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Summary

The longitudinal stability of a symmetric airplane is
usually studied by linearization about a steady flight
condition, leading to the period and damping of the
phugoid and short-period modes. In the present
communication we introduce two new methods of study
of airplane longitudinal stability, which are more
general, in that they relieve some of the restrictions made
in the usual textbook analysis of the subject. In the first
method, which we may designate unsteady longitudinal
stability, the three equations of motion are solved by a
cyclic recurrence method, involving, for example, a
short-period mode with variable airspeed. In the second
method, which we may designate non-linear longitudinal
stability, the equations of motion are eliminated directly
to obtain a single equation of order higher than the
second, which is solved by a perturbation technique. One
motivation for these extensions of the study of
longitudinal stability of airplanes, into the unsteady and
non-linear regimes, is to look, within the framework of
flight dynamics, for explanations of phenomena like the
PIO (Pilot Induced Oscillations), with which have not
been completely solved by control theory alone,

§1 - Introdyction

The longitudinal stability of an airplane [1-4] is
specified by three equations: the balance of forces (lift,
drag, thrust and weight) in the rectifying plane of the
trajectory, and the balance of pitching moment in the
normal direction. Even for flight at low Mach number
over a small altitude range, these equation exhibit non-
linearities, e.g. in the acceleration terms and in the
aerodynamic forces. These are neglected in the usual [5-8]
method of linearization, about a mean state of straight
and level flight at constant airspeed, leading to the
phugoid and short-period modes, and specitying their
frequency and damping. In the present communication we
present two extensions of the standard textbook analysis,
relieving one of the two main restrictions: (I) For
"unsteady longitudinal stability” we do not start from a
steady mean state and use a recursive method of solution;
(II) for "non-linear longitudinal stability” the equations
are eliminated without linearization, and solved by a
perturbation technique. We start by recalling the
equations of longitudinal motion of an airplane (§2), and
then present the unsteady (part I) and non-linear (part IT)
theories, each of which has four sub-cases (Ia to Id, and
ITa to IId), and conclude with a discussion of possible
applications.
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We consider the longitudinal motion a symmetric
aircraft (Figure 1), under lift L, drag D, thrust T and
weight W balancing the inertia force, and also the
pitching moment M equation:

mV=T-D-Wsin v, (1a)
mVy=L-Wcosy, (1b)
[a+7)=M, 19

where m is the mass, I the transverse moment of inertia,
and the variables are the airspeed V, flight path angle vy
and angle-of-attack a, with differentiation with regard to
time t denoted by a dot (2a)

f=ot/ar, f=(of /3s)ds /dt= VT, (2ab)
whereas differentiation with regard to the arc length s, or

distance along the flight path, is represented by a prime
(2b). Using the latter twice:

f=(Vd/ds)(Vd/ds)f=V? £'+V' V £, (20)
the equations of motion can be written:

mVV=T-D~-Wisinvy, (Ba)
mV? Y=L ~Wcosy, (3b)
Vi +y")+ VV (o' +7) =M/ 1, (o)

using derivatives with regard to distance in (3a,b,c)
instead of time in (1a,b,c). In these equations it was
assumed that thrust lies along the tlight path, but a small
deviation causes a small error.

Moments

To study longitudinal motion we need two
acrodynamic forces, viz. lift and drag, and one
acrodynamic moment, viz. in pitch:

L= —;—p S V3¢ (a), (4a)
| P

D= 5P S V' Ch(a), (4b)
1 2

M:-ip SV ¢ Cyla), o)

where p is the mass density, S the wing or reference area,
¢ the mean acrodynamic chord, and for tlight at low Mach
number, neglecting (not only compressibility but) also
turbulence effects, the lift Cp,, drag Cp and pitching
moment Cpy coetficients depend only on angle-of-attack
o For flight away from the stall, the lift coefficient is a
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linear function of angle of attack:

CrL(@)=Cro+0 Cry =Crq(a-o0p), (5a)
Cry =0dCp /0a, Cp,=Cp(0), (5b,0)
09 ==Cro/ Cpq, Cp(ty)=0, (5d.,e)
where Cp is the lift coefficient at zero angle of attack,
CLq is the lift slope, and o the angle of zero lift. A

similar set of relations applies to the pitching moment
coefficient:

CM(a) =Cmo +0 Cppg = Cpma (- ), (Ga)
CM(I EdCN[ /da, CMO ECM(O), (6b,C)
01 ==Cmo / Cpa» Cm(oy)=0, (6d,¢)
where the angle of zero pitching moment o1, is

generally distinct from the angle-of zero lift. The drag is
taken to consist of :

. 2
Cp(a)=Cpy +jCp(a)+k{CL(m)}", @)
friction drag Cpy, lift-induced drag with coefficient k,
plus a non-parabolic drag term with coefficient j.

Part

nstead tability and Recursive

Method

The method I of solution of the equations of
longitudinal motion of an airplane proceeds along the
following steps:

(i) assume constant flight path angle y=0=1v’, e.g.

flight along a constant glide slope in the transverse
force balance (1b or 3b), and express angle-of-attack
as a function of airspeed a(V);

(i) substitute this into the longitudinal force balance
(1a or 3a), and obtain a non-linear first-order
differential equation, to be solved for airspeed: V(1)
or V(s);

(iii) substitute V in the pitching moment equation (¢ or
3c) with y=0, and solve the second-order
differential equation to determine angle-of-attack:
o(t) or os);

(iv) replace angle-of-attack o form (iii) and airspeed
from (ii), back into the transverse force balance (1b
or 3b), to specify a first-order correction for flight
path angle: y(t) or y(s);

(v) repeat the iteration recursively, until the flight
variables o, V, Yy show a small change, i.e. differ
from one iteration to the next, by less than the

required accuracy.

This recursive method applies to the study of
unsteady stability, because the initial state is not a steady
flight condition, and thus the equations of motion are
ordinary differential equations with non-constant
coefficients, i.e. coefficients which are functions of space
or time, as we proceed to illustrate.

4- Div

s. Minimum Thrust an

Minimum Drag

For step (i) of the recursive method I, we assume
constant flight path angle in (3b):

cosy =L/W =(pSV?2W|Ci(a), @)

where we have used (4a), and substitution into (3a) and
use of (4b, 7) leads to:

(v ) /2g = siny+T/W—Cpy pS V2/ 2W-~
—j cosy(2kW/p Y% )

Assuming that the thrust-to-weight ratio has a
dependence on airspeed of the form:

Y = const.:

&)

T/W=fy—t; V£, 1V, (10)
we can simplify (9) to:

(Vz)/2g=a—bV2—d/V2, an
where:

a=fg—siny—j cosy, (12a3)

b= fl + CDf pS / 2w, (12b)

d=f, +cos y 2kW/p S, (12)
are constants over a moderate altitude range, i.e. over
which the air density p is constant. Re-writing (11) in
the form:

(VZ)' Rg = (v2 - v%,)(v2 —vi) 1V2, 13)
it is clear that V+ are the steady dive speeds, for which
there is no acceleration along the flight path V' = 0, i.e.

longitudinal forces balance. The steady dive speeds are the
roots of (11) = (13):

(v2 - v?r)(v2 -v?
i.e. are given by:

V2 =(a/2b) {1i\/1—4bd/az}. (15)

The condition that V4 be real a2 > 4bd, specifies the
minimum thrust for a steady dive:

(fo—siny—jcosy)*A{2 £1+Cpy pS/w)(z f+C08 ykW/ps).

(16)

At the minimum thrust, the steady dive speeds coincide:
a* =4bd: V,=V_=V, ,=+a/l2b, an
with the minimum drag speed: _

Vi =(fo - siny — j cosy)/ (2f; + Cps pS/ W). (18)
In the case of level flight v = 0, at constant thrust
f1 = 0 = {2, and parabolic lift-drag polar j = 0, we obtain:

fo22,/Cpri.  Via =4/fo W/Cpt pS,  (19ab)

which are well-known particular cases [9-10].

)=—bv4 +avi_g, a4

If an aircraft starts a dive or climb at one of the steady
airspeeds Vg =V, or Vg = V_, it will remain at that
airspeed, because (13) there is no longitudinal
acceleration V' = (), If the initial airspeed Vg # Vi is
distinct from the airspeeds for steady dive or climb, the
solution of (13) specifies [11-14] the airspeed as a
function of distance along the flight path V(s), in the
inverse form s(V):
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e f[(viv, - 1) (vorv.)- 1]}V3"(V3’V3 )

{[(VON -)2— IM(V/V_)Z_ l]}VE/(vi V2 )

(20)
For a long-distance compared to the aerodynamic scale:
s>>£=1/2bg, (21)

the airspeed either tends to the upper steady tlight speed
V(s) — V,, showing that flight at V_ is stable, or
diverges from the lower steady flight speed (V(s) - V.
increases), showing that flight at V. is unstable. For
small deviations from the initial airspeed:
Vi-Vi<<VE-Vi V()=Vvi+V, eV @
the airspeed varies exponentially:

Vi=Vy-V,, (23a)
2V, = v0[1- (v_/vo)z] [(v+/v0)2— 1]. (23b)
If in addition, the distance along the flight path is small
relative to the acrodynamic lengthscale:

<<t V(s)=V, - (Vo 1 0)s, (24)
the airspeed variation is linear.

§6- Case Ia: Undamped Shorth-Period with Linear

If we denote by @ =0 - o; the angle-of-attack

relative to the angle of zero pitching moment, and use
(4c, 6a) in (3¢) we obtain:

Q" +(V' /V)®' —(psc Cy, /2)P =0, 25
For flight at constant airspeed:
V = const: P"+0° O = 0, (26)

we obtain an undamped short-period oscillation, with
spatial periodicity given by:

@=—pSc Cpy /21, o))

where Cyq < O for static stability, and thus o is real. In
general, for flight at non-constant airspeed, we have
instead of (26), an equation (25, 27) with variable
coefficients:

Q" +(V' /V)D +@% & =0. 28)
The simplest case is that (24) of airspeed a linear
function of distance:

V'/V-':l/(S-So), SOEKVO/VZ; (2()11,]3)
the differential equation:
(@"+0” @)(s - s0) + @' =0, (30)

can be reduced to a Bessel type, and thus the solution is a
linear combination of Hankel [15] functions:

®(s)= C; HY((s ~ s0)) + C2 HY (0(s—so)), G
where the constant Cy, C; are determined from the initial
angle-of-attack ®(0) and its rate ®’(0). For long-

-distance, the asymptotic formula for Hankel functions,
shows:

os—so p>L: D(s) ~y2/mex(s-s¢)
Cre ios=sg )+in/4 iCye ~io(s—sq )—in/4} (32

’

that there is an oscillation with spatial periodicity ®
(27), but the amplitude is not constant as in the case of
constant airspeed (26), and instead decays like

1/4/s =5 for the case (24) of linear airspeed variation.
In the case of zero initial rate of angle-of-attack, (31)
simplifies to:

@(0)=0: O(s)=0 JTo(w(s-so)). (3
in terms of Bessel functions. This is plotted in
dimensionless forn:
Q= (D(S) / (I’(),

in Figure 2.

X =0(s—$o)

(34a,b)

We consider again the equation (28) for angle of

_attack relative to the angle of zero pitching moment:

O(s) = as) - 0. (35)
this time including damping A;
" +(2A + V' /V)D +0° © =0, (36)

Considering again a distance along the tlight path short
compared with the aerodynamic lengthscale (24), and
hence a linear airspeed variation (29a), we are led to the
differential equation:

(s—s¢ )@+ [1+2(1)7»(s—so )](D' +m2(s—so Jo=0, (37

which can be solved in
hypergeometric functions [16]:

O(s) = (D(,exp[—(o(s—so)(k+7»2—1)]
F(Hl/ VA2 11524221 oo(s-s, )),

where, since the second parameter is unity, the other
solution would have a logarithmic singularity at s = s(,
and thus is ommitted. To the lowest order, (38)
stmplifies to:

D(s) =D, o~ OMs%0) exp{—(o(s-—s())\/ | }, (39)

which is the solution for the short-period mode with
constant airspeed:

D" 2L D +0® O =0; (40)
note that in the case of weak damping (39) simplifies
further to:

A <<t D(s) =P, 1)
in agreement with an oscillation with periodicity (27) in
the undamped case (26). The effect of the airspeed
variation as a linear function of distance appears in (38)
in the factor of (39), i.e. the confluent hypergeometric
function. The solution (38) is plotted in dimensionless
form (34a,b):

0:(X)= ¢ Re[e™ F((1£11)/2;1;2iX)}, @)

terms of confluent

(38)

eiim(s-—s(,) e—a))\.(s—s(,)’
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for A = 0.1, where Re {...} denotes the real part of a
complex expression. The Figure 3 for ©, shows a
damped oscillation, and Figure 4 for ©_ a damped double
oscillation, i.e. both factors in curly brackets in (42) are
oscillatory. The kind of high-frequency beats' seen on
Figure 4, could be seen as an stability ressembling PIOs
(Pilot Induced Oscillations). The damped and undamped
short-period mode, for linear airspeed variation, are
compared in Figure 5.

- : hort-Period wi onenti
Airspeed

If the distance along the flight path is not short
relative to the aerodynamic lengthscale, then the linear
airspeed variation (24), should be replaced by an
exponential one (22), provided that airspeed is still close
to initial airspeed and far from the steady dive speed. We
consider the exponential airspeed variation (28) first for
the undamped short-period mode

(v1+v2e“s’ ¢ )«b"—(vz/e)e‘” Z(I)'HOZ(VI-{-VZS_S/ ¢ )q>=0.

43)
The solution of this differential equation is given in
terms of Gaussian hypergeometric functions [17]:

Hs)= C+e‘i““F(A, B;12iwl;—(V,/V, )e ™! )
+C_e'*F(A-2iwt, B-2iot; 1-2itot;- (V/Vy )™ )

@44
where the A,B are constants given by:
2(A,B) =1+ 2i0f+ 1~ 40%¢% | (@5a,b)

and the constants of integration C+ are specified from the
initial angle-of-attack ®( and its rate ®'g. To lowest
order, for very short distance compared with acrodynamic
lengthscale, (44) simplifies to an undamped short period
oscillation:

s<< £ D(s)=C,e'™ +C_e™™, (46)
i.e. the solution of (26). The effects of the exponential
airspeed variation along the flight path thus appear in the
hypergeometric functions in (44). Using the
dimensionless form:

© = B(s)yd, = (o(s)o Y00}ty ), x = ws,
o=

(47a)b)

=Rc[ eiQxF( A,B; 1+2iQ:e /@ )/F( A,B; 1+2iQ;~u)] )

“8)
is plotted for:
wl=1 V,/V;=1, (49a,b)
in Figure 6, showing that the period is close to ®, but
the amplitude is not the initial value ).

- Case 1d: D hort-Peri
Airspeed

i xponential

The more general case would be to combine the
damped short-period (36) with exponential airspeed (22),
leading to the differential equation:

(Vi+Vae™ o200V #V, (200-1e)e ™ ¢ ]<b'+
+m2(V,+Vze"“/ e)(l)z(),

(50
the solution of which can again be solved in terms of
Gaussian hypergeometric functions:

s)=C,e "F(A,B;C;—(Vo/V e~
<I’() + 21V]
+C_el N A-C,BH-C2-CHV IV, ) ™),

(51
where ¥, C,A,B are the constants:
ﬁ:mz(xix/f—l), (52a)
C=1+2022 -1, (52b)
AB=l/2+0rVA2 —1+ |1/ 4~me+m2z2(934)|%. 52)

In the absence of damping A = 0, then (50) simplifies to
(43), and likewise (51) simplifies to (44), because ¥ =
iol in (52a), C = 1+ 2io 4 in (52b), and (52¢,d)
simplifies to (45a,b). The solution (51) is plotted in the
dimensionless (47a,b) form:

O(x)=e ™™ Re{eixF(x) / F(())}
F(x) = F(1- it iof;1+ 2iot-pe ™),

for the following choices of parameters:

(53a)
(53b)

Va/V1 Wl Figure
1 1 7
2 1 8
1 n 9 ,
1 4 10

and A = 0.1. We compare the short-period mode with
constant and exponential airspeed (with it =1), in Figure
11 without damping A = 0, and in Figure 12 with
damping A = 0.1,

310 - Correction for Flight Path Angle and Succeding

In implementing steps (i, i, iii) the recursive method
I to study unsteady stability, we have calculated the
airspeed (§4,5), then the angle-of-attack in four cases Ia-d
(§6-9), assuming a constant flight path angle v, step (iv)
is a correction of the tlight path angle, using (3b,4a, 6a):

Y /g =-v2 cosy+(pS/2m)CLu((x—ao). 54
The simplest estimate would be:

bl < (pSgCLa / 20)[x(s) ~ 1], - (55)
implying that:
lY“Y()' < (pSgCLa/Z(D) L» a(s)ds-oy (“ _50) =7,. '(56)

If this is less than the required accuracy Y1 < € no further
iterations are necessary. If greater accuracy is needed, we
have to estimate ¥(s) to feed to the next iteration, e.g.:

Y'(s)- v} (s) = gV 2 cosy. (56)
In the case of small flight path angle:
Y <<l y(s)=y(s)=—gV7?, &7))
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the integration is straightforward, e.g.:
'Y(S) = Yl (S) + (gl) / (VO—'V2 S/K) N (58)
for linear airspeed variation (24). Having shown how to

complete an iteration of the recursive method for
unsteady stability, we now turn to non-linear stability.

a - Non-Linear Stability and
turbatio ethod

The approach for non-linear stability is completely
different, in that one eliminates among the three
equations of motion to obtain a single equation of higher
order. It is simpler to use the equations of longitudinal
motion of the airplane with time (la,b,c) rather than
spatial ‘(3a,b,c) derivatives. The elimination for one
variable, e.g. angle-of-attack, can lead, at most, to a
differential equation of order four, i.e. the order of the
system. The order of the equation can be less, e.g. three,
if one equation decouples, for a restricted case. The
restrictions which limit less the application to flight
stability problems, would involve the flight path angle,
rather than airspeed or angle-of-attack. These restrictions
can be usefull in limiting the considerable complexity of
the non-linear equation of motion, which results from
the elimination in the system (la,b,c). In order to see
how the elimination can be performed, we need to write
the equations of motion explicity in terms of the three
flight variables: airspeed, flight path angle and angle-of-
attack relative to the angle-of-zero pitching moment.

- ici f quations of Motion

From (c, 6a), the pitching moment equation (I¢) is
expressed in terms of the angle-of-attack relative to the
angle of zero pitching moment (35):
J+d+0*Vie=0, (59)
where we have introduced the spatial periodicity (27) of

the short-period mode. The transverse force balance (1b),
with (4a, 5a) gives:

7+gVlcosy = (PSCL / 2m)(c—arg), (60)
which may be written:

7+gVlcosy= p(®- ), (61)
where;

p=pSCyy /2m, O =09 -0y, (62a,b)
are constant. The longitudinal force balance (1a) with
(4b, 7, 6a) and a— o = O — Py, leads to:

V+gsin'y—T/m=D/m=(pSV2/2m)

) 2 2 (63)
[Coo+iCLa(®- )+ kCEa(@-@,)*]
which simplifies to:
V:q—gsiny—fV2(1+h<I>+e(b2), (64)
where,
q=T/m, (65)
is a constant at constant thrust, and:
2

f= (pS/2m)[CD0—jCLa(I> 1+k(CLa(I)1) ] (662)

fh = (pS/Zm)(jCL(, - 2kcf“c1>1), (66b)

fe = (pS/2m) k Ciy
are all constant.

(660)

$12 - Simplifications for the Flight Path Angle

The system to be eliminated, viz. (59, 61, 64), e.g.
for the angle-of-attack @, is quite complicated in the
general case (Case ITa). Since the acceleration of the
flight path angle is usually small compared with that of
angle-of-attack, the next simplification (case IIb) is to
replace (59) by:
j<<d: b+ (ofV) D=0 67
The flight path angle v is so far unrestricted, but if it is
limited to moderate values y £ 30° such that:
yz <<1: siny =Yy, cosy =1, (68a,b)
then (61,64) are linearized with regard to flight path angle
(case IIc):
¥=-g/V+p(d-d)), 69

V=q—gy—fV2(1+th+s(I>2). (70)

If the flight path angle is small y < 10° then (case IId)
we can neglect it altogether in (70), viz:

V=q-f v2(1+ h<D+£fI>2). an

Thus the simplest system (case IId) is (67, 69, 71), and

this is sufficient to illustrate the process of elimination
and perturbation method of solution.

ion for the Angle-of-Attack Relati
Zero Pitching Moment

$13- Elimir

If we substitute (67), in the form;
oy bF
V=(ti/)d? d 72, (72)
into (71), we obtain a non-linear third-order differential
equation for the angle-of-attack:

M"é«bxzi(q/m)cizifm(1+ hd>+e¢2)(by2d5%=0. (73)

Once this equation is solved for the angle-of-attack ® (),
the airspeed V(1) follows from (72), and the flight path
angle y(t) is obtained by integration of (69).

The equation for angle-of-attack (73) can be rewritten

in the form:
r? (11 )p[ b hared” | =
. /.. N VAN )

= i(i(x)/2q)((béd) Afb—d) A(D(D/Z)
To a linear approximation this simplifies to a short-
period mode:
G+Qp=0, 75)
where the short period frequency is given by:
Q5 =0*(t/q)=0*(pSTp /T),

74

(762)

- 2
Cp= CD()—jCL(t‘bl“'k(CLu(DI) . (76b)
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For flight at constant airspeed the short-period frequency
is given (59) by Q = @/V, so that in (76), V-2 which is
not constant, is replaced by the constant in brackets,
which has the same dimensions.

§14 - An Harmonic and other Non-Linearities Involving
ivatives
The equation for angle-of-attack, (74) with (76a) is:
H+OJO[ 1+ hored? |2 ip(cb%ds'%iii@'%éds%)

an
where:

1= 0/2q = (m/2T){[=pcSC g /21 . (78)

There are two types of non-linearities in (77): (i) those in
square brackets ressemble an anharmonic oscillator [18-
191

@+ dy/dd =0, (79a)
with potential y having cubic and quartic terms:

1 1
W(D)=02 (-2—¢2 + 5(1:3 + %(D“ ) , (79b)

and are associated with (66a,b,c) the quadratic lift-drag
polar (7); (ii) those in curved brackets are associated with
the effect on angle-of-attack, of variations of airspeed and
flight path angle. The linear short-period mode (75) has
sinusoidal solutions with constant amplitude:

(1) = goe™ ", (80)
which also satisfy the second set of non-linear terms
NV Y. ..
o5 =97 4, @1
but not the first, so that (80) is not a solution of (77).
- rbati hod for Fligh iable an
Frequency
We take € as small parameter in (77), and rewrite it
as:
- V. 1. - Coe
GrOJD[1+ed(D + v)]=+ iu(cp/i'cp Kg o Vo )
(82)
where:
v=h/e (83)
is a constant. We seek a solution in the form:
(1) = () +ex(t), (84a)
Q=Qy+eQ, (84b)

with a perturbation in angle-of-attack x(t) and in
frequency Q1. Substitution of (844a,b) in (82) leads to

(75) to zeroth-order (i.e. independent of €), and the terms
linear in € are:

i+ [i(i/u)<p"%®y2 ~(12)¢7 ¢+ w“fp}i
—<p“<i>{t(i/u)ﬂé<s>'%¢%+(l/2)¢“‘M‘Zw}x (85)
=¢’(i/u)[29091(9%¢ 2+ Q(Z»(P%ip%(@ + V)] ,

and specify a perturbation equation of third-order, which
is linear, with coefficients specitied by (80).
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Subs(i(u(ing (80) in (85) gives:
e 2. 3 .
% — Qo - )i+ Qox - (20(;1/“ —i)x '
=¢(m:‘; /H)(Poelg”'{ZQI +Qo(poexﬂot (l»l +90 it )]

Thus we seek a forced solution, as a superposition of
oscillations at the short-period plus two harmonics:

(86)

x(t) = C,eia(’t + Czeim(’t + Cgei‘m“t . t¥)]

Substitution of (87) into (86) gives:

0.C; =2Q,Q%¢, /11, (8%a)
pov=(3F7in)C,, (88b)
(p?)v =(8F33ip)C3 . (88¢)

From (88a) it follows that the short-period frequency
(84b) is unchanged to first-order in the perturbation:

Q=0 Q=0Qy+ ()(82) : (89)
substituting (88b,c) in (87) it follows that:
x(t)=<p%,e‘m“‘{v/(3—7iu)+[<p0/(18—33iu)]e“‘°‘}, 90)

to first order in the perturbation, there are oscillations at
the first two harmonics 2829, 3Qq of the short-period
mode.

Besides the forced oscillations (90) of the in
homogeneous perturbation equation (86), there are also
free oscillations:

10t
x()=%x0e"" , 91
of the homogeneous equation:

e 2, 3 .

X — Qo (2 — i) + Qox — Qo(£V/p —i)x = 0;92)
substitution of (91) into (92), shows that the frequency
Q satisfies a cubic equation:

2 2
(Q -Q )[Q+(1ii/ n)Qo]=0. ©3)

We should expect Q ==+ Qg to be roots, because the
short-period frequency is unchanged to first order (89).
Since (93) is a cubic, the third root follows immediately:

Q=10Q,, -Qy(lxi/p), (94a,b,c)
and it has an imaginary part.

§17 - Existence of Growing and Decaying Free

Oscillations

The third root (94¢) corresponds (91) to oscillations
at the short-period frequency:

=it )
x(O=xoe  exp[£(Qo/p)t], ©5)
with exponentially growing or decaying amplitude. The
two possibilities arise from the indetermination of sign
in (72). The time scale T for the growth or decay is given
(76a, 78) by:



T=WQ, =124fq ,

96)
or from (65, 66a, 76b)
12t = §{(T/m)(p$ Cp/2m). ©7)

Thus the instability is more noticeable (shorter t), for
higher thrust-to-mass ratios, and high-drag
configurations. This would correlate with the PIO, which
tends to occur for aircraft with high thrust-to-weight
ratios in situations like landing, where drag is high.

§18 - Discussion

We have exhamined analytically the longitudinal
stability of airplanes, beyond the usual assumptions
underlying the short-period mode and phugoid, namely
small perturbation (II) from steady flight (I). Some of the
results, like the airspeed law (20) along a glide slope,
have been verified in flight test [20], alongside with
other predictions of flight dynamics [21-23]. Here we
report some aditional results, e.g. that unsteady stability
can lead to double oscillations ressembling 'beats'
(Figure 4), and non-linear stability can lead to
oscillations with amplitude growing on a timescale (97).
Both of these remarks could be potential explanations for
the PIO phenomenon, which has not been completely
solved by control methods, and could have an origin in
unsteady or non-linear flight stability. The latter is an
important subject, which needs to be better understood,
due to its implications on high angle-of-attack flight,
spins and other safety issues. Analytical methods,
alongside with numerical simulations, have a
complementary role in understanding these phenomena.
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Legends for the Figures

- Longitudinal motion of an aeroplane under
lift L, drag D, thrust T and weight W, and
pitching moment M. '



Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7
Figure 8
Figure 9
Figure 10

Figure 11

Figure 12

Short-period oscillation, without damping,
for linear airspeed variation as a function of
distance along the flight path, specified by
a Bessel function,

As Figure 2, but with damping A = 0.1,
and thus specified by a confluent
hypergeometric function.

As Figure 3, for another solution, showing
double oscillations or 'beats’.

Comparison of short-period oscillation, for
a linear airspeed variation, without and with
damping.

Short-period oscillation, without damping,
for an exponential airspeed as a function of
distance along the flight path, specified by
a Gaussian hypergeometric function, for the
parameters (49a,b).

As Figure 6 with damping A = 0.1.

As Figure 7 with Vo/V] = 2.

As Figure 7 with ol =T.

As Figure 7 with Vo/Vi =2 and of =T,

Comparison of short-period mode, for
constant and exponential airspeed, without
damping.

As Figure 11, with damping.
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