the
discontinuity of the potential along the trailing edge,
A¢pg. The lift is then obtained as:

b/2

L = pUs ) A¢re(y)dy (3)

where p is the air density, U, the undisturbed flow
velocity and & the wing span, whereas the induced drag

can be computed with another line integral according
to Trefftz approach (e.g., see Ashley and Landhal (10)y,
Introducing the position coordinate ¥ such as cosd =
~2y/b,0 < ¥ < 7 and approximating the velocity
circulation A¢rg(y) — as evaluated by the Boundary
Element Method — by a trigonometric expansion

N
A¢r(9) = Ussb Y Ansinnd (4)
n=1
n odd
(where the sum spans over the odd terms because a
symmetric span distribution of the circulation is as-
sumed), one obtains the following expression for the
induced drag:

N
_ wpUZ b? 9
D= T2 S nal (5)

n=1
n odd

Structural analysis

The wing-like-box behaviour has been simulated by a
beam model. The assumptions in this analysis was
the following:

i -) beam cross sections with infinite stiffness in their
plane and that give no contribution to the stiff-
ness in normal direction;

12 -) skin panels working to shear stress only;

112 -} skin panel thickness small with respect to the
cross section size;

tv -) spar and stringer cross section areas are consid-
ered as concentrated in one point for the evalua-
tion of moment of inertia.

Moreover, in the present analysis all the geometrical
properties are assumed to be constant along the span
and over the section (i.e., spar and stringer cross sec-
tion areas, skin panel thickness, etc.).

The equilibrium equations, written in terms of dis-
placements for the static case and negleting shear flex-
ibility, are:

Lyw = (y)
Lo = tu(y)

where w represents the vertical displacement of the
elastic-center line and # the rotation of the cross sec-
tion, whereas v;(y) and v;(y) are distributed bending
and torsional loads respectively, and the bending and
the torsional operators are defined as:

d? d? d d

Ly = —El— L =——B—
P ay? T dy? ! dy ~dy
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Boundary conditions for the problem are those of a
cantilever beam with length L = /2. For the bending
problem they are:

w = wI =
{ il = ol 20 ©)
and for the torsion one:
00y = 0
{ 61 ( L) = 0 (7)

Solving the bending and the torsional problems by the
eigenfunction method, displacements can be expressed
as

w(y) = Y wadP(y) (8)

and
0y) =Y _ 0ns(y) 9)

being ¢£lb)(y) and ¢£f )(y) bending and torsional prob-
lem eigenfunctions respectively.

Aeroelastic analysis

The aeroelastic problem (in the absence of structural
damping), expressed in terms of Lagrangian variables
gn(t) and natural modes of vibration ¢"(x), is gov-
erned by the equation:
2

%?g +A%q=qe
having denoted with q the Lagrangian coordinate vec-
tor, with A the diagonal matrix of the eigenvalues of
the structure, with ¢ = 1p, U2 the dynamic pres-
sure, and with e the vector of the generalized forces
associated to the assumed modes ¢"(x). Note that,
assuming that the first M mode are of bending type
(¢%b)(y)) and the other of torsional type (¢g)(y)), one
has

¢ ={60(w1), 6D (w2), - 6D (uw)}T  forn <M
9" = {85y (1), 852 21 (92), -, 84 py(yn)) Tfor 0 > M
being N is the number of points where the modes are
evaluated and dJElb)(yi) = qsg”)(y)‘

we examine only static aeroelastic constraints. Then,
the Lagrangean variables do not depend by time so
the Eq. 10 can be reduced to:

(10)

. In this paper

A’q = qE.q (11)

where E; is the so-called static portion of the aero-
dynamic matrix: indeed, the generalized aerodynamic
forces can be expressed as

e=Eq (12)

where E is the aerodynamic matrix derived by the
BEM aerodynamic model (see App. B and Morino (1)
for details on the aerodynamic matrix evaluation).
The aerodynamic matrix is typically dependent on
time or, in the Laplace domain, on the complex vari-
able s. On the other hand, in the present study
steady-state conditions have been considered, then the
matrix E is independent of s and it will be referred as
E; in the following. The divergence dynamic pressure
gp is defined as the lower real value of ¢ in correspon-
dence of which the equation:

[A? —qE,]q=0 (13)

exhibits a trivial solution.
Performance

The mission profile considered in this study is de-
scribed in the following: take-off, climbing, a cruise
segment, descent and landing. The range is computed
according to the Breguet equation:

ve L, W;
R= =D In VV; (14)
where v, is the cruise speed, ¢ the specific fuel con-
sumption, L/D the lift to drag ratio, and W; and W;
the initial and final weights of the cruise mission seg-
ment respectively. If the fuel consumptions in the mis-
sion segments before and during the cruise segment
are expressed as a fraction of the usable mission fuel
weight Wy s ( indicated as ky e kj respectively), W; e
W; can be written as:

Wi:W~k1Wuf; Wf:W-—(kl-l-kz)Wuf (15)

Sensitivity analysis

The problem solution via formal optimization as in
this study requires sensitivity computations to evalu-
ate objective and constraint function derivatives ac-
cording to the optimization algorithm requirements.
Specifically, structural, aerodynamic and aeroelastic
sensitivities are required in the present analysis.
Structural sensitivities, because of the equivalent-
beam model chosen to describe the wing structure,
can be expressed in analytical form. Derivatives of
the bending moment at the wing root and those of
the stiffness matrix with respect to the design vari-
ables are required. This also implies, the computation
of the derivatives, with respect to the same variables,
of the natural frequencies and natural modes of vi-
bration of the structure. The bending moment at the
wing root can be expressed as:

EI 8%w

My = ———
)

(16)
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in which n = y/L denotes the wing span dimensionless
abscissa (L = b/2), E Young’s modulus, assumed con-
stant for sake of semplicity, I the section moment of
inertia, also constant, and w(n) the bending deflection
of the wing section of abscissa 7. If a; is the general
design variable, the associated bending moment sen-
sitivity is given by:

oMy _ E[dl (dw)  d (dw
da; L2 [doy \ dn? da; \ dn?

d>w d 1
+E1 (W) do; (ﬁ) (17)

Further details are given in the App. A.

Next, consider aerodynamic (lift and induced drag)
sensitivities. Lift sensitivity with respect to the design
variable «;, if the potential discontinuity sensitivity
OA¢rE(y)/Oa; is known (see App. B for details), can
be obtained simply by differentiating Eq. 3:

1
OL _ Pl (b/ 0A¢rE(n) dn
da; 2 -1 Ou;

2 /1 A¢rp(n)d (18)
e J_, TE\N) 41
where now 7 = —2y/b.

Similarly, by differentiating Eq. 5 the following rela-
tionship for the induced-drag sensitivity is obtained:

OD; _ wpU2b | 06 S~ ., & 9An
e = a o Z_jl nA2 +b 2-:1 nAn——~0ai (19)
n odd n odd

The derivatives JA,,/8a; are related to JA¢rg
(9)/0a; by the expression OA¢re(Y)/de; =
U [(8b/003) TN An sinnd + 6N (04, /0y ) sin nd]
(obtained by differentiation of Eq. 4) and are
computed by least-square fitting of the distribution
JA¢rE(9)/0a; obtained by the solution of Eq. 38 in
App. B.

Finally, let consider aeroelastic sensitivities, specifi-
cally divergence dynamic-pressure sensitivities. Start-
ing from the Eq. 13, differentiating with respect to the
design variable «;, premultiplying by the transpose
left eigenvector v(™" of the eigenproblem associated
to Eq. 13, and rearranging one has:

dgp 1 r [0A OE,

b - = 9

da ~ vIEup VD 15 1P 5, | D (20)
where details on the computation of derivatives of ma-

trices A and E; can be found in Apps. A and B re-
spectively.

Integrated optimal design problem

The formulation introduced here has been applied to a
simple integrated aerodynamic-structural optimal de-
sign problem. The goal of this study is to investi-
gate the application of the aerodynamic sensitivities

computed according to the proposed formulation to a
simple multidisciplinary design problem. The selected
problem is the integrated aerodynamic-structural de-
sign of a subsonic transport wing for minimum weight
subject to required range and in presence of struc-
tural and aeroelastic constraints. The aspects of the
optimization problem are detailed in the following sec-
tions.

Design variables, objective and constraint functions

The reference aircraft configuration is given in Tab. 1.
The design variables considered are:

1) aspect ratio, a; = A;

i) wing surface, ay = 5

u1) airfoil thickness at wing root section, ag = t,;
1v) airfoil thickness at wing tip section, oy = #;;
v) stringer cross-section area, as = Sg;

vi) wing-skin thickness, ag = t3;

vi1) usable fuel weight for the mission, a7y = Wyy;

The objective function to be minimized is the gross
weight of the aircraft W expressed as:

W =W, +Wus + W, (21)

where W, is the aircraft standard empty weight and
W, the payload weight. The payload weight is as-
sumed to be constant in the problem and equal to
the reference configuration payload weight. W,; is a
design variable and changes as the optimization pro-
cedure progresses. The standard empty weight W, is
computed from the standard empty weight of the ref-
erence configuration, W,., assuming that the reduc-
tion in the structural wing weight is reflected on the
aircraft gross weight amplified by a factor n, due to
corresponding savings in non structural weight and in
the tail and fuselage:

W, =W, — n(er - Wy) (22)

where Wy, and W,, denote the actual and the ref-
erence structural wing weight respectively. A value
1 = 2 is assumend in the study.

The constraints assumed in this design problem are
structural, aeroelastic and performance constraints.
The imposed constraints are:

i) range R greater or equal to an allowable value, R,:

i) bending moment at the wing root M, less or equal
to an allowable value, M,,;

i27) divergence speed Up greater or equal to an al-
lowable value, Upg;
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) wing volume available to contain fuel V; greater or

equal to the fuel volume required by the mission,
Vuf 5

These constraint functions and their sensitivities are
computed accordingly to the relationship that have
been introduced in the previous sections. Regard-
ing the limit values associated to these comstraints,
a maximum allowable bending moment of M, =
450000kgm at the wing root has been assumed as
structural strength constraint, while a minimum di-
vergence speed of Up, = 180m/s has been required.
Moreover, a minimum range value of B, = 2517Tkm
(1200 miles) has been imposed.

Optimization procedure

The described problem can be stated in terms of math-
ematical programming as follows:

min
o

W(a) (23)
such that
n=1-2 <0
92:1\1\4’41:;“130
gszl—g;)aﬁo
g4=%—150

al-gaiSa;‘, i=1,..,7

where «; denote the design variables. The terms o!
and o indicate, respectively, the lower and the upper

range limits for the design variable «;.

To solve the above problem the Sequential Uncon-
strained Minimization Tecnique (SUMT, Fiacco and
Mc Cormick (*¥)) with quadratic extended interior
penalty function, Haftka and Giirdal (®), has been
used. The sequence of unconstrained minimizations
generated by this method have been resolved by the
BFGS (Broyden-Fletcher-Goldfarb-Shanno , Gill et
al. (1)) algorithm. The one-dimensional minimiza-
tion associated to each search direction defined by the
BFGS algorithm has been carried out by quadratic
interpolation of the objective function.

Results and discussion

The initial design for optimization has been selected
according to simple criteria based on the extrapola-
tion of the aircraft characteristics similar to the small
subsonic transport aircraft considered in the present
analysis. Moreover, further semplifications have been
introduced for sake of semplicity, accordingly to the
objective of this work, an investigation on a method-
ology rather than to solve a detailed design problem.
Accordingly, a rectangular planform wing has been
considered, having a wing box with spars located at
0.1 and 0.8 of the chord, respectively, with twenty
stringers, ten on the upper and ten on the lower sides
of the wing box. The wing box hight has been assumed
equal to 0.9 of the thickness of the section profile and
wing-box skin thickness has assumed to be constant.
The allowable value of the wing-root bending moment
has been computed starting from the aircraft gross
weight and the minimum divergence speed equals 1.2
the maximum cruise speed. The initial design configu-
ration as well as the resulting final design are shown in
Tab. 1. Using the above described optimization proce-
dure the problem solution has been obtained in three
unconstrained minimizations, each including four one-
dimensional minimization procedures. The calcula-
tions have been performed on a DEC VAX 9000/440
systermn with a real CPU time approximately equal to
two hours.

The gross weight convergence history is shown in
Fig. 1. The gross weight of the aircraft has been re-
duced to 239k N. This 10 percent reduction in weight
compared with the reference aircraft is a consequence
of the reduction in the wing and in the usable fuel
weights.

The reduction in the wing structural weight is due to
the inboard shift of the wing surface (resulting by the
aspect ratio decrease, Fig. 2) which returns in a lower
root bending moment, Fig. 3, and then in a wing size
(Fig. 4) and weight (Fig. 5) reduction, because this
effect is larger than the accompanying increase in in-
duced drag. The wing weight decreases from 39kN
to 29k N, corresponding to a 25% weight saving.The
empty weight reduction induced by this effect is par-
tially responsable for the resulting usable fuel-weight
saving. :

The overall fuel weight reduction is of 6kN, corre-
sponding to a 15% fuel weight saving (Fig. 6). The
reason for this reduction is, in addition to the above
mentioned saving in wing structural weight, the initial
13% range excess with respect to the required value.

Finally, a special attention should be paid to the diver-
gence speed time history. In fact, the initial configura-
tion lies in the infeasible region of the design variable
space because of the divergence speed constraint vio-
lation (Up = 154m/s instead of Up = 180m/s). As
the configuration changes in the optimization proce-

1091



dure, the divergence speed increases to a final value of
181m/s, as shown in Fig. 7, which satisfies the diver-
gence speed constraint.

Concluding remarks

A new methodology to compute aerodynamic sensi-
tivities using a boundary element method has been
applied to a simple integrated aerodynamic-structural
optimal design problem. This study has shown the
capability of the proposed metodology to deal with
integrated aerodynamic-structural optimization prob-
lems taking into account the actual three-dimensional
geometry of the wing. Numerical results indicate the
validity and the accuracy of the metodology. The em-
phasys in this work was to investigate the application
of the methodology to an integrated optimal design
problem, so computational efficiency was not consid-
ered 1n detail, also if the analytical computation of the
aerodynamic sensitivities is a significant contribution
in this area. A complete evaluation of the compu-
tational requirements will be only possible after the
optimization of the calculation procedure.
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1 - Initial and Final Designs.

Objective function ]

Initial design | Final design

Gross

w

weight, | 264.1k N 2385k N

Design Variables |

Initial design | Final design

aspect ratio, A 12.50 11.52
wing surface, S 45.34 m? 38.97 m?
wing root thick- 0.12 0.11
ness, {,

wing tip thick- 0.12 0.11
ness, iy

stringer  cross- 3.000 cm? 2.000 cm?
section area, A,

cover-skin thick- 4.000 mm 2.500 mm
ness, tj

usable fuel 40.00 kN 34.06 kN
weight, W, s




(kN)

Constraints

|

Initial design

Final design

range, R (Rs = | 2517 km 2284 km
2920 km)
wing root bend- | 262.1 kNm 207.7 kNm
ing moment,
My (My, = 450
kNm)
divergence 153.9 m/s 181.3 m/s
speed, Up (Upa
= 180 m/s)
required (avail- | 4.347 m® | 3.018 m®
able)  usable- | (4.982 m3) (4.123 m3)
fuel volume, V, s
(Vi)

Weights |

Initial design

Final design

standard empty | 164.1 kN 1444 kN
weight, W,
structural wing | 38.71 kN 28.87 kN
weight, W,
payload weight, | 60.00 kN 60.00 kN £
Wy z
Performance |
Cruise Mach number 0.50
Maximum  operating  Mach | 0.35
number
Cruise altitude 5500 m
GROSS WEIGHT
280 | T T T T U T
270 + I
260 | ]
250 |- - g
3
240 -
230 + 7
220 | 8
210 L : . :
0 1 2 3
iteration
Figure 1: Convergence history of the gross

weight, 1V,
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10

ASPECT RATIO

T T T

1

0

1 2
iteration

3

Figure 2: Convergence of the aspect ratio, A. '

270

260

250

240

230

220

210

200

180

WING BENDING MOMENT

1

T T O

0

iteration

Figure 3: Convergence history of the wing-root
bending moment, M,.

50

48

44

42

40

38

36

Figure 4: Convergence of the wing surface area,

S.

WING-SURFACE AREA

1L

T T T

0

iteration




(kN)

(kN)

{m/s)

WING WEIGHT
50 1 T T Y T T T

a5 &
wh -
35 .

30 F b

Appendix A

The natural modes of vibration for the equivalent
beam can be expressed as

$®(n) = <P ()

¢ (n) = ()¢ (n) (24)

where 7 = y/L, and the normalization factors

20

1

(o)

iteration

2

w

() 1

Cin

(t)

Cin

whereas

La,

ye

Figure 5: Convergence history of structural wing
weight, W,

USABLE FUEL WEIGHT

45 — . ; T r
40+
35 |
30t
% 1' 2 3

Figure 6: Convergence history of the usable fuel

weight, Wauy.

DIVERGENCE SPEED

iteration

200 T

170 +

160

150 +

T

1

¥

T

i)

-

140

(w]

Figure
speed. Up.

1

iteration

2

w

7: Convergence history of the divergence

[COS(u(b)n) — cosh(uy)
+con (Sln(ﬂn n) ~ smh(u“’)n))]
¢Pm) = sin(un) (25)

with

P =

(b)

cos ,un 4 cosh ;tm

(26)

Con = =
" sin pip ) 4+ sinh ,u(b)

and a, = fol 7%b)2(7;)d7). This last integral is solvable
in closed form and yﬁ,b) and ,uﬁf) are obtained by the
characteristic equation for the bending and torsional
cantilever beam.

Note that the Equation 24 only the terms c(b) and cgin')
depend upon the design variables chosen, so that the
derivatives of the modes involve just these terms, that

is
dci)(L) -5 \f _s
Toa T (45)7

ac)(L) \[ _s
g = o (As)

oLy 9( _s

a4 = 3 WY

9eld)

9y, (L) =A -3 .
= ~ (49) (27)

where only non-zero derivatives with respect to the
component of the design variables a; (i.e., aspect ratio
and wing surface), are considered.

If the derivatives of the natural vibration modes are
known, is possible to perform the computation of the
derivatives of the bending moment at the wing root.
In fact, starting form the definition

d*w
dy?

Ay = (28)
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and considering the eigenfunction method, one can
writes

N
w= Z w, ®)(n)

. p
with w, = /\—n

n

(29)

having denoted with p, = fo pqﬁ(b) (n)dn the projec-

tion of the load p on the n-th mode &%’ )(7)), and with
An the square of the I’'n-th natural frequency.

Noting that in this case A, = /»tslb)4 73 by substituting
in Eq. 28 one obtains:
_ E! ) _Pn L* & 1)
Mo = Tz |2 amgrapts
nx=1
¢ P
= L’ Z 1;3,); $ () (30)
and by diﬁ'erentlatmg
(‘9Mb _ (L c1 )

. M )
o _ Z (b)2¢(b)u( )6(L “in) (31)

a5

Indicating with E(m) the term in the previous equations
which depends upon the design variables, one obtains

=(b)

¢, _ 3 /IS 4%
0A 8V 2a

o0&, _ 3 [T 563
as 8V 2a

Next, consider the sensitivities of the stiffness matrix
A, that in this case is a diagonal matrix the elements
of which are the squares of the natural frequency of
the structure, that is

(32)

AP = T a0 =D (3)
for bending and torsional modes respectively. So in
this case the sensitivities of the stiffness matrix are
reduced to the computation of the sensitivities of the
natural frequency of the structure.

The frequencies /\S,b) depend upon the design variables
by the area moment of inertia I and the length L.
Similarly, the torsional frequencies ,\ff) depend upon
the design variable by Bredt’s torsional stiffness B and
the length L. Recalling that

2
I = n A, (%c—)
 4G(dec.)?
B= =3
g = (Qi;_;lc) (34)

where n. indicates the number of stringers, ¢, denotes
the wing-box chord, d. the wing-box depth, E the
Young’s modulus and G the shear elasticity modulus,
the frequencies can be expressed as function of the
design variables, that is

2
16 i+t
® - Lt )
Ay 1552 —===En A, ( 5 ) My
() 40u(t)2thkz(tr + tt)z
A ; (35)
2AV ASk: + A%(t, +t1)

where the constants u(b)4 and u(t)z are dependent on

the the boundary conditions and the constant k. is
the wing-box to aerodynamic chord ratio. By dn‘fer-
entiating bending frequencies one obtains

a)\g)) - _2E'n.:Ac (tt + tr)z (b)4
EY A35? Hn
6)\5;6) - _2E77,CAC (tt + t,-)z (b)4
9A A253 Hn

(‘))\S,b) - QEHCAC (tt + t,-) (b)4
ot 4252 Hn
PN _ 2BneAc(ti+ts)
6tr Azsvz 2
3)\&17) - Enc (tt + tr)z ()4
9A, Azg2 M
3)\(”)
=t -9
Oty
PN
- 36

Furthermore, performing the same task for torsional
frequencies yields

) _ 4Gu(“2thk§(t, ) [3\/,45196 +2A(F + tt)]
2
o4 [2AVASk, + A2(t, + )]
D G kRt + 1) [Vf%kc]
== 3

958 [2AVASk, + A2(t, + )]

Ay P
B =20 aGu % k(e + 8

Btr 6tt Hy ' lh c( + f)
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2 A%(t, +t4)

= - 3
2AVASE + A3t +40) [0 4 /ATk. + A2(t, +1,)

PN
9A, "
oA 4GP, + 1)

Otn  2AVASk, + A%(t, + 1)

oA

aWay 0

Appendix B

The discretized boundary element intgral equation,
Eq. 3, can be rewritten as:

Yé=b (37)

where Yin = %61”,, ~ Cem = Y, FenSnm and by =
Y BemXm. The derivative of the velocity potential
with respect to the design variable o is:

J¢ 1] 0b 8Y
da; Y [8(1,- Do ] (38)
If the surface elements in which the body and wake
surfaces are discretized are approximated by quadri-
lateral hyperboloidal elements (Morino et al., (4)), the
terms Bgm, Ckm ed Fi, which appear in the elements
of matrices Y e b, Eq. 37, depend upon the location
of the corners of the surface element m (or n) and
of the collocation point x;, that is, the position vec-
tors of five points, x(¢), which have components :cgq),
{=1,2,3. Differentiating Eq. 37 and using the chain
rule, yields:

M Oém
X Ve,

In a prescribed point of the design variable space a,
Eq. 39 shows that the sensitivity computation can be
performed by computing once, regardless the compo-
nent a; considered, both the matrix Y~1 as well as
the terms 8Ykm/8x§q) and 6Bkm/az§“; these repre-
sent most of the computational effort involved. The
terms dym /0a; and 6::35‘1)/804,-, the only ones in Eq.

39 which depends on the design variable «;, must be
computed for each «a;, but their computation does not
represent a problem, because simple expressions are
available for them.

Consider the aerodynamic matrix E which relates the
generalized aerodynamic forces e to the lagrangian
variables q:

e=Eq (40)

It is convenient to decompose this matrix as follow
(Ref. (1)

E=E, [E3¢E2 =+ ng] E, (41)

in which is possible to give a physical meaning to each
term that appears in the right hand side, namely:

x = Eiq

¢ = Ex
¢, = Esuén +Esyx

e = E4c,

where x and c, indicates the normalwash and the
pressure coefficient vectors respectively and ¢, the
vector of the velocity potential ¢ computed at the
nodes of the discretized body surface.

Now, considering the elements of the different matrices
(see (1) for details). The elements of the vector Eg
and of the matrix E1; are given by

Eior = vp -nok

Ei1kj = vB - Ang; (42)

where ng(xy) = ngg is the normal to the body surface
corresponding to the control point x; in the unde-
formed configuration and Any; is the variation of the
same vector in the deformed configuration associated
to the j-th mode, .e.,

N

n(xk) = ng; + Z Allqu]' (43)
j=1

where

a1, (Xx) X agy(Xx)
lag(xz) x az,(xx)]

1

[ano(xz) X az,(xx

+ag, (xg) x M] (44)

0®;(x)
I [a“’("k’ o

Ank]’

3}
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where a,, and a, indicate the covariant base vector,
in the undeformed and deformed configuration respec-
tively, referred to the curvilinear coordinate system
&%. These covariant base vector are expressed by

1
ay(xg) = 1 (X1m + Xam — X3m — Xam)

1
ag(xy) = 1 (X2m — X1m + X3m — Xam) (45)

where X, indicates the position vector of the r-th
node (r = 1,2,3,4) of the surface element o,,.
The elements of the matrix E, are the form

Eokm = Z Yk—nl Bum
n

in which the matrices Y and B have been introduced
earlier. :

The matrices Ez4 and Eg,, are elements given by

1
E3prr = _i‘ﬁ"‘[slral(xk)+52ra2(xk)]
o
Esykm = -(—]““5ka3'“ (46)

where the index r denotes the »-th corner of the m-th
surface element and the matrix Sk, is a trivial matrix
which take into account for the right sign of the various
terms.

Finally, the elements of the matrix E4 can be written
as

Eajr = —4 g ai(xx) x az(xp) €;(xx) (47)

Next, consider the derivatives of these matrices with
respect to the design variable o;. The derivatives of
the elements of the vector E g and of the matrix Eq;
are given by

8E10k - v '6n0k
Bai - R Oai
BEnk,- 8Ankj
da; = VR Oo; (48)
in which
all()k _ 3 n()k 813];”
da; ;; Oxpr, ) (49)
By writing
6a1 (Xk) _ l Bxlm + szm _ GX3m _ (9X4m
Doy T4\ By Ooy; Oov; Ou;

[l

Oag(xy) _1_ OXom _ OX1m 4 OX3m 3 OXam
doy; 4\ Oq; da; O da;
(50)

yields

BAnkj _ Oa; (xk) }
Ga,- - aa, 352

. i ((9@ ).
+ al(xk) X 652

daz(xk) 6@1
Al 651]
+faato) % 5 (52)] 60

Equation 51, using the relationship &; = ci;(L)®;
and the Schwarz theorem may be written as

0An;  Oaj(x) x% Baz(xk)
doa; da; €z " Ba; 8{1

8 [~ Oecyi(L
al(xk) X (9_52 (Qj —'é—]&(—-)->

8 561 (L)
a1 (”” “dar ) (52)

+

+a2 (Xk) X

in which all terms are known.

The derivatives of the matrix E, involve the deriva-
tives of the matrices Y and B. This in turn implies
the computation of the derivatives of the coefficients
Bim, Cim, and Fin,, Eq. 3. The details are cumber-
some and and can be found in Ref. (9),

By differentiating Eq. 46 with respect to «; one ob-
tains

6E3¢kr _ 1 8a1 (xk) aag(xk)
6ai -7 2Uoo [Slr 6ai + SZT aai
3E3ka 2 on
EART = —06 m
day; " Uw km VR 5&, (53)

where derivatives of the covariant base vectors a, and
of the normal n have been introduced above.
Starting from Eq. 47, using the notations introduced
above yields

(‘3E4J-,e - Bal(xk)
aai = —4 (_aai X az(xk)
L (x) x c‘)a;((jk)) 3,

—4 (ay(xx) x az(xz)) - ( acg(L)) (54)

in which all the terms have been already considered.
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