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Abstract. The aim of this paper is the gust allevia-
tion analysis of a flexible wing-tail configuration. The
motion of the wing-tail configuration is given by the
combination of a rigid-body motion with an elastic
deformation. The latter is expressed in terms of the
natural modes of vibration of the unrestrained air-
craft. Aerodynamic loads are determined from a finite-
state model, which is based on a frequency-domain
boundary-element-method solution for the fluid flow
(assumed to be irrotational) around the aircraft. The
specific problem studied consists of the determination
of a control law for the alleviation of the short-period
response to a vertical gust disturbance. Deflections of
ailerons and elevators are assumed to be the control
variables of the problem, whereas the center-of-mass
acceleration is the output to be controlled. Numerical
results deal with the responses of the considered wing-
tail configuration both to a deterministic ‘l-cosine’
gust distribution and to a stochastic PSD model based
on the von Karman spectrum.

Introduction

This work deals with the analysis of gust response
and the synthesis for gust alleviation, for a wing-tail
configuration trimmed to fly straight in steady, sym-
metric flight, with level wings.

The problem of alleviation of the effects of gust en-
counter is one of the major tasks in aeronautical de-
sign. Indeed, as indicated by Houbolt(!) a series of
problems are caused by gusts. In particular, a great
amount of accidents experienced in all aviation activi-
ties have been caused by atmospheric turbulence. Gen-
erally speaking, in the presence of severe turbulence,

Copyright © 1996 by the AIAA and ICAS. All rights reserved.

the controllability of the aircraft is not guaranteed and
structure failures may occur. These two aspects are
also mutually dependent, since structural failure may
be induced not only by the loads due to turbulence,
but also by those generated by pilots in the attempt of
controlling the aircraft flight. Furthermore, even mod-
erate atmospheric turbulence is a source of undesired
effects in aircraft performance. Problems in the guid-
ance of aircraft and in fatigue damage of the aircraft
structures are mainly generated by the frequent pres-
ence of rough air in the flight paths. Hence, it is clear
that the assessment of a reliable mathematical model
for the analysis of aircraft behaviour in turbulent air
and the synthesis of an efficient control law for gust
alleviation is highly desirable for the structure design.
In the last decades much work has been performed in
the field of gust alleviation design. A review in this
subject is behond the scope of this paper; however,
as examples, we cite the work of Oehman (see Ref.
[2]) who uses a conventional control approach, with a
vane sensor as gust velocity observer, and the work of
Karpel,(® that is based on a finite-state model for the
aerodynamics, similar to that presented in this work.
Here, using the finite state-space modeling for unsteady
aerodynamics presented in Ref. [4] (which, for the sake
of completeness is outlined in the following), we want to
present a gust-alleviation approach that is based on the
optimal control methodology in which the disturbance
is considered to be known. In our problem, this means
that the gust velocity that will be encountered by the
aircraft is (for instance by a laser-anemometry device)
in advance.

As a test case, we consider the flexible wing-tail con-
figuration of a commuter aircraft, for which a pre-
vious numerical analysis of natural modes of vibra-
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tion is available.() Unsteady aerodynamic loads are
determined by a frequency-domain boundary-element
potential-flow methodology (see Ref. [6]) that is briefly
outlined in Appendix A. For the gust distribution we
consider the deterministic “l-cosine” model and the
stochastic model introduced by von Karman. In order
to validate the formulation proposed, we present nu-
merical results. These include the controlled and un-
controlled response of the above wing-tail configuration
to a vertical gust, both in terms of the center-of-mass
acceleration and of the moment at the roots of wing
and tail, for different modal approximations of the air-
craft structural behavior. The first concerns mainly
the pilot and passengers ride comfort in the presence
of gust, whereas the second concerns the alleviation of
structural stress and fatigue due to the gust.

Equations for Gust Response

In this section we consider the equations utilized

to describe the motion of a flexible aircraft. Specif-
ically, we analyze the small-perturbation motion of a
flexible aircraft around the trim reference condition, in
presence of a vertical gust forcing term. The reference
trim condition considered is a constant-speed horizon-
tal rectilinear flight with wing level.
Let us introduce a system of curvilinear material (con-
vected) coordinates, £*, and let the geometry of the
body (aircraft) with respect to an inertial frame of ref-
erence be described by

X(E%,t) = &(t) + REOFE) +d(g®, 0)] (1)

where R(t) denotes a rigid-body rotation (i.e., orthogo-
nal) tensor around the point Xo(t), F(£*) is the location
vector with respect to the point Xo(¢), in the unde-
formed configuration, whereas J({", t) represents a de-
formation vector. Note that Xo(t), d(€%,¢) and R(t) are
interdependent (in that the same configuration X(£%, )
may be obtained with different choices of X (¢), J(ﬁ“ , 1)
and R(t)). The decomposition is unique if F(€%) is the
location vector with respect to undisturbed location
of the center of mass and d(£%,t) is orthogonal (with
weight the density, g, of the material) to the rigid-body
motion (i.e., J(f"‘,t) describes pure deformation). In
this case, Xo(t) coincides with the center of mass at all
times.

The condition that d(£%,¢) be orthogonal {(with weight
o) to the rigid-body motion is automatically satisfied if

N

> znlt) Ba(€®) 2)

n=1

d(e*,t) =

where ®,,(£%) are natural normalized elastic modes of
vibration of the unrestrained aircraft, for which

/ 0® B, dV = bk (3)
v

with V denoting the volume occupied by the aircraft.
Next, let us introduce an inertial frame of reference,
{co, jo, ko}, and a second frame of reference, {l ], k}
the motion of which with respect to the inertial frame
is determined by its origin Xo(¢) and a rotation R(t),
around Xo(t).

In case of a small-perturbation motion around the refer-
ence condition of constant-speed horizontal rectilinear
flight with wing level, combining Eq. (1) with Eq. (2)
leads to the following expression for the absolute veloc-
ity of a point of the body with respect to the inertial
frame of reference

V(E*t) = (~Up+u)i+v]+wk
+ opiXTHqIxT+rkxT
+ Y in®n (4)
n=1 .
where vV Vo = —U() iis the velocity at the trim condition,

V=uituvj+ wk is the perturbation velocity of the
center of mass with respect to the {Io, Jo, ko} frame of
reference, and & = pi+qj+rk is the 7 k} frame—of—
reference angular velocity with respect to {lo, Jo, kg}.
As shown in Ref. (7], combining Eq. (4} with the
complete set of equations governing the dynamics of a
flexible aircraft, and neglecting all perturbation non-
linear terms, yields a system of linear differential equa-
tions in which rigid-body-motion variables are dynami-
cally decoupled from the elastic generalized coordinates
(coupling is induced through generalized aerodynamic
forces). Furthermore, longitudinal-motion variables are
uncoupled with lateral ones. Finally, recall that in
the case of a vertical gust only longitudinal general-
ized variables are perturbed and that the short-period
approximation describes the rigid-body dynamics with
satisfactory accuracy. Hence, considering Eq. (3), the
following equations are those to be considered for the
analysis of vertical gust response of a flexible aircraft
in horizontal rectilinear flight at constant speed with
wing level

mw=-—-mUyq+ F, (5)
Jq= M, (6)
i+z=g (7

where m is the mass of the air_graft, J is the aircraft
moment of inertia around the j-axis, z = {z1,...,2,},
and F, and M, are the lifting force and the pitching
moment, respectively. Furthermore, in the equation
describing the dynamics of elastic degrees of freedom,
Eq. (7), g = {91, .., 95} is the vector of the general-

- ized aerodynamic forces related to the elastic degrees

of freedom, whereas
5 = Q2 61y (8)

with Q, denoting the natural frequencies of vibration.
The aerodynamic forcing terms in Egs. (5), (6) and (7)
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are given by

(10)

(11)

where S represents the aircraft surface, fi is the out-
wardly directed normal to &, and p is the pressure
distribution on §. Note that, in the absence of a
gust perturbation, F, = F,(w,q,2,8,,6,), M, =
My(w,q,2,6,,6,), and g = gr(w,q,7,6,,6,),
where 6, and &, denote the deflection of the aileron
and the deflection of the elevator, respectively. Here,
§, and &, represent the control variables. Hence, as
stated above, in Egs. (5), (6) and (7) the aerodynamic
forces are responsible for coupling between the rigid-
body and elastic degrees of freedom.

Finite-State Aerodynamic Modeling

Here, we outline the technique used for the finite-
state modelling of the generalized aerodynamic forces
appearing in the equations for the analysis of gust
alleviation of flexible aircraft. The starting point is
the availability of the solution for the aerodynamic
field generated by the motion of the aircraft. In this
work, we consider an incompressible, potential-flow so-
lution determined by the boundary-element methodol-
ogy, briefly described in Appendix A. From the poten-
tial solution, using the Bernoulli theorem, it is possible
to evaluate the generalized aerodynamic forces in terms
of the finite number of variables affecting the dynamics
of the aircraft. Therefore, if £ = {F,, My, g1,...,95}
represents the vector of the generalized aerodynarmic
forces, in the frequency domain it is possible to obtain
(see Appendix B for further details)

f= qD E(§)5'+QD Euﬁ'i"qD eg(g) "I)Gﬂ (12)

where qp = pUZ/2 is the reference dynamic pressure,
5 = s/Uy is the reduced Laplace-transform variable,
and E(3) is the aerodynamic matrix relating the gen-
eralized forces with the vector of the state variables
y = {w,q,21,...,z,}. Furthermore, E, is the matrix
(here assumed to be constant) that relates the gener-
alized forces with the control variables u = {6,,6,},
e,(3) is the vector of the forces caused by a unit gust,
and w, is the gust velocity at the center of mass. In
general, the elements of the matrix E(5) are trascen-
dental functions of the reduced Laplace-variable 3. The
finite-state modeling of the generalized forces is ob-
tained by approximating the generalized-force matrix
in terms of a rational matrix function of the variable 3.
Observing the dependence of E($) upon the variable 3

described in Appendix B, a suitable approximation for
the generalized-force matrix is (see Ref. [8] for details)

E(3) =352 Ay+5A + Ao+ (51+ G)™'F,  (13)

where Az, A1, Ay, G and F are [{N +2) x (N +2)] con-
stant matrices. The eigenvalues of G correspond to the
poles of the aerodynamic approximate transfer function
(note that due to the different dependence of velocity
and displacement state variables upon the frequency,
3, the first two left columns of the matrix Ay are set

‘equal to zero, see Appendix B). The approach applied

for the identification of these coefficients is based on a
least square technique of the type of that described in
Ref. [8].

Next, consider the approach used for the finite-state ap-
proximation of the vector e,(3). Under the assumption
of frozen-gust and constant flight speed, the gust veloc-
ity distribution Wy (X, ?) in a frame of reference traveling
with speed vy = vUofis

Wy(%,1) = w, (t -~z xG) K. (14)
Uy
In the frequency domain, Eq. (14) becomes
Wo(R) = g e~ 77Uk, (15)

For low-frequency analysis i.e., for aircraft length mach
less than the gust wave lengths of interest, we may
use the following approximated description for the gust
distribution

W, (%) & (14”;:‘3)1?

~ b, (E+gj“>< ?), (16)
or even the simpler classical approximation
V:";g(i) ~ II)G E’ (17)

for which, at each time, the velocity of the gust is as-
sumed to be constant all over the aircraft. Therefore,
the influence of the gust upon the aerodynamic forces
may be given in term of the only plunge mode (Eq.
(17)), or recast in terms of a superposition of the plunge
and pitch rigid modes (Eq. 16)).

Hence, in general, denoting by aEJ) and £U) the j-th
column of A; and F respectively, we have

e, =5 ay+sa +a+ GBI+ G +5f) (18)

with a; = a(lz), a; = agl) +a82), ag = a(()l),fl = ) and
fo = £, for w, given by Eq. (16), and a; = 0,a; =
a(ll),ao = agl),fl = 0 and f; = f), for W, given by
Eq. (17).

Combining Egs. (12), (13) and (18) and transform-
ing back into the time domain, the generalized forces
comparing in Egs. (5), (6), and (7) are given by

(I/QD)f(t) = A25'+A1y+AOY+EUu

+ aswW,+ayws +aw, +r

(19)
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coupled with the additional differential equation
r=—Gr+Fy+fiu, +fHhw,, (20)

where r is the vector of the augmented-state variables,
introduced by the finite-state approximation of the
aerodynamic loads.

Gust Alleviation via Optimal Control

In this section we determine the control law for
alleviation of the effects of gust encountering on dy-
namics of the aircraft. This is accomplished by an
optimal control approach applied to the equation of
motion of the aircraft, with aerodynamic forces given
by the finite-state model described above. Note that
the optimal control methodology is applicable only to
time-domain dynamics equations, and hence the avalil-
ability of expressions of the type of Eqs. (19) and (20)
for aerodynamic loads expressed in terms of the vari-
ables affecting the dynamics of the system is crucial in
this context. Two different optimal control approaches
have been investigated. In the first one, we simply
determine the classical optimal-control law based on
the minimization of the cost function, disregarding the
presence of perturbation due to the gust (LQR ap-
proach). To the contrary, in the second approach the
control law is determined by taking into consideration
the presence of aerodynamic loads due to the gust, and
assuming that the gust velocity perturbing the aircraft
dynamics might be known in advance (e.g., by using a
laser-anemometry device that observe the gust veloc-
ity at points ahead of the nose of the aircraft, under
the hypotheses of frozen gust). The first approach is
a particular case of the second one, and hence in the
following we briefly outline the latter. First, consider
the expression of the differential equation describing
the dynamics of the aircraft. In order to obtain a set
of first order differential equations, let us define the
following new set of state variables,

w

(21)

»
H
= N 4

where v = z, the [(2N + 2) x (2N + 2)] structural

matrices

m 0
o glo]o
M; = 00T
010
and
0 —mU()
0 0 0 0
M, := 0 |—-n%]o0 |’
0 0 I

the [(2N + 2) x (2N + 2)] aerodynamic matrices

. [o]Ag |O i [ AL 0] A
AZ'_{O 0 0}""‘1"[ 0 oo |’

and

A = | Avwa [ 0] Ao,
fo= [ R for e

where the subscript ‘wgq’ denotes the columns com-
bined with the rigid-body-motion degrees of freedom,
whereas the subscript ‘z’ denotes the columns com-
bined with the elastic degrees of freedom, and finally
the [(N + 2) x (2N + 2)] aerodynamic matrix

i“::[F]O].

Then, combining Egs. (5), (6), and (7) with Egs.
(19) and (20), one obtains the classical dynamic-system
equation

x=Ax+Bu+f, (22)
where
A= Mz—Az—A1|0 - M1+Ao| I,
- 0 |1 F |-G

has dimension [(3N +4) x (3N + 4)],

o[ Me-A;—4 0] [E,
= 0 ] [0 |’

has dimension [(3N + 4) x 2], and

. - -1 [ £
£ = [MaAs—Ai 0] =5~
G 0 II _f(fr 1
- G

with f(1) = ay W +a; W, +awg, £ = £ w, +fo w,
(see Egs. (19) and (20)), and

=[]

Next, consider the synthesis of the control law from an
optimal control approach, based on the knowledge of
the disturbance (here depending on the gust velocity,
w, ). Following the classical optimal control theory, the
problem is cast in terms of minimizing the cost function

1 1[4 |
7 x;rPxf—t--Q—/O (xTQx+uTRu)dt (23)

T2

coupled with Eq. (22), as a differential constraint. In

“Eq. (23) P and Q are positive semi-definite matrices,

whereas R is a positive definite matrix. Then, applying
the calculus of variations to the optimization problem
stated above, yields the control law

u=-R!'BTSx+R!BTh, (24)
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where h is the solution of

h=(SBR'BT - AT) h+Sf_, (25)
with final condition h(t;) = 0, and the Riccati ma-
trix, S, is that satisfying the ARE {Algebraic Riccati
Equation)

ATS+SA-SBR'B's+Q=0. (26)
(see Ref. [9] for an extensive analysis of this subject).
Hence, once the cost function has been defined (i.e., the
matrices Q and R have been chosen) and the ARE has
been solved, from the knowledge of the gust velocity
distribution, w,, in a short range ahead of the air-
craft, it is possible to compute the gust forcing term,
f., and hence the function h that, with the knowledge
of the state vector x (here assumed to be osservable in
almost all of the results presented, altough the use of
an observer would be necessary for more realistic anal-
yses), is applied for the step by step definition of the
control variables, used to alleviate gust effects (see Eq.
(24)).

Finally, note that the LQR control law may be obtained
by assuming that no external perturbation is present in
the constraint equation. In this case, the control law
assumes the simple form

u=-R7!BTsx. (27)

In the next section, we will analyze the differences in
terms of gust alleviation between the use of Eq. (24)
and Eq. (27).

Numerical Results

In this section we present some numerical results
concerning gust response and gust alleviation of a com-
muter flexible-wing-tail configuration. The wing sur-
face is 54.514m?, the root chord is 2.574m, the tip
chord is 1.415m, the mean geometric chord is 2.285m,
whereas the aspect ratio is 11.08. The tail plane has
a surface of 11.73m?, a mean chord of 2.285m, and an
aspect ratio of 4.56. The distance between the quarter
of chord of the wing and the quarter of chord of the
tail plane is 11.3425m. The mass of the commuter is
17115kg and its moment of inertia about the y-axis is
355645.6kgm?.

First, we have analyzed the response of the com-
muter considered to a stochastic vertical gust model
based on the von Karman PSD distribution, with ¢ =
.3048m/sec and turbulence scale length L = 762m, us-
ing different modal descriptions. Figure 1 (for s = j k)
shows the response in terms of the PSD and rms of the
load factor at the center of mass for structure dynamics
described by rigid modes only (plunge and pitch), and
for structure dynamics described with 6, 8, and 10 nat-
ural modes of vibration, whereas Figs. 2 and 3, for the

same dynamics models, show the response in term of
bending moment at the wing root section and bending
moment at the tail plane root section, respectively. In
the first case the response is almost unaffected by the
number of elastic modes considered in the analysis (the
variations of the corresponding values of rms are very
small), whereas bending-moment response is consider-
ably dependent on dynamics model used. Therefore,
from the results in Figs. 2, 3, and 4, for all the following
results we have considered a dynamics model described

" by 8 natural modes of vibration (results with 10 elas-

tic modes are quite close to those obtained by 8 elastic
modes). Then, the effect of different approximations
for the gust distribution on the aircraft surface is ana-
lyzed in Figs. 4, 5, and 6, respectively for the PSD of
load factor at the center of mass, for the PSD of bend-
ing moment at the wing root section and for the PSD
of bending moment at the tail plane root section. In
particular, when taking into accounts the gust effects
in the boundary conditions in the potential-flow for-
mulation (see Appendix A and Appendix B), we have
considered the gust velocity distributions expressed in
Egs. (15), (16), and (17). For all of the quantity con-
sidered, in the low-frequency range the results from
the approximation given in Eq. (16) are the closest
to those obtained with the exact gust distribution of
Eq. (15), whereas in the high-frequency range, the sim-
ple approximation of Eq. (17) appears to be the most
accurate, in particular for the response of tail bend-
ing moment. This happens because at large distances
from the center of mass, the linear approximation (Eq.
(16)) of the exponential function with complex argu-
ment (Eq. (15)), is worse than the constant-value one

(Eq. (17)).

Next, we have applied the optimal control approaches
presented above for the alleviation of response to von
Karman gust model and to the ‘1-cosine’ gust model,
with gust distribution on the wing-tail configuration
given by Eq. (16), unless otherwise specified. For
the von Karman gust model, the controlled and un-
controlled time responses have been obtained by con-
sidering as input a time dependent gust velocity equiv-
alent to the original stochastic model (it has been ob-
tained by an inverse discrete Fourier transform with
amplitudes given by the PSD model, and using ran-
dom phases). For the stochastic gust model, Fig. 7 de-
picts uncontrolled load-factor time response and time
responses with use of both LQR control law of Eq. (27)
and known-disturbance control law of Eq. (24). The
same comparison is shown in Figs. 8 and 9 for the
wing-root and tail-root bending moments, respectively.
In all of the cases considered, the application of control
laws alleviates considerably the effects of the gust (see,
in particular, the rms values for controlled and uncon-
trolled system). Note also that the known-disturbance
control law seems to be more effective for alleviation
of load factor and wing-root bending moment, whereas
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the LQR control law is more effective for alleviation of
tail-root bending moment. In Fig. 10 we show the same
type of analysis for the tail-root bending moment us-
ing the constant-distribution gust model (see Eq. (17)).
Comparing Fig. 9 with Fig. 10 it is possible to note the
considerable influence of gust distribution model used
on the response of the tail-root bending moment.
Similar results have been obtained for controlled and
uncontrolled responses to the ‘l-cosine’ gust model
with shape

U, 2nz
w, = T [1 -— COS (ﬁ)] s

where Z is the distance penetrated into gust, & is
the mean geometric chord, and U, is the peak-value
(here, for Uy = 128.6m/sec, we have assumed U, =
15.24m/sec). These are shown in Figs. 11, 12, and 13,
respectively for load factor at center of mass, wing-root
bending moment, and tail-root bending moment, and
demonstrate the effectiveness of application of control
laws, that is particularly evident in the considerable
reduction of peak values of responses. Note that the
negative peak of the uncontrolled response is very close
to the value of —1.79 suggested by shortcut methods
(see, e.g., Ref. [10]), for the case here examined.
Then, we have analyzed the effect that errors in gust
velocity measurements have on gust alleviation. For
the wing-root bending moment, Fig. 14 shows con-
trolled time responses to stochastic gust, considering
measurements with no errors, measurements with 50%-
underextimation of gust velocity and measurements
with 50%-overextimation of gust velocity. Note that
also in case of underextimation of gust velocity con-
siderable alleviation of gust effects occurs (in general,
the sensitivity of known-disturbance control on gust-
measurement errors has been verified to be very small).
Finally, we have analyzed the alleviation of gust ef-
fects on load factor in presence of an observer for the
reconstruction of state vector from the knowledge of
center-of-mass acceleration, observing that controlled
gust responses with and without observer are almost
identical (see Fig. 15).

(28)

Conclusions

The alleviation of gust response of a flexible wing-
tail configuration has been considered. For the de-
scription of the elastic-deformation motion, the aircraft
unrestrained natural modes have been used. Aerody-
namic Joads have been calculated by an incompressible,
potential-flow boundary integral equation methodol-
ogy and then have been approximated by a finite-state
model approach. The gust influence coefficients have
been determined both by a superposition of plunge-
and pitch-mode influence coefficients and by assum-
ing a simple plunge-mode approximation. Controlled

and uncontrolled gust responses to the stochastic von
Karmidn model and to the deterministic ‘l-cosine’
model have been investigated, applying both a classical
LQR. controller and an optimal control approach based
on the knowledge of the gust velocity in a range ahead
of the aircraft. Both approaches give a considerable
alleviation of gust effects (these have been analyzed in
terms of load factor at the center of mass and bending
moments at the wing root section and at the tail plane
root section). The influence of the modal description
employed, of errors in the gust velocity measurements,
and of description of gust distribution along the length
of the aircraft have also been studied.
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Appendix A: Aerodynamic Formulation

In the aerodynamic formulation used to obtain the
generalized forces appearing in Egs. (5), (6), and (7)
the fundamental assumptions are that the flow is in-
compressible, inviscid, and initially irrotational. In this
case (see, e.g., Ref. [6] where the compressible-flow for-
mulation is also presented), it is possible to introduce
the potential function ¢ such that

”‘F = Vo, (29)

where V. is the velocity of the fluid particles, and that
satisfies the following Laplace equation
Vip = 0. (30)
The differential formulation is completed by the follow-
ing boundary conditions (see Ref. [6]): (i) 8¢/0n = V-7
on the body surface (V being the velocity of the body
surface points), (ii) A(8¢/0n) = 0 on the wake surface,
and (iit) Ay =const. following a wake material point.
Starting from this differential formulation and ap-
plying the boundary integral equation technique, the
frequency-domain potential field solution for a lifting

body is given by
0 ., BG
/ ( %642 )dS(i)
B

+ / = Ag.. 2% as),
s on

PK) =

(31)

w

where &, 1s the surface of the body, S, is the surface
of the wake, G = —1/4r||X—X,|| is the unit source solu-
tion for the Laplace equation, ¢ indicates the Laplace
transform of ¢, Ap,., denotes the potential disconti-
nuity at the trailing edge, and 7 is the time taken to
convect the material wake point from the trailing edge
to the actual position.

Once the potential solution has been obtained, the ap-
plication of the Bernoulli theorem gives the pressure
distribution over the body surface, and hence the aero-
dynamic loads acting on the aircraft.

Appendix B: Aerodynamic Matrix

The aerodynamic matrix of the dynamic model
may be decomposed into a set of frequency-dependent
matrices which, combined in matrix producs, transform
the generalized Lagrangean variables into the general-
ized aerodynamic forcing function. Specifically,

f=gpE(3)¥ = qp E4E3(5)Ea(5E () §  (32)

where gp is the reference dynamic pressure, E{(3)
transforms generalized Lagrangean variables into
boundary conditions of the potential formulation,
E,(3) gives the potential solution based on Eq. (31),
E;3(3) transforms the potential field into value of pres-
sure on the body surface, and finally E4 yields the gen-
eralized aerodynamic forces.

Matrnx E;

Assuming the surface of the body be described by

fz,y,2,t) =0,

and assuming that the field is described by a pertur-
bation potential about the prescribed flow, the ap-
plication of the boundary condition on the equation
Df/Dt = 0 for points on f = 0 yields

(33)

of 0f 0905 , 0p0f
ot T (U°+ ) 9c T oyay T ora: -0 Y
If, in the body frame of reference, we choose
f=2z—h{z,y,t) =0 (35)

(with |[Vf|* = 14+ h2 + h2 ~ 1) and Eq. (34) reads

Qgﬁ oh LU Oh
on ot " ‘ox
Decomposing the (elastic) displacement into a pre-
scribed set of N vertical body modes of the type

35 (z,y) = ®E(x, y) k, one obtains

(36)

N
h= ho(:c,y) + Zzn(t) (I),’f(;c,y),

n=1

(37

where z,, are the generalized Lagrangean variables, and
the boundary condition corresponding to the perturba-
tion motion becomes

~ N P
b o _ & E AR CIE))
s = 3 [s0s () + 220

n=1

B

for each point (z,y) of the body surface. In addition,
if the body frame of reference moves with respect to
the undisturbed air frame of reference, then also rigid-
body-motion velocity variables are considered. If the
rigid-body-motion velocity is given by

PR (z,y,t) = Y va(t) B2 (2, y),

n=1

(39)

the following boundary condition is added to that in
Eq. (38)

%%(m Y) Ei:[—@*(m y)- ]

(40)
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(where n is the unit normal to the body surface) to
vield

x = E(8)y (41)

where y = {v1,...,v6,21,..., 25}, and x = {xi/Us},
with y; denoting the value of the normalwash at the
i-th node of the discretized body surface.

Matrix E,

As expressed in the boundary integral equation
Eq. (31), the potential is determined from the knowl-
edge of the boundary condition on the surface of the
body. Specifically, it may be given by an expression of
the type of the following one

& =Ex(9) % (42)

where ¢ = {¢;/Up}, with ¢; denoting the value of the
potential solution at the i-th node of the discretized
body surface, and E,(3) is a matrix operator obtained
from discretization of Eq. (31).

Matrix E3

From the Bernoulli theorem we have the pressure
coeflicient given by

¥

- 20 . ., 03
6= _Z/'? [&p + Uy 5—’;—} (43)

that may be recast into the following
¢ = E3(3) o, (44)

where Es(3) is a matrix operator defined from the dis-
cretized form of the gradient operator, and ¢, is the
vector of the pressure-coefficient values at the nodes of
the discretization grid.

Matrix Eq4

Finally, for the j-th generalized force we write

fi :-qD/ pfi-®;dS (45)
S

B

and hence, obtain

f=gpEqé,. (46)
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